
MIDTERM II: SOLUTIONS

MATH 3140

1. Let Z[
√

3] = {a + b
√

3 : a, b ∈ Z}. Show that Z[
√

3] is a ring under the ordinary
addition and multiplication of real numbers.

Solution. Z[
√

3] is a subset of the ring (R,+, ·). Let us first show that Z[
√

3] is closed under
both + and ·. Indeed, we have

a+ b
√

3 + a′ + b′
√

3 = (a+ a′) + (b+ b′)
√

3 ∈ Z[
√

3]

and

(a+ b
√

3) · (a′ + b′
√

3) = (aa′ + 3bb′) + (ab′ + a′b)
√

3 ∈ Z[
√

3].

Moreover, since (a + b
√

3) + (−a′ − b′
√

3) = (a − a′) + (b − b′)
√

3 ∈ Z[
√

3], it follows that
(Z[
√

3],+) is a subgroup of (R,+), and is thus an abelian group. (We are using the fact
that if G is a group, and S ⊆ G is a subset, then S is a subgroup if and only if ab−1 ∈ S for
all a, b ∈ S.)

To check that (Z[
√

3],+, ·) is a ring, we must check that (Z[
√

3],+) is an abelian group
(which we have done above), that · is associative (this is true since it is true for R), and
that the distributive laws hold (this is also true since it is true for R). Thus (Z[

√
3],+, ·) is

a ring. �

2. Factor x6 + 6 ∈ Z7[x] into linear terms in Z7[x].

Solution. Let f(x) = x6 + 6 ∈ Z7[x]. By Fermat’s Theorem we have α6 ≡ 1 (mod 7) for
all 0 6= α ∈ Z7. Thus f(α) = 0 for all 0 6= α ∈ Z7 (note that this also follows easily by
inspection). It follows that (x− α) divides f(x) for all 0 6= α ∈ Z7. Consequently

x6 + 6 = (x− 1)(x− 2)(x− 3)(x− 4)(x− 5)(x− 6)q(x) ∈ Z7[x],

for some q(x) ∈ Z7[x]. For reasons of degree, deg q(x) = 1. By considering the coefficient of
x6, it is clear that q(x) = 1. Thus

x6 + 6 = (x− 1)(x− 2)(x− 3)(x− 4)(x− 5)(x− 6) ∈ Z7[x].

�

3. Let F be a field and let K be a subset of F with at least two elements. Prove that K
is a subfield of F if for any a, b ∈ K with b 6= 0, then both a− b and ab−1 are in K.
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Solution. To fix notation, we have the field F given by the collection (F,+, ·). Consider the
subset K of the group (F,+). I claim that a− b ∈ K for all a, b ∈ K. Indeed, this is true by
assumption unless b = 0, in which case a− b = a ∈ K. It follows that (K,+) is a subgroup
of (F,+), and hence is an abelian group.

Now consider K∗ = K − {0} and F ∗ = F − {0}. We know that (F ∗, ·) is a group. By
assumption K∗ is a non-empty subset of this group with the property that ab−1 ∈ K for all
a, b ∈ K∗. In fact, since F is an integral domain, it must be that ab−1 ∈ K∗ for all a, b ∈ K∗.
Thus (K∗, ·) is a subgroup of (F ∗, ·).

It is also true that K is closed under the operation ·. Indeed, since K∗ is closed under ·,
it remains only to observe that a · 0 = 0 · a = 0 ∈ K for all a ∈ K (recall that 0 ∈ K since
(K,+) ≤ (F,+)).

To check that (K,+, ·) is a ring, we must check that (K,+) is an abelian group (which
we have done in the first paragraph), that · is associative (this is true since it is true for F ),
and the distributive laws hold (this is also true since it is true for F ). Thus K is a subring
of F . It follows that K is a commutative ring.

Now since K∗ is a subgroup of F ∗ it contains the multiplicative identity 1 6= 0 and every
element a ∈ K∗ has a multiplicative inverse a−1 ∈ K∗. Thus K is a subfield of F . �

4. True or false. If true, prove the statement. If false, provide a counter example.

(a) If d||G| then there exists a g ∈ G such that |g| = d.
(b) Suppose R is a ring and a, b ∈ R. If ab = 0 then either a = 0 or b = 0.

Solution. (a) and (b) are both false. For (a) consider the group G = Z2 × Z2. Then the
number 4 divides |G| = 4. On the other hand, every element of G has order at most two.
For (b) consider the ring Z4. We have [2][2] = [4] = [0] ∈ Z4, and [2] 6= [4]. �

5. Let G be a group. Show that if G/Z(G) is cyclic, then G is abelian.

Proof. To show G is abelian, we must show that given g1, g2 ∈ G, then

g1g2 = g2g1.

To begin, since the group G/Z(G) is cyclic, it has a generator [g] ∈ G/Z(G) for some g ∈ G.
It follows that there are integers n1, n2 such that

[g1] = [g]n1 and [g2] = [g]n2 .

We can rewrite this by saying that there exists z1, z2 ∈ Z(G) such that g1 = gn1z1 and
g2 = gn2z2. Then

g1g2 = gn1z1g
n2z2 = gn2z2g

n1z1 = g2g1

since by definition z1, z2 commute with all elements of G, and g commutes with itself. �

6. An element of a of a ring R is nilpotent if an = 0 for some n ∈ N. Show that if a ∈ R
is nilpotent, then 1− a has a multiplicative inverse in R.

Solution. Using the condition an = 0, we have

(1− a)(1 + a+ a2 + . . .+ an−1) = 1− an = 1.
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Thus 1 + a+ a2 + . . .+ an−1 is the multiplicative inverse of (1− a). �

7. Show that An is a simple group for n ≥ 5.

Solution. We break this problem into several parts.
Claim (a): An contains every 3-cycle if n ≥ 3.

Proof. Let (a1, a2, a3) ∈ Sn be a 3-cycle. Since (a1, a2, a3) = (a1, a2)(a3, a2) it follows from
the definition that (a1, a2, a3) ∈ An. �

Claim (b): An is generated by the 3-cycles.

Proof. Let σ ∈ An be a nontrivial element. By definition there is an expression of σ

σ = τ1τ2 · · · τ2n−1τ2n

as a composition of transpositions τ1, . . . , τ2n for some n ∈ N. Since there are n-pairs of trans-
positions in the expression, the claim will follow if we can show that for any transpositions
τ, τ̂ ∈ Sn with τ 6= τ̂ , then τ τ̂ is a composition of 3-cycles.

To prove this, suppose τ = (a1, a2) and τ̂ = (a3, a4). There are two cases to consider:

(1) If ai 6= aj for i, j ∈ {1, 2, 3, 4} and i 6= j, then (a1, a2)(a3, a4) = (a1, a3, a2)(a1, a3, a4).
(2) Otherwise ai = aj for some i 6= j, and we can assume without loss of generality that

a2 = a4. Then we have (a1, a2)(a3, a2) = (a1, a2, a3).

Thus τ τ̂ is a composition of 3-cycles, completing the proof of Claim (b). �

Claim (c): Fix r, s ∈ {1, . . . , n} with r 6= s. If n ≥ 3, then An is generated by the set of
3-cycles {(r, s, i) : 1 ≤ i ≤ n}.

Proof. After some manipulation, one can establish the identities:

(i) (r, s, i)2 = (s, r, i),
(ii) (r, s, j)(r, s, i)2 = (r, i, j),

(iii) (r, s, j)2(r, s, i) = (s, i, j),
(iv) (r, s, i)2(r, s, k)(r, s, j)2(r, s, i) = (i, j, k).

Since every 3-cycle is of the form of one of those above, it follows that An is generated by
the set of 3-cycles {(r, s, i) : 1 ≤ i ≤ n}. �

Claim (d): Suppose n ≥ 3. Let N C An be a normal subgroup. If N contains a 3-cycle
then N = An.

Proof. Suppose N contains a 3-cycle σ. Then σ = (r, s, i) for some choice of r, s, i ∈
{1, . . . , n}. Observe (after some manipulation) that for any j 6= i ∈ {1, . . . , n} we have

((r, s)(i, j)) (r, s, i)2 ((r, s)(i, j))−1 = (r, s, j).

The expression on the left in in N since it is a conjugate of an element of N . Thus N
contains the set {(r, s, j) : 1 ≤ j ≤ n}. By virtue of Claim (c), it follows that N = An. �

Claim (e): Suppose n ≥ 5. If N CAn is a non-trivial normal subgroup, then N contains a
3-cycle.
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Proof. We will do this in a case by case analysis. The first step is to show that if N CAn is
a non-trivial normal subgroup, then one of the following cases holds:
CASE I: There exists σ ∈ N that can be written as a disjoint product of the form σ =
µ(a1, . . . , ar) for some r ≥ 4.
CASE II: There exists σ ∈ N that can be written as a disjoint product of the form
σ = µ(a4, a5, a6)(a1, a2, a3).
CASE III: There exists σ ∈ N that can be written as a disjoint product of the form
σ = µ(a1, a2, a3), with µ a disjoint product of transpositions.
CASE IV: There exists σ ∈ N that can be written as a disjoint product of the form
σ = µ(a3, a4)(a1, a2), with µ a disjoint product of transpositions.

To see that one of these cases must hold, consider the fact that any non-trivial σ ∈ Sn can
be written as a product of disjoint cycles

σ = σ1 . . . σm

for some m ∈ N. Since disjoint cycles commute, we may reorder so that the length of the
cycles is non-decreasing. The fact that one of the cases above must hold is then obvious.

Now we will show that in each case above, N contains a 3-cycle. For Case I, consider
the expression σ−1(a1, a2, a3)σ(a1, a2, a3)

−1. This is in N since (a1, a2, a3)σ(a1, a2, a3)
−1 is a

conjugate of an element of N . On the other hand, after some algebra, one has

σ−1(a1, a2, a3)σ(a1, a2, a3)
−1 = (a1, a3, ar),

so that N contains a 3-cycle.
For Case II, consider the expression σ−1(a1, a2, a4)σ(a1, a2, a4)

−1. Again this is clearly in
N , and after some algebra one has

σ−1(a1, a2, a4)σ(a1, a2, a4)
−1 = (a1, a4, a2, a6, a3).

Thus N contains a cycle of length five, and so by Case I, it also contains a cycle of length
three.

For Case III, one has
σ2 = (a1, a3, a2)

using the fact that µ2 is the identity (it is the product of disjoint transpositions). Thus N
contains a 3-cycle.

Finally, for Case IV, consider σ−1(a1, a2, a3)σ(a1, a2, a3)
−1. Some algebra shows that this

is equal to (a1, a3)(a2, a4). We call this permutation α, which as above, is in N . Now let
β = (a1, a3, i) for some i ∈ {1, . . . , n} − {a1, . . . , an}. Then

β−1αβα = (a1, a3, i),

which again is in N for the same reason. Thus N contains a 3-cycle. �

Let us conclude by showing that An is simple for n ≥ 5. Let N C An be a non-trivial
normal subgroup of An. In Claim (e) we showed that such a subgroup must contain a 3-cycle.
In Claim (d) we showed that if N contains a 3-cycle, then it is equal to An. This proves that
the only normal subgroups of An are the trivial subgroup and An. Thus An is simple. �
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