MIDTERM II: SOLUTIONS

MATH 3140

1. Let $\mathbb{Z}[\sqrt{3}] = \{a + b\sqrt{3} : a, b \in \mathbb{Z}\}$. Show that $\mathbb{Z}[\sqrt{3}]$ is a ring under the ordinary addition and multiplication of real numbers.

Solution. $\mathbb{Z}[\sqrt{3}]$ is a subset of the ring $(\mathbb{R}, +, \cdot)$. Let us first show that $\mathbb{Z}[\sqrt{3}]$ is closed under both + and \cdot . Indeed, we have

$$a + b\sqrt{3} + a' + b'\sqrt{3} = (a + a') + (b + b')\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$$

and

$$(a + b\sqrt{3}) \cdot (a' + b'\sqrt{3}) = (aa' + 3bb') + (ab' + a'b)\sqrt{3} \in \mathbb{Z}[\sqrt{3}].$$

Moreover, since $(a + b\sqrt{3}) + (-a' - b'\sqrt{3}) = (a - a') + (b - b')\sqrt{3} \in \mathbb{Z}[\sqrt{3}]$, it follows that $(Z[\sqrt{3}], +)$ is a subgroup of $(\mathbb{R}, +)$, and is thus an abelian group. (We are using the fact that if G is a group, and $S \subseteq G$ is a subset, then S is a subgroup if and only if $ab^{-1} \in S$ for all $a, b \in S$.)

To check that $(Z[\sqrt{3}], +, \cdot)$ is a ring, we must check that $(Z[\sqrt{3}], +)$ is an abelian group (which we have done above), that \cdot is associative (this is true since it is true for \mathbb{R}), and that the distributive laws hold (this is also true since it is true for \mathbb{R}). Thus $(Z[\sqrt{3}], +, \cdot)$ is a ring.

2. Factor $x^6 + 6 \in \mathbb{Z}_7[x]$ into linear terms in $\mathbb{Z}_7[x]$.

Solution. Let $f(x) = x^6 + 6 \in \mathbb{Z}_7[x]$. By Fermat's Theorem we have $\alpha^6 \equiv 1 \pmod{7}$ for all $0 \neq \alpha \in \mathbb{Z}_7$. Thus $f(\alpha) = 0$ for all $0 \neq \alpha \in \mathbb{Z}_7$ (note that this also follows easily by inspection). It follows that $(x - \alpha)$ divides f(x) for all $0 \neq \alpha \in \mathbb{Z}_7$. Consequently

$$x^{6} + 6 = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5)(x - 6)q(x) \in \mathbb{Z}_{7}[x],$$

for some $q(x) \in \mathbb{Z}_7[x]$. For reasons of degree, deg q(x) = 1. By considering the coefficient of x^6 , it is clear that q(x) = 1. Thus

$$x^{6} + 6 = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5)(x - 6) \in \mathbb{Z}_{7}[x].$$

3. Let F be a field and let K be a subset of F with at least two elements. Prove that K is a subfield of F if for any $a, b \in K$ with $b \neq 0$, then both a - b and ab^{-1} are in K.

Date: November 16, 2009.

Solution. To fix notation, we have the field F given by the collection $(F, +, \cdot)$. Consider the subset K of the group (F, +). I claim that $a - b \in K$ for all $a, b \in K$. Indeed, this is true by assumption unless b = 0, in which case $a - b = a \in K$. It follows that (K, +) is a subgroup of (F, +), and hence is an abelian group.

Now consider $K^* = K - \{0\}$ and $F^* = F - \{0\}$. We know that (F^*, \cdot) is a group. By assumption K^* is a *non-empty* subset of this group with the property that $ab^{-1} \in K$ for all $a, b \in K^*$. In fact, since F is an integral domain, it must be that $ab^{-1} \in K^*$ for all $a, b \in K^*$. Thus (K^*, \cdot) is a subgroup of (F^*, \cdot) .

It is also true that K is closed under the operation \cdot . Indeed, since K^* is closed under \cdot , it remains only to observe that $a \cdot 0 = 0 \cdot a = 0 \in K$ for all $a \in K$ (recall that $0 \in K$ since $(K, +) \leq (F, +)$).

To check that $(K, +, \cdot)$ is a ring, we must check that (K, +) is an abelian group (which we have done in the first paragraph), that \cdot is associative (this is true since it is true for F), and the distributive laws hold (this is also true since it is true for F). Thus K is a subring of F. It follows that K is a commutative ring.

Now since K^* is a subgroup of F^* it contains the multiplicative identity $1 \neq 0$ and every element $a \in K^*$ has a multiplicative inverse $a^{-1} \in K^*$. Thus K is a subfield of F.

4. True or false. If true, prove the statement. If false, provide a counter example.

(a) If d||G| then there exists a $g \in G$ such that |g| = d.

(b) Suppose R is a ring and $a, b \in R$. If ab = 0 then either a = 0 or b = 0.

Solution. (a) and (b) are both false. For (a) consider the group $G = \mathbb{Z}_2 \times \mathbb{Z}_2$. Then the number 4 divides |G| = 4. On the other hand, every element of G has order at most two. For (b) consider the ring \mathbb{Z}_4 . We have $[2][2] = [4] = [0] \in \mathbb{Z}_4$, and $[2] \neq [4]$.

5. Let G be a group. Show that if G/Z(G) is cyclic, then G is abelian.

Proof. To show G is abelian, we must show that given $g_1, g_2 \in G$, then

$$g_1g_2 = g_2g_1.$$

To begin, since the group G/Z(G) is cyclic, it has a generator $[g] \in G/Z(G)$ for some $g \in G$. It follows that there are integers n_1, n_2 such that

$$[g_1] = [g]^{n_1}$$
 and $[g_2] = [g]^{n_2}$.

We can rewrite this by saying that there exists $z_1, z_2 \in Z(G)$ such that $g_1 = g^{n_1}z_1$ and $g_2 = g^{n_2}z_2$. Then

$$g_1g_2 = g^{n_1}z_1g^{n_2}z_2 = g^{n_2}z_2g^{n_1}z_1 = g_2g_1$$

since by definition z_1, z_2 commute with all elements of G, and g commutes with itself. \Box

6. An element of a of a ring R is nilpotent if $a^n = 0$ for some $n \in \mathbb{N}$. Show that if $a \in R$ is nilpotent, then 1 - a has a multiplicative inverse in R.

Solution. Using the condition $a^n = 0$, we have

$$(1-a)(1+a+a^2+\ldots+a^{n-1}) = 1-a^n = 1$$

Thus $1 + a + a^2 + \ldots + a^{n-1}$ is the multiplicative inverse of (1 - a).

7. Show that A_n is a simple group for $n \ge 5$.

Solution. We break this problem into several parts. Claim (a): A_n contains every 3-cycle if $n \ge 3$.

Proof. Let $(a_1, a_2, a_3) \in S_n$ be a 3-cycle. Since $(a_1, a_2, a_3) = (a_1, a_2)(a_3, a_2)$ it follows from the definition that $(a_1, a_2, a_3) \in A_n$.

Claim (b): A_n is generated by the 3-cycles.

Proof. Let $\sigma \in A_n$ be a nontrivial element. By definition there is an expression of σ

$$\sigma = \tau_1 \tau_2 \cdots \tau_{2n-1} \tau_{2n}$$

as a composition of transpositions $\tau_1, \ldots, \tau_{2n}$ for some $n \in \mathbb{N}$. Since there are *n*-pairs of transpositions in the expression, the claim will follow if we can show that for any transpositions $\tau, \hat{\tau} \in S_n$ with $\tau \neq \hat{\tau}$, then $\tau \hat{\tau}$ is a composition of 3-cycles.

To prove this, suppose $\tau = (a_1, a_2)$ and $\hat{\tau} = (a_3, a_4)$. There are two cases to consider:

- (1) If $a_i \neq a_j$ for $i, j \in \{1, 2, 3, 4\}$ and $i \neq j$, then $(a_1, a_2)(a_3, a_4) = (a_1, a_3, a_2)(a_1, a_3, a_4)$.
- (2) Otherwise $a_i = a_j$ for some $i \neq j$, and we can assume without loss of generality that $a_2 = a_4$. Then we have $(a_1, a_2)(a_3, a_2) = (a_1, a_2, a_3)$.

Thus $\tau \hat{\tau}$ is a composition of 3-cycles, completing the proof of Claim (b).

Claim (c): Fix $r, s \in \{1, ..., n\}$ with $r \neq s$. If $n \geq 3$, then A_n is generated by the set of 3-cycles $\{(r, s, i) : 1 \leq i \leq n\}$.

Proof. After some manipulation, one can establish the identities:

- (i) $(r, s, i)^2 = (s, r, i),$
- (ii) $(r, s, j)(r, s, i)^2 = (r, i, j),$
- (iii) $(r, s, j)^2(r, s, i) = (s, i, j),$
- (iv) $(r, s, i)^2(r, s, k)(r, s, j)^2(r, s, i) = (i, j, k).$

Since every 3-cycle is of the form of one of those above, it follows that A_n is generated by the set of 3-cycles $\{(r, s, i) : 1 \le i \le n\}$.

Claim (d): Suppose $n \ge 3$. Let $N \triangleleft A_n$ be a normal subgroup. If N contains a 3-cycle then $N = A_n$.

Proof. Suppose N contains a 3-cycle σ . Then $\sigma = (r, s, i)$ for some choice of $r, s, i \in \{1, \ldots, n\}$. Observe (after some manipulation) that for any $j \neq i \in \{1, \ldots, n\}$ we have

$$((r,s)(i,j))(r,s,i)^2((r,s)(i,j))^{-1} = (r,s,j).$$

The expression on the left in N since it is a conjugate of an element of N. Thus N contains the set $\{(r, s, j) : 1 \le j \le n\}$. By virtue of Claim (c), it follows that $N = A_n$. \Box

Claim (e): Suppose $n \ge 5$. If $N \triangleleft A_n$ is a non-trivial normal subgroup, then N contains a 3-cycle.

Proof. We will do this in a case by case analysis. The first step is to show that if $N \triangleleft A_n$ is a non-trivial normal subgroup, then one of the following cases holds:

CASE I: There exists $\sigma \in N$ that can be written as a disjoint product of the form $\sigma = \mu(a_1, \ldots, a_r)$ for some $r \geq 4$.

CASE II: There exists $\sigma \in N$ that can be written as a disjoint product of the form $\sigma = \mu(a_4, a_5, a_6)(a_1, a_2, a_3)$.

CASE III: There exists $\sigma \in N$ that can be written as a disjoint product of the form $\sigma = \mu(a_1, a_2, a_3)$, with μ a disjoint product of transpositions.

CASE IV: There exists $\sigma \in N$ that can be written as a disjoint product of the form $\sigma = \mu(a_3, a_4)(a_1, a_2)$, with μ a disjoint product of transpositions.

To see that one of these cases must hold, consider the fact that any non-trivial $\sigma \in S_n$ can be written as a product of disjoint cycles

$$\sigma = \sigma_1 \dots \sigma_m$$

for some $m \in \mathbb{N}$. Since disjoint cycles commute, we may reorder so that the length of the cycles is non-decreasing. The fact that one of the cases above must hold is then obvious.

Now we will show that in each case above, N contains a 3-cycle. For Case I, consider the expression $\sigma^{-1}(a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1}$. This is in N since $(a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1}$ is a conjugate of an element of N. On the other hand, after some algebra, one has

$$\sigma^{-1}(a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1} = (a_1, a_3, a_r),$$

so that N contains a 3-cycle.

For Case II, consider the expression $\sigma^{-1}(a_1, a_2, a_4)\sigma(a_1, a_2, a_4)^{-1}$. Again this is clearly in N, and after some algebra one has

$$\sigma^{-1}(a_1, a_2, a_4)\sigma(a_1, a_2, a_4)^{-1} = (a_1, a_4, a_2, a_6, a_3).$$

Thus N contains a cycle of length five, and so by Case I, it also contains a cycle of length three.

For Case III, one has

$$\sigma^2 = (a_1, a_3, a_2)$$

using the fact that μ^2 is the identity (it is the product of disjoint transpositions). Thus N contains a 3-cycle.

Finally, for Case IV, consider $\sigma^{-1}(a_1, a_2, a_3)\sigma(a_1, a_2, a_3)^{-1}$. Some algebra shows that this is equal to $(a_1, a_3)(a_2, a_4)$. We call this permutation α , which as above, is in N. Now let $\beta = (a_1, a_3, i)$ for some $i \in \{1, \ldots, n\} - \{a_1, \ldots, a_n\}$. Then

$$\beta^{-1}\alpha\beta\alpha = (a_1, a_3, i),$$

which again is in N for the same reason. Thus N contains a 3-cycle.

Let us conclude by showing that A_n is simple for $n \ge 5$. Let $N \triangleleft A_n$ be a non-trivial normal subgroup of A_n . In Claim (e) we showed that such a subgroup must contain a 3-cycle. In Claim (d) we showed that if N contains a 3-cycle, then it is equal to A_n . This proves that the only normal subgroups of A_n are the trivial subgroup and A_n . Thus A_n is simple. \Box