MIDTERM II: SOLUTIONS

MATH 3140

1. Let Z[v3] = {a+bV3 : a,b € Z}. Show that Z[/3] is a ring under the ordinary
addition and multiplication of real numbers.

Solution. Z[+/3] is a subset of the ring (R, -+, ). Let us first show that Z[v/3] is closed under
both + and -. Indeed, we have

a+b0V3+d +VV3=(a+d)+ (b+V)V3 e Z[V3
and
(a+bV3) - (a' +VV3) = (ad’ + 3bY) + (abl + d'b)V3 € Z[V3).

Moreover, since (a + bv/3) + (—a' — b¥'V/3) = (a — ') + (b — V)3 € Z[V3], it follows that
(Z[\/3],+) is a subgroup of (R,+), and is thus an abelian group. (We are using the fact
that if G is a group, and S C G is a subset, then S is a subgroup if and only if ab~! € S for
all a,b € S.)

To check that (Z[v/3],+,) is a ring, we must check that (Z[v/3],+) is an abelian group
(which we have done above), that - is associative (this is true since it is true for R), and
that the distributive laws hold (this is also true since it is true for R). Thus (Z[v/3], +, -) is
a ring. 0

2. Factor 25 + 6 € Z;[z] into linear terms in Z;[z].

Solution. Let f(x) = 2%+ 6 € Z;[z]. By Fermat’s Theorem we have a® = 1 (mod 7) for
all 0 # a € Zy. Thus f(a) = 0 for all 0 # o € Z; (note that this also follows easily by
inspection). It follows that (z — «) divides f(x) for all 0 # o € Z;. Consequently

2°+6=(z—1)(z—2)(x—3)(x —4)(z —5)(x — 6)q(z) € Z;[x],

for some ¢(z) € Z7[x]. For reasons of degree, deg¢(z) = 1. By considering the coefficient of
2%, it is clear that ¢(x) = 1. Thus

%4+ 6=(z—1)(z—2)(z —3)(z —4)(x — 5)(x — 6) € Zzx].
U

3. Let I be a field and let K be a subset of F' with at least two elements. Prove that K
is a subfield of F if for any a,b € K with b # 0, then both a — b and ab™! are in K.
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Solution. To fix notation, we have the field F' given by the collection (F,+,-). Consider the
subset K of the group (F,+). I claim that a —b € K for all a,b € K. Indeed, this is true by
assumption unless b = 0, in which case a — b =a € K. It follows that (K, +) is a subgroup
of (F,+), and hence is an abelian group.

Now consider K* = K — {0} and F* = F — {0}. We know that (F*,-) is a group. By
assumption K* is a non-empty subset of this group with the property that ab=! € K for all
a,b € K*. In fact, since F is an integral domain, it must be that ab=! € K* for all a,b € K*.
Thus (K*,-) is a subgroup of (F™*,-).

It is also true that K is closed under the operation -. Indeed, since K* is closed under -,
it remains only to observe that a-0=0-a =0 € K for all a € K (recall that 0 € K since
(K, +) < (F,+)).

To check that (K, +,-) is a ring, we must check that (K, +) is an abelian group (which
we have done in the first paragraph), that - is associative (this is true since it is true for F'),
and the distributive laws hold (this is also true since it is true for F'). Thus K is a subring
of F. It follows that K is a commutative ring.

Now since K* is a subgroup of F™* it contains the multiplicative identity 1 # 0 and every
element a € K* has a multiplicative inverse a=! € K*. Thus K is a subfield of F. 0]

4. True or false. If true, prove the statement. If false, provide a counter example.
(a) If d||G] then there exists a g € G such that |g| = d.
(b) Suppose R is a ring and a,b € R. If ab = 0 then either a = 0 or b = 0.

Solution. (a) and (b) are both false. For (a) consider the group G = Zy X Zy. Then the
number 4 divides |G| = 4. On the other hand, every element of G has order at most two.
For (b) consider the ring Z,. We have [2][2] = [4] = [0] € Z4, and [2] # [4]. O

5. Let G be a group. Show that if G/Z(G) is cyclic, then G is abelian.
Proof. To show G is abelian, we must show that given g;, g, € GG, then

9192 = §291-
To begin, since the group G/Z(G) is cyclic, it has a generator [g] € G/Z(G) for some g € G.
It follows that there are integers n, ns such that
l91] = [g]" and [go] = [g]™.
We can rewrite this by saying that there exists z1,2, € Z(G) such that g = ¢™2; and
g2 = g™ 25. Then
G192 = 9" 219" 20 = g 229" 21 = ga0n

since by definition 21, zo commute with all elements of G, and g commutes with itself. [

6. An element of a of a ring R is nilpotent if a™ = 0 for some n € N. Show that if a € R
is nilpotent, then 1 — a has a multiplicative inverse in R.

Solution. Using the condition a™ = 0, we have

1—a)(l+a+a*+...+a")=1-a"=1
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Thus 1 +a+a®+ ...+ a" ! is the multiplicative inverse of (1 — a). O

7. Show that A, is a simple group for n > 5.

Solution. We break this problem into several parts.
Claim (a): A, contains every 3-cycle if n > 3.

Proof. Let (a1, as2,a3) € S, be a 3-cycle. Since (a1, az,a3) = (a1, a2)(as, az) it follows from
the definition that (ay,as,a3) € A,. d

Claim (b): A, is generated by the 3-cycles.
Proof. Let 0 € A,, be a nontrivial element. By definition there is an expression of o
0 = T1T2 " Topn—1T2n

as a composition of transpositions 7y, ..., 79, for some n € N. Since there are n-pairs of trans-
positions in the expression, the claim will follow if we can show that for any transpositions
7,7 € S, with 7 # 7, then 77 is a composition of 3-cycles.
To prove this, suppose 7 = (ay, az) and 7 = (a3, ays). There are two cases to consider:
(1) If a; # aj for i,5 € {1,2,3,4} and ¢ # j, then (a1, as)(as, as) = (a1, as, az)(as, as, as).
(2) Otherwise a; = a; for some i # j, and we can assume without loss of generality that
as = ag. Then we have (a1, as)(as, az) = (a1, az, as).

Thus 77 is a composition of 3-cycles, completing the proof of Claim (b). O

Claim (c): Fix r;s € {1,...,n} with r # s. If n > 3, then A, is generated by the set of
3-cycles {(r,s,7) : 1 <i<n}.

Proof. After some manipulation, one can establish the identities:

(i) (r,s,i)* = (s, r,9),

(H) (T7 S, j)(ra S, 2)2 = (7’, ivj)a

(iii) (r,s,5)%(r,s,4) = (s,i,7),

(iv) (r,s,9)2(r,s,k)(r,s,7)%(r,s,1) = (i, J, k).

Since every 3-cycle is of the form of one of those above, it follows that A, is generated by
the set of 3-cycles {(r,s,i): 1 <i<mn}. O

Claim (d): Suppose n > 3. Let N < A, be a normal subgroup. If N contains a 3-cycle
then N = A,,.

Proof. Suppose N contains a 3-cycle 0. Then o = (r,s,i) for some choice of r,s,i €
{1,...,n}. Observe (after some manipulation) that for any j # i € {1,...,n} we have

((ry$)(i,9)) (ry5.0)° ((r,9) (6, 7)) = (1,5, ).

The expression on the left in in NV since it is a conjugate of an element of N. Thus N
contains the set {(r,s,7): 1 <j <n}. By virtue of Claim (c), it follows that N = A,,. O

Claim (e): Suppose n > 5. If N < A, is a non-trivial normal subgroup, then N contains a
3-cycle.
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Proof. We will do this in a case by case analysis. The first step is to show that if N < A,, is
a non-trivial normal subgroup, then one of the following cases holds:
CASE I: There exists ¢ € N that can be written as a disjoint product of the form o =
wulay, ..., a,) for some r > 4.
CASE II: There exists ¢ € N that can be written as a disjoint product of the form
o = p(aq, as, ag)(ar, az, ag).
CASE III: There exists 0 € N that can be written as a disjoint product of the form
o = p(ay, ag,az), with p a disjoint product of transpositions.
CASE 1V: There exists ¢ € N that can be written as a disjoint product of the form
o = p(as, aq)(a, az), with g a disjoint product of transpositions.

To see that one of these cases must hold, consider the fact that any non-trivial o € S,, can
be written as a product of disjoint cycles

O =01...0np

for some m € N. Since disjoint cycles commute, we may reorder so that the length of the
cycles is non-decreasing. The fact that one of the cases above must hold is then obvious.

Now we will show that in each case above, N contains a 3-cycle. For Case I, consider
the expression o~ (ay, ay, az)o(ay, az, az)~t. This is in N since (a1, ag, az)o(ay, az, a3)~! is a
conjugate of an element of N. On the other hand, after some algebra, one has

U_l(ala a2, CL3)O’(CL1, az, CL3)_1 = (ah as, a?")a
so that N contains a 3-cycle.

For Case II, consider the expression o~ (ay, as, as)o(ay, as,as)™ . Again this is clearly in

N, and after some algebra one has

0'_1(@17 as, (14)0'(CL17 ag, a4)_1 — (ala Qy4, A2, g, a3)'
Thus N contains a cycle of length five, and so by Case I, it also contains a cycle of length
three.

For Case III, one has

02 - (a/17 as, a2)
using the fact that p? is the identity (it is the product of disjoint transpositions). Thus N
contains a 3-cycle.

Finally, for Case IV, consider 0~ !(ay, as, az)o(ai, as, az)~'. Some algebra shows that this
is equal to (a1, as)(az,as). We call this permutation «, which as above, is in N. Now let
B = (a1, as,i) for some i € {1,...,n} —{ay,...,a,}. Then

ﬁilaﬂa = (ala as, 2)7
which again is in N for the same reason. Thus N contains a 3-cycle. U

Let us conclude by showing that A, is simple for n > 5. Let N < A,, be a non-trivial

normal subgroup of A4,,. In Claim (e) we showed that such a subgroup must contain a 3-cycle.

In Claim (d) we showed that if N contains a 3-cycle, then it is equal to A,. This proves that
the only normal subgroups of A,, are the trivial subgroup and A,,. Thus A, is simple.  [J



