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APPENDIX C

Groupoids

This appendix is written for two purposes. It can serve as a reference for facts
about categories in which all morphisms are isomorphisms. More importantly, it can
be regarded as a short text on groupoids and stacks of discrete spaces. In this way it
can provide an introduction to many of the ideas and constructions that are made in
the main text, without any algebro-geometric complications.

In this appendix, all categories are assumed to be small. This is not so much for
set-theoretic reasons (cf. B §5, but rather to think and write about their objects and
morphisms as discrete spaces of points.

If X is a category, we write X0 for the set of its objects, X1 for the set of its
morphisms and s, t : X1 → X0 for the source and target map. The notation a : x → y
or x

a
→ y means that a is in X1 and s(a) = x, t(a) = y. The set of morphisms from x to

y is denoted Hom(x, y). The composition, or multiplication, is defined on the collection
X2 = X1 t×X0 s X1 of pairs (a, b) such that t(a) = s(b). We write b ◦ a or a·b for the
composition of a and b. We denote by m : X2 → X1 the map that sends (a, b) to a·b.
There is also a map e : X0 → X1 that takes every object x to the identity morphism
idx or 1x on that object. In this appendix we generally denote the category by X

•
.

Exercise C.1. Show that the axioms for a category are equivalent to the following
identities among s, t, m, and e: (i) s ◦e = idX0

= t ◦e; (ii) s ◦m = s ◦p1 and t ◦m = t ◦p2,
where p1 and p2 are the projections from X1 t×s X1 to X1; (iii) m ◦ (m, 1) = m ◦ (1, m)
as maps from X1 t×s X1 t×s X1 to X1; (iv) m ◦ (s ◦ e, 1) = idX1

= m ◦ (1, t ◦ e).

We pick a canonical one-element set and denote it pt .

1. Groupoids

Definition C.1. A category X
•

is called a groupoid if every morphism a ∈ X1

has an inverse. There exists therefore a map i : X1 → X1 that takes a morphism to its
inverse. The element i(a) is often denoted a−1.

Exercise C.2. A groupoid is a pair of sets X0 and X1, together with five maps
s, t, m, e and i, satisfying the four identities of the preceding exercise, together with:
(v) s ◦ i = t and t ◦ i = s; (vi) m ◦ (1, i) = e ◦ s and m ◦ (i, 1) = e ◦ t. Deduce from
these identities the properties: (vii) i ◦ i = idX1

; (viii) i ◦ e = e; m ◦ (e, e) = e; (ix)
i ◦m = m ◦ (i ◦ p2, i ◦ p1). Show that e and i are uniquely determined by X0, X1, s, t,
and m.

We will generally think of a groupoid X
•
as a pair of sets (or discrete spaces) X0 and

X1, with morphisms s, t, m, e, and i, satisfying these identities. Occasionally, however,
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we will use the categorical language, referring to elements of X0 as objects and elements
of X1 as arrows or morphisms. The notation X1 ⇉ X0 may be used in place of X

•
.

Definition C.2. For any x ∈ X0, the composition m defines a group structure on
the set Hom(x, x) = {a ∈ X1 | s(a) = x, t(a) = x}. This group is denoted Aut(x), and
it is called the automorphism or isotropy group of x.

A groupoid may be thought of as an approximation of a group, but where compo-
sition is not always defined.

Our first example is the prototype groupoid:

Example C.3. Let X be a topological space. Define the fundamental groupoid

π(X)
•

by taking π(X)0 = X as the set of objects and

π(X)1 = {γ : [0, 1]→ X continuous}/ ∼

as the set of arrows. Here we write γ ∼ γ′ for two paths in X if there exists a homotopy
between γ and γ′ fixing the endpoints. Then we define

s : π(X)1 −→ π(X)0, [γ] 7−→ γ(0)

and
t : π(X)1 −→ π(X)0 [γ] 7−→ γ(1).

Thus the paths γ and γ′ are composable precisely if γ(1) = γ′(0) and we have

π(X)2 = {([γ], [γ′]) ∈ π(X)1 × π(X)1 | γ(1) = γ′(0)}.

The composition of [γ] and [γ′] is defined to be the homotopy class of the path

(γ·γ′)(t) =

{
γ(2t) if 0 ≤ t ≤ 1

2
γ′(2t− 1) if 1

2
≤ t ≤ 1 ,

•
γ
−→ •

γ′
−→ •

γ·γ′

[There should be a nicely drawn picture of paths here.] Thus we have

m : π(X)2 −→ π(X)1, ([γ], [γ′]) 7−→ [γ·γ′].

Exercise C.3. Prove that π(X)
•

is a groupoid. In particular, determine the maps
e : π(X)0 → π(X)1 and i : π(X)1 → π(X)1. More generally, for any subset A of X,
construct a groupoid π(X,A)

•
, with π(X,A)0 = A and π(X,A)1 the set of homotopy

classes of paths with both endpoints in A.

It is useful to imagine any groupoid geometrically in terms of paths as suggested by
this example. (It is in examples like this that the notation a·b is preferrable to the b ◦ a
convention.)

The fundamental mathematical notions of set and group occur as extreme cases of
groupoids:

Example C.4. Every set X is a groupoid by taking the set of objects X0 to be X
and allowing only identity arrows, which amounts to taking X1 = X, too. We consider
every set as a groupoid in this way, if not mentioned otherwise.
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Example C.5. Every group G is a groupoid by taking X0 = pt and declaring the
automorphism group of the unique object of X

•
to be G. Then Aut(x) = G = X1, if x

denotes the unique element of pt . In this appendix we write X
•

= BG
•

and call it the
classifying groupoid of the group G.

The next example contains the previous two. It describes a much more typical
groupoid:

Example C.6. If X is a right G-set, we define a groupoid X ⋊ G by taking X as
the set of objects of X ⋊G and declaring, for any two x, y ∈ X,

Hom(x, y) = {g ∈ G | xg = y}.

Composition in X ⋊G is induced from multiplication in G.
More precisely, we have (X ⋊ G)0 = X and (X ⋊ G)1 = X × G. The source map

s : X×G→ X is the first projection, the target map t : X×G→ X is the action map:
t(x, g) = xg. The morphisms (x, g) and (y, h) are composable if and only if y = xg and
the multiplication is given by (x, g)·(y, h) = (x, gh):

x
(x,g)

//

(x,gh)   B
BB

BB
BB

B
xg

(xg,h)
��

xgh

Thus we may identify X2 with X×G×G, with (x, g)×(xg, h) corresponding to (x, g, h),
and write

m : X ×G×G −→ X ×G, (x, g, h) 7−→ (x, gh).

The groupoid X ⋊G is called the transformation groupoid given by the G-set X.

Example C.7. If X is a left G-set, we get an associated groupoid by declaring

Hom(x, y) = {g ∈ G | gx = y}.

Thus the pair (g, x) is considered as an arrow from x to gx. The source map is again
the projection and the target map is the group action. We denote this groupoid by
G⋉X. Note that the multiplication is given by (g, x)·(h, gx) = (hg, x), which reverses
the order of the group elements.1

Exercise C.4. Suppose a set X has a left action of a group G and a right action
of a group H , and these actions commute, i.e., (gx)h = g(xh) for all g ∈ G, x ∈
X, h ∈ H ; in this case we write gxh for this common element. Construct a double

transformation groupoid G⋉X⋊H , of the formG×X×H ⇉ X, with s(g, x, h) = x,
t(g, x, h) = gxh, and m((g, x, h), (g′, gxh, h′)) = (g′g, x, hh′).

The next two examples go beyond group actions on sets:

1This notation is compatible with the composition notation b ◦ a, which is useful in the common
situation where an automorphism group of a mathematical structure is considered to act on the left,
with the product given by composition.
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Example C.8. If R ⊂ X×X is an equivalence relation on the set X, then we define
an associated groupoid R ⇉ X by taking the two projections as source and target map:
s = p1, t = p2. Composition is given by (x, y)·(y, z) = (x, z):

x
(x,y)

//

(x,z) ��?
??

??
??

?
y

(y,z)

��
z

For x, y ∈ X there is at most one morphism from x to y and x and y are isomorphic
in the groupoid R ⇉ X (meaning that there is an a in X1 = R with s(a) = x and
t(a) = y) if and only if (x, y) ∈ R, i.e., x and y are equivalent under the relation R.

Example C.9. Let (Gi)i∈I be a family of groups. Define an associated groupoid by
taking as objects the set X0 = I. We declare all objects to be pairwise non-isomorphic
and define, for each i ∈ I, Aut(i) = Gi. Then X1 is the disjoint union

∐
i∈I Gi and

s = t maps g ∈ Gi to i.

Example C.10. More generally, if (X
•
(i))i∈I is any family of groupoids, there is a

disjoint union groupoid X
•
=

∐
iX•

(i), with X0 =
∐

iX0(i) and X1 =
∐

iX1(i).

Example C.11. Let X0 → Y be any map of sets. Define an associated groupoid
X

•
by defining X1 to be the fibered product: X1 = X0 ×Y X0. The source is the

first projection and the target is the second projection. Call this groupoid the cross

product groupoid associated to X0 → Y . Note that this construction is a special
case of an equivalence relation (Example C.8).

Example C.12. For any set X, there is a groupoid with X0 = X, and X1 =
X × X, with s and t the two projections, and (x, y)·(y, z) = (x, z). This is also an
equivalence relation, with any two points being equivalent. This is sometimes called a
banal groupoid. It is a special case of the preceding example, with Y = pt .

Definition C.13. Given a groupoid X
•
, a subgroupoid is given by subsets Y0 ⊂

X0 and Y1 ⊂ X1 such that: s(Y1) ⊂ Y0; t(Y1) ⊂ Y0; e(Y0) ⊂ Y1, i(Y1) ⊂ Y1, and a, b ∈ Y1

with t(a) = s(b) implies a·b ∈ Y1.

Exercise C.5. Let Z be any set. Construct a groupoid withX0 the set of nonempty
subsets of Z, and with X1 = {(A,B, φ) | A,B ∈ X0 and φ : A→ B is a bijection}, and
multiplication given by (A,B, φ)·(B,C, ψ) = (A,C, ψ ◦ φ).

Exercise C.6. Let Γ be a directed graph, which consists of a set V (of vertices)
and a set E of edges, together with mappings s, t : E → V . For any a ∈ E, define
a symbol ã, called the opposite edge of a, and set s(ã) = t(a) and t(ã) = s(a). For
each v ∈ V define a symbol 1v, with s(1v) = t(1v) = v. Construct a groupoid F (Γ)

•
,

called the free groupoid on Γ, by setting F (Γ)0 = V , and F (Γ)1 is the (disjoint) union
of {1v | v ∈ V } and the set of all sequences (α1, . . . , αn), with each αi either an edge or
an opposite edge, with t(αi) = s(αi+1), such that no successive pair (αi, αi+1) has the
form (a, ã) or (ã, a) for any edge a, 1 ≤ i < n. Composition is defined by juxtaposition
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and canceling to eliminate successive pairs equal to an edge and its inverse. Verify that
F (Γ)

•
is a groupoid.

Exercise C.7. Let X
•
be a groupoid in which the multiplication map m : X2 → X1

is finite-to-one. For any commutative ring K with unity, let A = K[X
•
] be the set of

K-valued functions on X1. Define a convolution product on A by the formula

(f ∗ g)(c) =
∑

a·b=c

f(a) · f(b),

the sum over all pairs a, b ∈ X1 with a·b = c. Show that, with the usual pointwise
sum for addition, this makes A into an associative K-algebra with unity. If X

•
= BG

•
,

this is the group algebra of G. (Extending this to infinite groupoids, with appropriate
measures to replace the sums by integrals, is an active area (cf. [18]), as it leads to
interesting C∗-algebras.)

Remark C.14. There is an obvious notion of isomorphism between groupoids X
•

and Y
•
. It is given by a bijection between X0 and Y0 and a bijection between X1 and

Y1, compatible with the structure maps s, t, m (and therefore e and i). This notion
will be referred to as strict isomorphism, since it is too strong for most purposes.
We will define a more supple notion of isomorphism in the next section.

Exercise C.8. Any left action of a groups G on a set X determines a right action
of G on X by setting x · g = g−1x. Show that the map which is the identity on X, and
maps G×X to X ×G by (g, x) 7→ (x, g−1), determines a strict isomorphism of G⋉X
with X ⋊G.

Exercise C.9. Let X
•

be a groupoid. Define the groupoid X̃
•

by reversing the

direction of arrows. In other words, X̃0 = X0, X̃1 = X1, s̃ = t, t̃ = s, X̃2 = {(x, y) ∈
X1 × X1 | (y, x) ∈ X2} and m̃(x, y) = m(y, x). This is a groupoid (with ẽ = e and

ĩ = i). Show that X̃
•

is strictly isomorphic to X
•

by sending an element of X1 to its
inverse, and the identity on X0. This is called the opposite groupoid of X

•
, and is

often denoted Xopp
•

.

Exercise C.10. For a left action of a group G on a set X, define a groupoid with
X0 = X, X1 = G×X, with s(g, x) = g ·x, t(g, x) = x, andm((g, h·x), (h, x)) = (h·g, x).
Show that this is a groupoid, strictly isomorphic to the opposite groupoid of G ⋉ X.
Similarly for a right action of G on X, there is a groupoid with X0 = X, X1 = X ×G,
with s(x, g) = x ·g, t(s, g) = x, and (x ·h, g)·(x, h) = (x, h ·g); this is strictly isomorphic
to the opposite groupoid of X ⋊G.

The preceding exercises show that, although there are several possible conventions
for constructing transformation groupoids of actions of a group on a set, they all give
strictly (and canonically) isomorphic groupoids.

Exercise C.11. By a right action of a group G on a groupoid X
•
is meant a right

action of G on X1 and on X0, so that s, t are equivariant2, and satisfying ag·bg = (a·b)g

2A mapping f : U → V of right G-sets is equivariant if f(ug) = f(u)g for all u ∈ U and g ∈ G.
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for a, b ∈ X1 with t(a) = s(b), and g ∈ G; that is, m is equivariant with repect to the
diagonal action on X2. It follows that e and i are also equivariant. Construct a groupoid
X1 ×G ⇉ X0, denoted X

•
⋊G, by defining s(a, g) = s(a), t(a, g) = t(ag) = t(a)g, and

(a, g)·(b, g′) = (a·bg−1, gg′). Verify that X
•

⋊ G is a groupoid. Construct a groupoid
G⋉X

•
for a left action.

Exercise C.12. Suppose a groupoid X
•

has a left action of a group G, and a right
action of a group H , and the actions commute, i.e., (gx)h = g(xh) for g ∈ G, h ∈ H ,
and x ∈ X0 or X1. There is a natural right action of H on G ⋉ X

•
, and a left action

of G on X ⋊H . Construct a strict isomorphism between the groupoids (G⋉X
•
) ⋊H

and G⋉ (X
•
⋊H).

Exercise C.13. (∗)3 For every groupoid X
•
, construct a topological space X and

a subset A so that X
•

is strictly isomorphic to the fundamental groupoid π(X,A)
•
.

Let us consider two basic properties of groupoids:

Definition C.15. A groupoid X
•
is called rigid if for all x ∈ X0 we have Aut(x) =

{idx}.
A groupoid X

•
is called transitive if for all x, y ∈ X0 there is an a ∈ X1 with

s(a) = x and t(a) = y.

Exercise C.14. For a topological space X, π(X)
•
is rigid if and only if every closed

path in X is homotopic to a trivial path, and π(X)
•

is transitive if and only if X is
path-connected.

Exercise C.15. For group actions, the transformation groupoid is rigid exactly
when the action is free, and the groupoid is transitive when the action is transitive.

Exercise C.16. Show that every equivalence relation is rigid. Conversely, every
rigid groupoid is strictly isomorphic to an equivalence relation.

Definition C.16. A groupoid is canonically and strictly isomorphic to a disjoint
union of transitive groupoids, called its components. Call two points x and y of X0

equivalent if there is some a ∈ X1 with s(a) = x and t(z) = y, and write x ∼= y if this
is the case. This is an equivalence relation, defined by the image of X1 in X0 ×X0 by
the map (s, t). There is a component for each equivalence class; write X0/∼= for the set
of equivalence classes.

Exercise C.17. If s(a) = x and t(a) = y, the map g 7→ a−1
·g·a determines an

isomorphism from Aut(x) to Aut(y). Replacing a by another a′ with s(a′) = x and
t(a′) = y gives another isomorphism from Aut(x) to Aut(y) that differs from the first by
an inner automorphism. Hence there is a group, well-defined up to inner automorphism,
associated to each equivalence class of a groupoid: the automorphism group Aut(x) of
any of its points.

Exercise C.18. The free groupoid of a graph is rigid if and only if the graph has
no loops. It is transitive when the graph is connected.

3The (∗) means that this is a more difficult exercise, which isn’t central to understanding.
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Next we show how to count in groupoids.

Definition C.17. A groupoid X
•

is called finite if:

(1) the set of equivalence classes X0/∼= is finite;
(2) for every object x ∈ X0 the automorphism group Aut(x) is finite.

If X
•

is a finite groupoid, we define its mass to be

#X
•
=

∑

x∈X0/∼=

1

# Aut(x)
,

where the sum is taken over a set of representatives of the objects modulo isomorphism.
More generally, if each Aut(x) is finite, and the sums

∑
1

# Aut(x)
have a least upper

bound, as x varies over representatives of finite subsets of X0/∼=, define the mass #X
•

to be this least upper bound, and call X
•
tame.

Exercise C.19. Show that if G is a finite group and X a finite G-set, then X ⋊G
is finite and

#X ⋊G =
#X

#G
.

Exercise C.20. (∗) Let F be a finite field with q elements. Consider the groupoid
X

•
of vector bundles over P1

F which are of rank 2 and degree 0. The objects of this
groupoid are all such vector bundles, the morphisms are all isomorphisms of these vector
bundles. Show that this groupoid is tame but not finite, and find its mass.

Definition C.18. A vector bundle E on a groupoid X
•

assigns to each x ∈ X0

a vector space Ex, and to each a ∈ X1 from x to y a linear isomorphism a∗ : Ex → Ey,
satisfying the compatibility: for all (a, b) ∈ X2, (a·b)∗ = b∗ ◦ a∗, i.e., with z = t(b), the
diagram

Ex
a∗ //

(a·b)∗   A
AA

AA
AA

A
Ey

b∗
��
Ez

commutes. For example, a vector bundle on BG
•

is the same as a representation of the
group G.

Exercise C.21. If E is a vector bundle on X
•
, construct a groupoid E

•
with E0 =∐

x∈X0
Ex, and E1 = {(a, v, w) | a ∈ X1, v ∈ Esa, w ∈ Eta, a∗(v) = w}.

2. Morphisms of groupoids

Definition C.19. A morphism of groupoids φ
•
: X

•
→ Y

•
is a pair of maps

φ0 : X0 → Y0, φ1 : X1 → Y1, compatible with source, target and composition. In the
language of categories, this is the same as a functor.

Example C.20. A continuous map of topological spaces f : X → Y gives rise to a
morphism of fundamental groupoids

π(f)
•
: π(X)

•
−→ π(Y )

•
.
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Example C.21. Let X and Y be sets. Then the set maps from X to Y are the
same as the groupoid morphisms from X to Y .

Example C.22. If G and H are groups, then the groupoid morphisms BG
•
→ BH

•

are the group homomorphisms G→ H .

Example C.23. Let X be a right G-set and Y a right H-set. Then a morphism
X ⋊G→ Y ⋊H is given by a pair (φ, ψ), where φ : X → Y and ψ : X ×G→ H , such
that:

(i) for all x ∈ X and g ∈ G, φ(x)ψ(x, g) = φ(xg);
(ii) for all x ∈ X and g and g′ in G, ψ(x, g)ψ(xg, g′) = ψ(x, gg′).

The pair (φ, ψ) induces a groupoid morphism X⋊G→ Y ⋊H by φ : X → Y on objects
and

X ×G −→ Y ×H, (x, g) 7−→ (φ(x), ψ(x, g))

on arrows. Every groupoid morphism X ⋊ G → Y ⋊ H comes about in this way. In
particular, if ρ : G → H is a group homomorphism, and φ : X → Y is equivariant

with respect to ρ (i.e., φ(xg) = φ(x)ρ(g) for x ∈ X and g ∈ G), then (φ, ψ) defines a
morphism of groupoids, where ψ(x, g) = ρ(g) for x ∈ X, g ∈ G.

For example, for any right G-set X, the map from X to a point determines a
morphism from X ⋊G to BG

•
.

Exercise C.22. A morphism φ
•
: X

•
→ Y

•
determines a mapping X0/∼= → Y0/∼=

of equivalence classes. It also determines a group homomorphism Aut(x)→ Aut(φ0(x))
for every x ∈ X0, taking a to φ1(a).

Exercise C.23. If φ
•
: X

•
→ Y

•
is a morphism, and E is a vector bundle on Y

•
,

construct a pullback vector bundle φ∗
•
(E) on X

•
.

Exercise C.24. If X
•

and Y
•

are equivalence relations, any map f : X0 → Y0

satisfying x ∼ y ⇒ f(x) ∼ f(y) determines a morphism of groupoids X
•
→ Y

•
, and

every morphism from X
•

to Y
•

arises from a unique such map.

Example C.24. If a group G acts (on the right) on a set X, there is a canonical
morphism π : X → X ⋊ G from the (groupoid of the set) X to the transformation
groupoid.

Exercise C.25. Let F (Γ)
•

be the free groupoid on a graph Γ, as in Exercise C.6.
For any groupoid X

•
, show that any pair of maps V → X0 and E → X1 comuting with

s and t determines a morphism of groupoids from F (Γ)
•

to X
•
.

Exercise C.26. If X
•

and Y
•

are groupoids, their (direct) product X
•
× Y

•
has

objects X0 × Y0 and arrows X1 × Y1, with s, t, and m defined component-wise. More
generally, if X(i)

•
is a family of groupoids, one has a product groupoid

∏
X(i)

•
.

Of course, morphisms of groupoids may be composed, and we get in this way a
category of groupoids (with isomorphisms being the strict isomorphisms considered
above). But this point of view is too narrow. In the next section we shall enlarge this
category of groupoids to a 2-category.



2-Isomorphisms app-71

Exercise C.27. Given morphisms X
•
→ Z

•
and Y

•
→ Z

•
of groupoids, construct

a groupoid V
•

with V0 = X0 ×Z0
Y0 and V1 = X1 ×Z1

Y1. Show that this is a fibered
product in the category of groupoids. (This will not be the fibered product in the
2-category of groupoids.)

Exercise C.28. If X is a set and Y
•

is a groupoid, a morphism from X to Y
•

is
given by a mapping of sets from X to Y0. A morphism from Y

•
to X is given by a

mapping of sets from Y0/∼= to X. In categorical language, the functor from (Set) to
(Gpd) that takes a set to its groupoid has a right adjoint from (Gpd) to (Set) that
takes Y

•
to Y0, and it has a left adjoint from (Gpd) to (Set) that takes Y

•
to Y0/∼=.

3. 2-Isomorphisms

Definition C.25. Let φ
•

and ψ
•

be morphisms of groupoids from X
•

to Y
•
. A

2-isomorphism from φ
•

to ψ
•

is a mapping θ : X0 → Y1 satisfying the following
properties:

(1) for all x ∈ X0: s(θ(x)) = φ0(x) and t(θ(x)) = ψ0(x);
(2) for all a ∈ X1: θ(s(a))·ψ1(a) = φ1(a)·θ(t(a)).

If x
a
−→ y, we therefore have a commutative diagram

φ0(x)

θ(x)
��

φ1(a)
// φ0(y)

θ(y)
��

ψ0(x)
ψ1(a)

// ψ0(y)

In the language of categories, this says exactly that θ is a natural isomorphism from the
functor φ

•
to the functor ψ

•
. We write θ : φ

•
⇒ ψ

•
to mean that θ is a 2-isomorphism

from φ
•

to ψ
•
.

Example C.26. Consider two continuous maps f, g : X → Y of topological spaces
and the groupoid morphisms π(f)

•
, π(g)

•
: π(X)

•
→ π(Y )

•
they induce. Every homo-

topy H : X × [0, 1] → Y from f to g induces a 2-isomorphism π(H) : π(f)
•
⇒ π(g)

•
,

which assigns to x in X the homotopy class of the path t 7→ H(x, t) in Y .

Exercise C.29. Verify that this is a 2-isomorphism from π(f)
•

to π(g)
•
.

Definition C.27. For a groupoid morphism φ
•
: X

•
→ Y

•
define the 2-isomorphism

1φ• : φ
•
⇒ φ

•
by x 7→ e(φ0(x)) from X0 to Y1. For φ

•
, ψ

•
, χ

•
from X

•
to Y

•
, and

α : φ
•
⇒ ψ

•
and β : ψ

•
⇒ χ

•
, define β ◦ α : φ

•
⇒ χ

•
by the formula x→ α(x)·β(x).

Exercise C.30. Show that these definitions define 2-morphisms. Prove that com-
position is associative, the identities defined behave as identities with respect to com-
position of 2-isomorphisms, and that every 2-isomorphism is invertible. Conclude that
for given groupoids X

•
and Y

•
the morphisms from X

•
to Y

•
together with the 2-

isomorphisms between them form a groupoid, denoted

HOM(X
•
, Y

•
).
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Example C.28. The only 2-isomorphisms between set maps are identities. For sets
X, Y , the groupoid HOM(X, Y ) is the set Hom(X, Y ) of maps from X to Y .

Exercise C.31. If Y is a set, then HOM(X
•
, Y ) is strictly isomorphic to the set

Hom(X0/∼=, Y ) of maps from X0/∼= to Y . If Y
•
is rigid, then HOM(X

•
, Y

•
) is also rigid.

If X is a set, then HOM(X, Y
•
) is strictly isomorphic to the groupoid U

•
with U0 the

set of maps from X to Y0 and U1 the set of maps from X to Y1.

In particular, for any groupoid X
•

there is a canonical morphism

π : X0 → X
•

from the set X0 to the groupoid X
•
. Although this map can be regarded as an inclusion,

we will see that it acts more like a projection. There is also a canonical morphism, called
the canonical map,

ρ : X
•
→ X0/∼=

from the groupoid X
•

to the set X0/∼=.

Exercise C.32. Let X
•

and Y
•

be equivalence relations and f
•
, g

•
: X

•
→ Y

•
mor-

phisms, given by f0, g0 : X0 → Y0. There exists a 2-isomorphism θ : f
•
⇒ g

•
if and only

if f0(x) ∼ g0(x) for all x ∈ X0, and such a 2-isomorphism is unique if it exists. It fol-
lows that the groupoid HOM(X

•
, Y

•
) is an equivalence relation, whose set of equivalence

classes has a canonical bijection with the set of maps from X0/∼= to Y0/∼=.

Example C.29. Let G and H be groups, φ, ψ : G → H group homomorphisms.
Denote by φ

•
and ψ

•
the associated morphisms of groupoids BG

•
→ BH

•
. The 2-

isomorphisms from φ
•

to ψ
•

are the elements h ∈ H satisfying ψ(g) = h−1φ(g)h, for all
g ∈ G.

The groupoid HOM(BG
•
, BH

•
) is strictly isomorphic to the transformation

groupoid Hom(G,H) ⋊ H , where H acts on the group homomorphisms from G to
H by conjugation (φ · h)(g) = h−1φ(g)h.

Example C.30. Given a G-set X and an H-set Y , and two morphisms (φ, ψ) and
(φ′, ψ′) from X ⋊ G to Y ⋊ H , as in Exercise C.23, a 2-isomorphism from the former
to the latter is a map θ : X → H satisfying: (i) φ′(x) = φ(x)θ(x) for all x ∈ X; (ii)
ψ′(x, g) = θ(x)−1ψ(x, g)θ(xg) for all x ∈ X and g ∈ G. In the equivariant case, where
ψ(x, g) = ρ(g) and ψ′(x, g) = ρ′(g) for group homomorphisms ρ and ρ′ from G to H ,
the second condition becomes ρ′(g) = θ(x)−1ρ(g)θ(x) for all x and g. Show that (φ, ψ)
is 2-isomorphic to an equivariant map exactly when there is a map θ : X → H such
that for all g ∈ G, the map x 7→ θ(x)−1ψ(x, g)θ(xg) is independent of x ∈ X. [Are
there cases where every morphism X ⋊ G → Y ⋊ H is 2-isomorphic to an equivariant
map?]

Exercise C.33. We have seen that a morphism φ
•
: X

•
→ Y

•
determines a homo-

morphism from Aut(x) to Aut(φ0(x) for every x ∈ X0. A 2-isomorphism θ : φ
•
⇒ ψ

•

determines an isomorphism Aut(φ0(x))→ Aut(ψ0(x)), taking g to θ(x)−1
·g·θ(x). This
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gives a commutative diagram

Aut(φ0(x))

��

Aut(x)

55lllllll
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Aut(ψ0(x))

Definition C.31. Given φ
•
, φ′

•
: X

•
→ Y

•
, α : φ

•
⇒ φ′

•
, and ψ

•
, ψ′

•
: Y

•
→ Z

•
,

β : ψ
•
⇒ ψ′

•
, there is a 2-isomorphism β ∗α from ψ

•
◦φ

•
to ψ′

•
◦φ′

•
, that maps x in X0 to

ψ1(α(x))·β(φ′
0(x)) = β(φ0(x))·ψ

′
1(α(x))

in Z1.

Exercise C.34. Verify that this defines a 2-isomorphism as claimed. Verify that
groupoids, morphisms, and 2-isomorphisms form a 2-category, i.e., that the axioms of
Appendix B, §2 are satisfied.

Exercise C.35. Let I
•

be the banal groupoid {0, 1} × {0, 1} ⇉ {0, 1}. For any
groupoids X

•
and Y

•
, construct a bijection between the morphisms

X
•
× I

•
−→ Y

•

and the triples (φ
•
, ψ

•
, θ), where φ

•
and ψ

•
are morphisms from X

•
to Y

•
and θ is a

2-isomorphism from φ
•

to ψ
•
.

4. Isomorphisms

Definition C.32. A morphism of groupoids φ
•
: X

•
→ Y

•
is an isomorphism

of groupoids if there exists a morphism ψ
•
: Y

•
→ X

•
, such that ψ

•
◦ φ

•

∼= idX•
and

φ
•
◦ψ

•

∼= idY• , where ‘∼=’ means the existence of a 2-isomorphism between the morphisms.

Example C.33. Homotopy equivalent topological spaces have isomorphic funda-
mental groupoids: a homotopy equivalence f : X → Y determines an isomorphism
π(f)

•
: π(X)

•
→ π(Y )

•
.

Exercise C.36. Let X be a path connected topological space and x ∈ X a base
point. Let G = π1(X, x) be the fundamental group of X. Then the fundamental
groupoid π(X)

•
is isomorphic to BG

•
.

Exercise C.37. Prove that every transitive groupoid is isomorphic to a groupoid
of the form BG

•
, for a group G. Every groupoid is isomorphic to a disjoint union∐

BG(i)
•
, for some groups G(i).

Exercise C.38. Let X
•

be an equivalence relation, and let Y = X0/∼= be the set
of equivalence classes. (a) Show that the canonical map X

•
→ Y is an isomorphism

of groupoids. In particular, if a group G acts freely on a set X, the transformation
groupoid X ⋊ G is isomorphic to the set of orbits. (b) Show that if Z is any set, an
isomorphism X

•
→ Z determines a bijection between Y = X0/∼= and Z.
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Exercise C.39. If X
•
and Y

•
are isomorphic groupoids, show that X

•
is rigid (resp.

transitive) if and only if Y
•

is rigid (resp. transitive).

Exercise C.40. A groupoid is rigid if and only if it is isomorphic to a set.

Exercise C.41. If φ
•
: X

•
→ Y

•
and ψ

•
: Y

•
→ Z

•
are isomorphisms, then the

composition ψ
•
◦ φ

•
: X

•
→ Z

•
is an isomorphism.

Exercise C.42. Suppose a set X has a left action of a group G and a right action
of a group H , and these actions commute. Show that, if both actions are free, then the
groupoids G⋉ (X/H) and (G\X)⋊H are isomorphic. For example, if H is a subgroup
of a group G, then the groupoid BH

•
is isomorphic to G⋉ (G/H).

Proposition C.34. A morphism of groupoids φ
•
: X

•
→ Y

•
is an isomorphism if

and only if it satisfies the following two conditions:

(1) For every x, x′ ∈ X0 and b ∈ Y1 with s(b) = φ0(x) and t(b) = φ0(x
′), there is a

unique a ∈ X1 with s(a) = x, t(a) = x′, and φ1(a) = b. That is, the diagram

X1

(s,t)
//

φ1

��

X0 ×X0

φ0×φ0

��
Y1

(s,t)
// Y0 × Y0

is a cartesian diagram of sets;

(2) For every y ∈ Y0, there is an x ∈ X0 and a b ∈ Y1 with φ0(x) = s(b) and

t(b) = y. That is, the map

X0 φ0
×Y0,s Y1 → Y0,

taking (x, b) to t(b) is surjective. Equivalently, the induced map X0/∼=→ Y0/∼=
is surjective.

In the language of categories, the first condition says exactly that the functor φ
•

is faithful and full, and the second condition says that it is essentially surjective. A
morphism of groupoids satisfying the first condition is said to be injective, and one
satisfying the second will be called surjective.

The proof is largely left as an exercise, as it is the same as the corresponding result in
category theory (Apendix B, §1). We remark only that the essential step in constructing
a morphism ψ

•
: Y

•
→ X

•
back is to choose, for each y ∈ Y0, an xy ∈ X0 and a by ∈ Y1

with s(by) = φ0(xy) and t(by) = y. Then set ψ0(y) = xy, and, for c in Y1, set ψ1(c) to
be the arrow from ψ0(s(c)) to ψ0(t(c)) such that φ1(ψ1(c)) = bs(c)·c·bt(c)

−1.
Note that the second condition is automatic whenever φ0 is surjective. In this case

one need only choose xy in X0 with φ0(xy) = y, and then one can take by = e(y).

Remark C.35. The choices in this proof are important, not so much to point out
the necessary use of an axiom of choice, but because they show that the inverse of
an isomorphism may be far from canonical. This has serious consequences when the
groupoids have a geometric structure on them. Set theoretic surjections have sections
(by the axiom of choice). But geometric surjections, even nice ones like projections
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of fiber bundles, do not generally have sections. In particular, the classification of
geometric groupoids is not as simple as it is for set-theoretic groupoids:

Corollary C.36. Every groupoid is isomorphic to a family of groups as in Exam-

ple C.9.

Exercise C.43. A morphism φ
•
: X

•
→ Y

•
is an isomorphism if and only if the

induced map X0/∼= → Y0/∼= is bijective and the induced maps Aut(x) → Aut(φ0(x))
are isomorphisms for all x ∈ X0.

Exercise C.44. If X
•
and Y

•
are isomorphic groupoids, show that X

•
is finite (resp.

tame) if and only if Y
•

is finite (resp. tame), in which case they have the same mass.

Exercise C.45. A groupoid is rigid if and only if it is isomorphic to a set.

Exercise C.46. A banal groupoid is isomorphic to a point pt ⇉ pt .

Exercise C.47. Suppose a set X has a left action of a group G and a right action
of a group H , and these actions commute. Show that the canonical morphisms from
the double transformation groupoid G ⋉ X ⋊ H to G ⋉ (X/H) (resp. (G\X) ⋊ H) is
an isomorphism if and only if the action of H (resp. G) on X is free. Deduce the result
of Exercise C.42.

Exercise C.48. Construct a groupoid X
•
from a set Z as in Exercise C.5. Let G be

the group of bijections of Z with itself. There is a canonical surjective morphism from
G⋉X0 to X

•
, taking (σ,A) to (A, σ(A), σ|A). For which Z is this an isomorphism?

Exercise C.49. Any linear map L : V → W of vector spaces (or abelian groups)
determines an action of V on W by translation: v · w = L(v) + w, and so we have
the transformation groupoid V ⋉W . If L′ : V ′ → W ′ is another, a pair of linear maps
φV : V → V ′, φW : W → W ′, such that L′

◦ φV = φW ◦ L determines a homomorphism
φ

•
: V ⋉W → V ′ ⋉W ′. (a) Show that φ

•
is an isomorphism if and only if the induced

maps Ker(L) → Ker(L′) and Coker(L) → Coker(L′) are isomorphisms. (b) Show that
V ⋉W is isomorphic to the groupoid Ker(L)⋉Coker(L) (with the trivial action), which
is isomorphic to the product of B(Ker(L))

•
and the set Coker(L).

Exercise C.50. If a group G acts on the right on groupoids X
•
and Y

•
, a morphism

φ
•
: X

•
→ Y

•
is G-equivariant if φ0 and φ1 are G-equivariant. There is then an induced

morphism X
•

⋊ G → Y
•

⋊ G. Show that, if φ
•

is an isomorphism, then this induced
morphism is also an isomorphism.

5. Fibered products

Let
Y

•

ψ•

��
X

•

φ• // Z
•

be a diagram of groupoids. We shall construct
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(i) a groupoid W
•
;

(ii) two morphisms of groupoids p
•
: W

•
→ X

•
and q

•
: W

•
→ Y

•
;

(iii) a 2-isomorphism θ between the compositions W
•
→ X

•
→ Z

•
and W

•
→ Y

•
→

Z
•
.

The data (W
•
, p

•
, q

•
, θ) will be called the fibered product of X

•
and Y

•
over Z

•
,

notation W
•
= X

•
×Z•

Y
•
.

(1) W
•

p•

��

q• //

����
=Eθ

Y
•

ψ•

��
X

•
φ•

// Z
•

The objects of W
•

are triples (x, y, c), where x and y are objects of X
•

and Z
•
, respec-

tively, and c is a morphism in Z
•
, between φ0(x) and ψ0(y):

φ0(x)
c
−→ ψ0(y)

Given two such objects (x, y, c) and (x′, y′, c′) define a morphism from (x, y, c) to

(x′, y′, c′) to be a pair (a, b), x
a
−→ x′, y

b
−→ y′, such that

φ0(x)
φ1(a)

//

c

��

φ0(x
′)

c′

��
ψ0(y)

ψ1(b)
// ψ0(y

′)

commutes in Z
•
. Composition in W

•
is induced from composition in X

•
and Y

•
.

The two projections p
•

and q
•

are defined by projecting onto the first and second
components, respectively (both on objects and morphisms).

To define θ : φ
•
◦ p

•
→ ψ

•
◦ q

•
, take θ : X0 → Y1 to be the map (x, y, c) 7→ c.

This fibered product satisfies a universal mapping property: given a groupoid
V

•
and two morphisms f

•
: V

•
→ X

•
and g

•
: V

•
→ Y

•
, together with a 2-isomorphism

τ : φcom ◦ f
•
⇒ ψcom ◦ g

•
, there is a unique morphism h

•
= (f

•
, g

•
) : V

•
→ X

•
×Z•

Y
•

such that f
•

= p
•
◦ h

•
, g

•
= q

•
◦ h

•
, and τ is determined from θ by τ = θ ∗ 1h•. In fact,

h
•

is defined by h0(v) = (f0(v), g0(v), τ(v)) for v ∈ V0, and h1(d) = (f1(d), g1(d)) for
d ∈ V1.

A 2-commutative diagram

V
•

f•
��

g• //

����
<Dτ

Y
•

ψ•

��
X

•
φ•

// Z
•

means that a 2-isomorphism τ from φ
•
◦f

•
to ψ

•
◦g

•
is specified. It strictly commutes

in case φ
•
◦ f

•
= ψ

•
◦ g

•
. In this case the 2-isomorphism is taken to be ǫ : V0 → Z1 given

by ǫ = e ◦ φo ◦ f0 = e ◦ ψo ◦ g0.
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Exercise C.51. Show that a 2-commutative diagram strictly commutes exactly
when the 2-isomorphism θ : V0 → Z1 factors through Z0, i.e., θ = e ◦ θ0 for some map
θ0 : V0 → Z0.

The diagram is called 2-cartesian if it is 2-commutative and the induced map-
ping (f

•
, g

•
) : V

•
→ X

•
×Z•

Y
•

is an isomorphism. Such a V
•

will not satisfy the same
universal property as the fibered product we have constructed; but it does satisfy a uni-
versal property in an appropriate 2-categorical sense (see Exercise C.56). The universal
property just described is easier to use in practise.

The diagram is called strictly 2-cartesian if the induced mapping (f
•
, g

•
) : V

•
→

X
•
×Z•

Y
•

is a strict isomorphism.

Example C.37. Let X be a right G-set and X ⋊G the associated transformation
groupoid. Consider the diagram

X ×G
σ //

p1

��

X

π
��

X
π // X ⋊G,

where σ is the action map and π is the canonical map. This diagram does not strictly
commute, so we consider the 2-isomorphism η : π ◦ p1 → π ◦σ given by the identity map
on X ×G. This gives a 2-commutative diagram

(2) X ×G
σ //

p1

��
����
BJη

X

π
��

X
π // X ⋊G,

and it is not difficult to see that the corresponding map from the set X × G to the
fibered product X ×X⋊G X is a strict isomorphism. Thus X ⋊G can be considered to
be a quotient of X by G, but a much better quotient than the set-theoretic quotient,
because the set-theoretic quotient does not make the corresponding Diagram (2) a
cartesian diagram of sets (or groupoids).

Remark C.38. Diagram (2) also has a ‘dual’ property, which expresses the fact
that X ⋊G is a quotient of X by the action of G. This property is that for every set S
and every morphism f : X → S, such that f ◦p1 = f ◦σ there exists a unique morphism
f : X ⋊G→ S such that f ◦ π = f :

X ×G
σ //
p1

// X
π //

f
##G

GG
GG

GG
GG

G X ⋊G

f
��
S

We refer to this property as the cocartesian property of Diagram (2). There is also a
more complicated version of this property for an arbitrary groupoid in place of the set
S, for which we refer to Exercise C.53.
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Exercise C.52. Generalize the previous example by replacing the transformation
groupoid X ⋊G by an arbitrary groupoid X

•
. In other words, construct a 2-cartesian

diagram

X1
t //

s

��
����
=Eη

X0

π

��
X0

π // X
•
.

Show in fact that X1 is strictly isomorphic to the fibered product X0 ×X•
X0. This

diagram also has a cocartesian property with respect to maps into sets S.

Exercise C.53. Show that for any groupoid X
•
, the morphism π : X0 → X

•
makes

X
•

a 2-quotient of X0 in the 2-category (Gpd) (in the sense of Definition B.17).

Exercise C.54. If X
•

= X and Y
•

= Y are sets, so φ
•

and ψ
•

are given by maps
f : X → Z0 and g : Y → Z0, then the fibered product X ×Z•

Y is strictly isomorphic to
the set

W = { (x, y, c) ∈ X × Y × Z1 | s(c) = f(x) and t(c) = g(y) }.

In the preceding exercise, if Y = X and g = f , one gets a 2-cartesian diagram

W
t //

s

��
����
=E
X

f
��

X
f

// Z
•
,

with W = {(y1, y2, a) ∈ Y × Y × Z1 | f(y1)
a
−→ f(y2)}, and θ : W → Z1 is the third

projection.

Example C.39. Let W
•

be the fibered product (X ⋊ G) ×BG•
pt . From the con-

struction of the fibered product we can identify W0 with X×G and W1 with X×G×G,
with s(x, g, h) = (x, gh), t(x, g, h) = (xg, h), and (x, g, h)·(xg, g′, h′) = (x, gg′, h′).

Exercise C.55. Show that the canonical morphism α
•
: X → W

•
, defined by

α0(x) = (x, e) and α1(x) = (x, e, e), satisfies the conditions of Proposition C.34, so
α

•
is an isomorphism. Thus the diagram

X

π

��

// pt

��
X ⋊G // BG

•

is 2-cartesian. Construct a morphism β
•
: W

•
→ X by the formulas β0(x, g) = xg and

β1(x, g, h) = xgh. Verify that β
•
◦ α

•
= 1X , and construct a 2-isomorphism from α

•
◦ β

•

to 1W•
.

Note that X → X ⋊ G is the “general” quotient by G. Thus we see that every
quotient by G is a pullback from the quotient of pt by G (which is BG

•
). This justifies

calling pt → BG
•

the universal quotient by G.
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Exercise C.56. (∗) Show that a 2-commutative diagram is 2-cartesian as defined
here if and only if it is 2-cartesian in the the 2-category of groupoids, i.e., it satisfies
the universal property of Appendix B, Definition B.17.

Note how this universal mapping property characterizes the fibered product W
•

up
to an isomorphism which is unique up to a unique 2-isomorphism. This is the natural
analogue in a 2-category of the usual ‘unique up to unique isomorphism’ in an ordinary
category.

5.1. Square morphisms.

Definition C.40. A morphism of groupoids φ
•
: X

•
→ Y

•
is called square if the

diagrams

X1

φ1

��

s // X0

φ0

��

X1

φ1

��

t // X0

φ0

��
Y1

s // Y0 Y1
t // Y0

are cartesian diagrams of sets. Since s and t are obtained from each other by the
involution i, it suffices to verify that one of these diagrams is cartesian.

Exercise C.57. The morphism X ⋊G→ BG
•

of Example C.23 is square.

Exercise C.58. If X
•

is a groupoid, then any square morphism X
•
→ BG

•
makes

X
•

strictly isomorphic to a transformation groupoid associated to an action of G on
X0.

5.2. Restrictions and Pullbacks.

Definition C.41. Let X
•

be a groupoid, Y0 a set and φ0 : Y0 → X0 a map. Define
Y1 to be the fibered product (of sets)

Y1

(s,t)
//

φ1

��

Y0 × Y0

φ0×φ0

��
X1

(s,t)
// X0 ×X0.

So an element of Y1 is a triple (y, y′, a) ∈ Y0 × Y0 × X1 with φ0(y)
a
−→ φ0(y

′). Define
the structure of a groupoid on Y

•
by the rule

(y, y′, a)·(y′, y′′, b) = (y, y′′, a·b).

We get an induced morphism of groupoids φ
•
: Y

•
→ X

•
, defined by φ1(y, y

′, a) = a.
The groupoid Y

•
is called the restriction of X

•
via Y0 → X0; following [50], it may

be denoted X
•
|Y0

.4

4[The word “pullback” and the notation φ∗

0
(X

•
) might seem more appropriate, since “restriction”

connotes some kind of subobject, but the word pullback is used for another concept.]
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Note that by construction, Y
•
→ X

•
is injective (full and faithful). It is an isomor-

phism exactly when the image of the map Y0 → X0 intersects all isomorphism classes
of X

•
, by Proposition C.34.

Example C.42. Let X be a right G-set and U ⊂ X a subset. The restriction of
X⋊G to U is not a transformation groupoid unless U is G-invariant. Thus we see that
very natural constructions can lead out of the world of group actions.

Example C.43. If π(X)
•

is the fundamental group of a topological space X, and
A is a subset of X, then the restriction of π(X)

•
to A is the groupoid π(X,A)

•
.

Exercise C.59. Show that any morphism : X
•
→ Y

•
factors canonically into X

•
→

Y ′
•
→ Y

•
, with X0 → Y ′

0 injective, and Y ′
•
→ Y

•
an isomorphism.

Definition C.44. Let X
•

be a groupoid, and f : X0 → Z a map to a set Z such
that f ◦ s = f ◦ t. For any map Z ′ → Z, construct a pullback groupoid X ′

•
by setting

X ′
0 = X0×Z Z

′, X ′
1 = X1×Z Z

′, with s′ and t′ induced by s and t, as is m′ from m, by
means of the isomorphism X ′

1 t′×X′

0
,s′ X

′
1
∼= (X1 t×X0,s X1)×Z Z

′.

Exercise C.60. Verify that X ′
•

is a groupoid. Show that the induced morphism
X ′

•
→ X

•
is square.

5.3. Representable and gerbe-like morphisms.

Definition C.45. A morphism φ
•
: X

•
→ Y

•
of groupoids is called representable

if the induced mapping

(s, t, φ1) : X1 −→ (X0 ×X0)×Y0×Y0
Y1

is injective; that is, φ
•
is faithful as a functor between categories. The morphism is said

to be gerbe-like if this map (s, t, φ1) is surjective, and the induced map X0/∼=→ Y0/∼=
is surjective; that is, φ

•
is a full and essentially surjective functor. So a representable

and gerbe-like morphism is an isomorphism.

For any groupoid X
•
, the canonical morphism X0 → X

•
is representable (but not

usually injective). If X ′
•

is a pullback of X
•
, as defined in the last section, the map

X ′
•
→ X

•
is representable.

The canonical morphism from X
•

to X0/∼= is gerbe-like. Any surjective homomor-
phism G→ H of groups determines a gerbe-like homomorphism BG

•
→ BH

•
.

Exercise C.61. Let φ
•
: X

•
→ Y

•
be a morphism of groupoids. The following are

equivalent:

(i) φ
•

is representable;
(ii) For any set T and morphism T → Y

•
, the fibered product X

•
×Y• T is rigid;

(iii) For any rigid groupoid T
•
and morphism T

•
→ Y

•
, the fibered product X

•
×Y•T•

is rigid;
(iv) For any 2-cartesian diagram

S
•

��

//

����
<Dα

T
•

��
X

•

// Y
•
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with T
•

rigid, S
•

is also rigid.
(v) For any set T and morphism T → Y

•
, there is a set S and a 2-cartesian diagram

S

��

//

����
=Eα

T

��
X

•

// Y
•
.

Exercise C.62. Show that any morphism X
•
→ Y

•
factors canonically into a gerbe-

like morphism X
•
→ Z

•
followed by a representable morphism Z

•
→ Y

•
.

Exercise C.63. For a morphism φ
•
: X

•
→ Y

•
of groupoids, show that the following

are equivalent:

(i) φ
•

is gerbe-like;
(ii) For any morphism pt → Y

•
(given by y ∈ Y0), the fibered product X

•
×Y• pt is

non-empty and transitive.
(iii) For any morphism ψ

•
: pt → Y

•
, there is a group G and a 2-cartesian diagram

BG
•

��

//

����
>Fα

pt

ψ•

��
X

•

φ• // Y
•

6. Simplicial constructions

We fix a groupoid X
•

and explain several constructions of new groupoids out of X
•
.

For any integer n ≥ 1, denote by Xn the set of n composable morphisms in X
•
, i.e.,

Xn = { (a1, . . . , an) ∈ (X1)
n | t(ai) = s(ai+1) for 1 ≤ i < n } :

∗
a1 // ∗

a2 // . . . an // ∗

6.1. Groupoid of diagrams. Let X
•

be a groupoid. Define a new groupoid
X

•
{n}, for n ≥ 1 as follows. An object of X

•
{n} is an n-tuple of composable ar-

rows in X
•
, i.e., an element of Xn. A morphism in X

•
{n} from (a1, . . . , an) ∈ Xn to

(b1, . . . , bn) ∈ Xn is a commutative diagram in X
•

∗
a1 //

φ0

��

∗
a2 //

φ1

��

. . . an // ∗

φn

��
∗

b1 // ∗
b2 // . . . bn // ∗

i.e., an (n + 1)-tuple (φ0, . . . , φn) of arrows in X
•

such that φi−1·bi = ai·φi, for all
i = 1, . . . , n.

Composition in X
•
{n} is defined by composing vertically:

(φ0, . . . , φn)·(ψ0, . . . , ψn) = (φ0·ψ0, . . . , φn·ψn).

We call the groupoid X
•
{n} the groupoid of n-diagrams of X

•
.
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Exercise C.64. Construct a strict isomorphism between X
•
{1} and the restriction

of X
•
by the map s : X1 → X0. More generally, construct a strict isomorphism between

X
•
{n} and the restriction of X

•
by the map from Xn to X0 that takes (a1, . . . , an) to

s(a1). Conclude that all of the groupoids X
•
{n} are isomorphic to X

•
.

Exercise C.65. Define a groupoid V (n)
•

with V
(n)
0 = Xn, V

(n)
1 = X2n+1,

s(a1, . . . , an, c, b1, . . . , bn) = (a−1
n , . . . , a−1

1 ), and t(a1, . . . , an, c, b1, . . . , bn) = (b1, . . . , bn).
Construct a strict isomorphism between V (n)

•
and X

•
{n}. Deduce that X

•
{n}{1} is

strictly isomorphic to X
•
{2n + 1}. Prove more generally that X

•
{n}{m} is strictly

isomorphic to X
•
{(n+ 1)(m+ 1)− 1}.

Definition C.46. Define the shift of X
•

by n to be the subgroupoid X
•
[n] of

X
•
{n} defined by

(
X

•
[n]

)
0

=
(
X

•
{n}

)
0

= Xn(
X

•
[n]

)
1

= {(φ0, . . . , φn) ∈
(
X

•
{n}

)
1
| φ1, . . . , φn are identity morphisms}.

Exercise C.66. (1) Define a groupoid W (n)
•

by W
(n)
0 = Xn, W

(n)
1 = Xn+1, with

s(a1, . . . , an+1) = (a1·a2, a3, . . . , an+1), t(a1, . . . , an+1) = (a2, a3, . . . , an+1), and

(a1, . . . , an+1)·(b1, . . . , bn+1) = (a1·b1, b2, . . . , bn+1).

(2) Construct a strict isomorphism between W (n)
•

and the cross product groupoid
Xn×Xn−1

Xn ⇉ Xn, constructed from the morphism Xn → Xn−1 that maps (a1, . . . , an)

to (a2, . . . , an). (3) Show that W (n)
•

is strictly isomorphic to X
•
{n}.

Exercise C.67. Define a morphism X
•
[n + 1] → X

•
[n] by leaving out the last

component. Prove that this morphism is square.

Exercise C.68. (∗) For 0 ≤ k ≤ n, and n ≥ 2, define dk : Xn → Xn−1 by the
formulas d0(a1, . . . , an) = (a2, . . . , an), dk(a1, . . . , an) = (a1, . . . , ak·ak+1, . . . , an) for 0 <
k < n, and dn(a1, . . . , an) = (a1, . . . , an−1). For any 1 ≤ k ≤ n, construct a groupoid
U

•
= X

•
(n, k) with U0 = Xn−1, U1 = Xn, s = dk, t = dk−1, and

(a1, . . . , an)·(b1, . . . , bn) = (a1, . . . , ak−1, ak·bk, bk+1, . . . , bn).

(1) Show that X
•
(n, k) is strictly isomorphic to X

•
(n, l) for any 1 ≤ k, l ≤ n. (2)

The formulas φ1(a1, . . . , an) = ak and φ0(a1, . . . , an−1) = s(ak) determine a morphism
φ

•
: U

•
→ X

•
. Show that this morphism is faithful and essentially surjective, but not

usually full.

6.2. Simplicial sets.

Definition C.47. A simplicial set X∗ specifies a set Xn of n-simplices for each
nonnegative integer n, together with face maps di : Xn → Xn−1 for 0 ≤ i ≤ n, and
degeneracy maps si : Xn → Xn+1 for 0 ≤ i ≤ n, satisfying the following identities:

(a) didj = dj−1di for i < j;
(b) sisj = sj+1si for i ≤ j;
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(c) disj =





sj−1di for i < j;

id for i = j, j + 1;

sjdi−1 for i > j + 1.

A groupoid X
•

determines a simplicial set X∗, called the simplicial set of the

groupoid, whose set of n-simplices is the set Xn of composable morphisms (a1, . . . , an)
in X

•
, with X0 the objects of X

•
. For n = 1, d0 = t and d1 = s are the two maps from

X1 to X0, and s0 = e is the map from X0 to X1. The general maps are defined by:

di(a1, . . . , an) =





(a2, . . . , an) if i = 0;

(a1, . . . , ai·ai+1, . . . , an) if 0 < i < n;

(a1, . . . , an−1) if i = n.

and

si(a1, . . . , an) =






(1s(a1), a1, . . . , an) if i = 0;

(a1, . . . , ai, 1t(ai)=s(ai+1), ai+1, . . . , an) if 0 < i < n;

(a1, . . . , an, 1t(an)) if i = n.

Exercise C.69. Verify (a), (b), and (c), so X∗ is a simplicial set.

A morphism φ∗ : X∗ → Y∗ of simplicial sets is given by a mapping φn : Xn → Yn
for each n ≥ 0, commuting with the face and degeneracy operators. A morphism
φ

•
: X

•
→ Y

•
of groupoids determines a morphism φ∗ : X∗ → Y∗ of their simplicial

sets, where φ0 and φ1 are the given maps, and φn(a1, . . . , an) = (φ1(a1), . . . , φ1(an)) for
n ≥ 1. If φ∗ and ψ∗ are morphisms from X∗ to Y∗, a homotopy h from φ∗ to ψ∗ is
given by a collection of maps hi : Xn → Yn+1 for all 0 ≤ i ≤ n, satisfying:

(a) d0h0 = φn and dn+1hn = ψn;

(b) dihj =





hj−1di if i < j;

djhj−1 if i = j > 0;

hjdi−1 if i = n.

(c) sihj =

{
hj+1si if i ≤ j;

hjsi−1 if i > j.

Exercise C.70. If θ : X0 → Y1 gives a 2-isomorphism between morphisms φ
•

and
ψ

•
from a groupoidX

•
to a groupoid Y

•
, show that the mappings hi : Xn → Yn+1 defined

by

hi(a1, . . . , an) = (φ1(a1), . . . φ1(ai), θ(t(ai)) = θ(s(ai+1)), ψ1(ai+1), . . . , ψ1(an))

defines a homotopy from ψ∗ to φ∗.

Definition C.48. A simplicial set X∗ satisfies the Kan condition if, for every
0 ≤ k ≤ n and sequence σ0, . . . , σk−1, σk+1, . . . , σn of n (n−1)-simplices satisfying
di(σj) = dj−1(σi) for all i < j and i 6= k 6= j, there is a σ in Xn with di(σ) = σi for all
i 6= k. This condition is the simplicial analogue of the fact that the union of n faces of
an n-simplex is a retract of the simplex. The Kan condition implies that the condition
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of being homotopic is an equivalence relation. It also implies that the homotopy groups
of the geometric realization of the simplicial set can be computed combinatorially. For
these and other facts about simplicial sets we refer to [60] and [67].

Exercise C.71. Show that the simplicial set of a groupoid satisfies the Kan condi-
tion. [For k = 0, and σ1 = (b1, . . . , bn−1) and σ2 = (c1, . . . , cn−1), the other σi are deter-
mined, and one may take σ = (c1, c

−1
1 ·b1, b2, . . . , bn−1). For k = 1, σ0 = (a1, . . . , an−1)

and σ2 = (c1, . . . , cn−1), take σ = (c1, a1, a2, . . . , an−1). For k > 1, σ0 = (a1, . . . , an−1)
and σ1 = (b1, . . . , bn−1), take σ = (b1·a

−1
1 , a1, a2, . . . , an−1). ]

Definition C.49. The standard n-simplex ∆(n) is defined by

∆(n) = { (t0, . . . , tn) ∈ R
n+1 | ti ≥ 0 and

n∑

i=0

ti = 1 }.

regarded as a topological subspace of Euclidean space. For a simplicial set X∗, construct
the topological space

X =
∐

n≥0

Xn ×∆(n).

Topologically, X is the disjoint union of copies of the standard n-simplex, with one for
each n-simplex in X∗. Define the geometric realization |X∗| of X∗ to be the quotient
space X/∼ of X by the equivalence relation generated by all

(di(σ), (t0, . . . , tn−1)) ∼ (σ, (t0, . . . , ti−1, 0, ti, . . . , tn−1)

for σ ∈ Xn, (t0, . . . , tn−1) ∈ ∆(n− 1), 0 ≤ i ≤ n, and

(di(σ), (t0, . . . , tn+1)) ∼ (σ, (t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn+1)

for σ ∈ Xn, (t0, . . . , tn+1) ∈ ∆(n + 1), 0 ≤ i ≤ n. An n-simplex σ in Xn is called
nondegenerate if it does not have the form si(τ) for τ ∈ Xn−1 and some 0 ≤ i ≤ n−1.
For each n-simplex σ there is a continuous mapping from ∆(n) to |X∗| that takes
t ∈ ∆(n) to the equivalence class of (σ, t). If σ is nondegenerate, this maps the interior
of ∆(n) homeomorphically onto its image. The space |X∗| is a CW-complex, with these
images as its cells.

A morphism φ∗ : X∗ → Y∗ determines a continuous mapping |φ∗| : |X∗| → |Y∗|.
Homotopic mappings of simplicial sets determine homotopic mappings between their
geometric realizations.

Exercise C.72. Any topological space X determines a simplicial set S∗(X),
where Sn(X) is the set of all continuous mappings σ from the standard n-simplex
to X, with (diσ)(t0, . . . , tn−1) = σ(t0, . . . , ti−1, 0, ti, . . . , tn) and (siσ)(t0, . . . , tn+1) =
σ(t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn), for σ ∈ Sn(X) and 0 ≤ i ≤ n. A continuous map-
ping f : X → Y determines a mapping S∗(f) : S∗(X)→ S∗(Y ) of simplicial sets, so we
have a functor from (Top) to the category (Sss) of simplicial sets. This functor is a right
adjoint to the geometric realization functor from (Sss) to (Top): if X∗ is a simplicial
set and Y is a topological space, there is a canonical bijection

Hom(X∗, S∗(Y ))←→ Hom(|X∗|, Y ).
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In fact, 2-isomorphisms of simplicial sets correspond to homotopies between spaces, so
one has a strict isomorphism of categories HOM(X∗, S∗(Y )) ∼= HOM(|X∗|, Y ). [See
[67], §16.]

[What is the relation between a groupoidX
•
and the (relative) fundamental groupoid

π(|X∗|, X0)•? Should we define product of simplicial sets? Should we point out that
a simplicial set is the same thing as a contravariant functor from the category V to
(Set), where V is the category with one object {0, . . . , n} for each nonnegative integer,
and with morphisms nondecreasing mappings between such sets. And/or say that both
definitions make sense for (Set) replaced by any category? Define the simplicial set I∗
and state that a homotopy is the same as X∗ × I∗ → Y∗ ([67], §6)?

There is a fancier 2-categorical notion in Barbara’s chapter on group actions on
stacks that could appear in this appendix? What else is needed in the text?]

Answers to Exercises

C.2. e(x) is determined by the category properties (i)–(iv), as the identity of the
monoid {a ∈ X1 | s(a) = x, t(a) = x}. If i(f)·f = et(f) and f ·i(f) = es(f), then
i(f) = i(f)·(f ·i′(f)) = (i(f)·f)·i′(f) = i′(f). The proofs of identities (vii)–(ix) are
similar to those in group theory.

C.6. The associativity is proved just as in the case of free groups.

C.7. The unity takes value 1 on e(X0) and 0 on the complement.

C.11. G ⋉ X
•

is G × X1 ⇉ X0, with s(g, a) = s(a), t(g, a) = t(ga), and
(g, a)·(g′, a′) = (g′g, a·g−1a′).

C.12. Each is (canonically) strictly isomorphic to a G ⋉ X
•

⋊ H , which is the
groupoid G × X1 × H ⇉ X0, with s(g, a, h) = s(a), t(g, a, h) = t(gah), and
(g, a, h)·(g′, a′, h′) = (g′g, a·g−1a′h−1, hh′).

C.13. The data s, t : X1 → X0 determine a directed graph Γ. Form X by adjoining
a disk for each identity map 1x, x ∈ X0, and a triangle for each (a, b) ∈ X2: [pictures of
disks bounding an arrow at x and a triangle with sides a, b, and a · b should be drawn
here] Take A to be the set X0 of vertices. See Section 6.2 for more general constructions.

C.17. If φa is defined by a and φa′ is defined by a′, then φa′(g) = z−1φa(g)z, with
z = a−1

·a′.

C.20. The mass is 1
(q+1)(q3−1)

.

C.21. This is the restriction of X
•

from the canonical map from E0 to X0, cf. C.41.

C.29. To verify C.25, look at the map (s, t) 7→ H(a(s), t), which has s 7→ f(a(s)) on
the bottom, s 7→ g(a(s)) on the top, t 7→ H(a(0), t) on the left side, and t 7→ H(a(1), t)
on the right.

C.32. The only possible 2-isomorphism from f
•

to g
•

is given by θ(x) =
(f0(x), g0(x)) ∈ Y1 ⊂ Y0 × Y0.
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C.35. A morphism from X
•
× I

•
to Y

•
is given by a pair of maps f0, f1 : X0 → Y0,

and four maps f00, f01, f10, f11 : X1 → Y1, satisfying some identities. The bijection is
given by

φ0 = f0, ψ0 = f1, φ1 = f00, ψ1 = f11, θ = f01 ◦ e, f01 = φ1·θt, f10 = ψ1·iθt.

C.36. For each point y in X, choose a path ay from x to y, and map a path γ in
π(X)1 from y to z to the homotopy class of ay·γ·a

−1
z .

C.37. Choose x0 ∈ X0, and let G = Aut(x0). Then BG
•

is a subgroupoid of X
•
.

Map X
•

to BG
•

by choosing ax ∈ X1 with s(ax) = x0, t(ax) = x, with ax0
= e(x0), and

sending b ∈ X1 to ax·b·ay
−1. The map x 7→ ax is a 2-isomorphism from the composite

X
•
→ BG

•
→ X

•
to the identity on X

•
.

C.41. If α is a 2-isomorphism from φ′
•
φ

•
to 1X•

and β is a 2-isomorphism from ψ′
•
ψ

•

to 1Y• , then θ(x) = φ′
1βφ0(x)·α(x) defines a 2-isomorphism θ from φ′

•
ψ′

•
ψ

•
φ

•
to 1X•

. In
the language of 2-categories, this is the composite of 1φ′• ∗ β ∗ 1φ• from φ′

•
ψ′

•
ψ

•
φ

•
to

φ′
•
1Y•φ•

= φ′
•
φ

•
and α from φ′

•
φ

•
to 1X•

.

C.42. Explicit isomorphisms between G ⋉ (X/H) and (G\X) ⋊ H , and 2-
isomorphisms between their composites and the identities, can be constructed from
choices of section of the maps X → X/H and X → G\X. See Exercise C.47.

C.48. When Z has at most two elements.

C.49. (a) Each is equivalent to the exactness of the sequence 0→ V →W ⊕ V ′ →
W ′ → 0, the first taking v to (L(v), φV (v)), the second taking (w, v′) to φW (w)−L(v′).
(b) A splitting of Ker(L) → V determines an isomorphism of Ker(L) ⋉ Coker(L) to
V ⋉W , to which (a) applies; and similarly for a splitting W → Coker(L). Without any
splitting (for example for abelian groups), they are isomorphic because they both have
components indexed by Coker(L), and all isotropy groups are Ker(L).

C.50. Apply the proposition.

C.53. Here s = p1 and t = p2 are the two projections from X1 to X0, with θ
given by the identity map on X1. And X2 = X1 t×X0,s X1, with q1(a, b) = s(a),
q2(a, b) = t(a) = s(b)), q3(a, b) = t(b), p12(a, b) = a, p23(a, b) = b, p13(a, b) = a·b. Each
θij is given by a map from X2 to X1; in fact θij = pij. Each αij, αji, and αi is an

identity. A morphism u
•
: X0 → Z

•
is given by map u0 : X0 → Z0, and τ : u0 ◦ s

τ
⇒ u0 ◦ t

is given by a map τ : X1 → Z1 with sτ = u0s, tτ = u0t, and τ(a·b) = τ(a)·τ(b). The
required v

•
: X

•
→ Z

•
is defined by v0 = u0 and v1 = τ ; and ρ : u

•
⇒ v

•
◦ π is given by

the map e ◦ u0 : X0 → Z1. For the uniqueness, if v′
•
: X

•
→ Z

•
and ρ′ : u

•
⇒ v′

•
◦ π are

others, the 2-isomorphism ζ : v
•
⇒ v′

•
is given by the map ζ = ρ′ : X0 → Z1.

C.55. The 2-isomorphism is given by the mapping

θ : X ×G −→ X ×G×G, (x, g) 7→ (xg, g−1, g).
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C.59. Given φ
•
: X

•
→ Y

•
, take Y ′

0 = X0 × Y0, and define Y ′
•

to be the pullback of
Y

•
by means of the projection X0 × Y0 → Y0, so Y ′

1 = Y1 ×X0 ×X0. Map X0 to Y ′
0 by

the graph of φ0 and X1 to Y ′
1 by a 7→ (φ1(a), s(a), t(a)).

C.61. The equivalence of (ii) to (v) follows from Exercise C.40; that (i) implies (ii)
follows from the construction of the fibered product X

•
×Y• T ; that (ii) implies (i) is

proved by taking T = Y0 and ψ0 the identity.

C.62. Factor the morphism into X→ : Y ′
•
→ Y

•
as in Exercise C.59. Let Z0 = Y ′

0 =
X0 × Y0, and let Z1 be the image of X1 → Y ′

1 . The canonical map from X
•

to Z
•

is
gerbe-like, and the canonical map Z

•
→ Y ′

•
(and hence Z

•
→ Y ′

•
→ Y

•
) is representable.

C.63. The equivalence of (i) and (ii) follows from the construction of fibered prod-
ucts, and the equivalence of (ii) and (iii) from Exercise C.37.

C.64. If Y
•

is the restriction, with Y0 = Xn, then Y1 consists of triples (a, b, c) with
a, b ∈ Xn, c ∈ X1, s(c) = s(a1), and t(c) = s(b1). Let Z

•
= X

•
{n}. Map Y

•
to Z

•
by

the identity Y0 = Xn = Z0 and map Y1 → Z1 by (a, b, c) 7→ (φ0, . . . , φn), where φ0 = c
and φi = a−1

i · . . . ·a−1
1 ·c·b1· . . . ·bi for 1 ≤ i ≤ n.

C.65. The product in V (n)
•

is defined by

(a1, . . . , an, c, b1, . . . , bn)·(b
−1
n , . . . , b−1

1 , d, e1, . . . , en) = (a1, . . . , an, c·d, e1, . . . , en).

Set Z
•

= X
•
{n}. Map V

•
= V (n)

•
to Z

•
by V0 = Xn = Z0 and V1

to Z1 by (a1, . . . , an, c, b1, . . . , bn) 7→ (φ0, . . . , φn), where φ0 = c and φi =
an+1−i· . . . ·an·c·b1· . . . ·bi for 1 ≤ i ≤ n. There is a canonical isomorphism between
(V (n)

•
)(m) and V ((n+1)(m+1)−1)

•
, both having objects identified with Xmn+m+n and arrows

identified with X2(mn+m+n)+1.

C.66. (1) The identity e takes (a1, . . . , an) to (1sa1, a1, . . . , an) and the inverse
i takes (a1, . . . , an+1) to (a−1

1 , a1·a2, a3, . . . , an+1). (2) Let Z
•

be the cross product

groupoid, so Z0 = Xn = W
(n)
0 , and Z1 = {((a1, . . . , an), (b1, . . . , bn)) | ai = bi for i > 1}.

Map Z1 to W
(n)
1 by sending ((a1, . . . , an), (b1, . . . , bn)) to (a1·b

−1
1 , b1, . . . , bn). (3) We

have Z0 = Xn = (X
•
[n])0, and Z1 → (X

•
[n])1 by

((a1, . . . , an), (b1, . . . , ab)) 7→ (φ0, . . . , φn, a1, . . . , an, b1, . . . , bn),

with φ0 = a1·b
−1
1 and φi = 1sai

for 1 ≤ i ≤ n.

C.67. Consider the morphism W (n+1)
•

→W (n)
•

that omits the last object on objects
and arrows. This is easily checked to be square.

C.68. A strict isomorphism φ
•

from X
•
(n, k) to X

•
(n, k + 1) is given by

φ1(a1, . . . , an) = (a−1
n · . . . ·a−1

1 , a1, . . . , an−1),

with φ0(a1, . . . , an−1) = (a−1
n−1· . . . ·a

−1
1 , a1, . . . , an−2). [Should we omit this exercise?]
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C.71. For k = 0, and σ1 = (b1, . . . , bn−1) and σ2 = (c1, . . . , cn−1), the other σi
are determined, and one may take σ = (c1, c

−1
1 ·b1, b2, . . . , bn−1). For k = 1, σ0 =

(a1, . . . , an−1) and σ2 = (c1, . . . , cn−1), take σ = (c1, a1, a2, . . . , an−1). For k > 1, σ0 =
(a1, . . . , an−1) and σ1 = (b1, . . . , bn−1), take σ = (b1·a

−1
1 , a1, a2, . . . , an−1).


