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APPENDIX A

Descent Theory

1. History and motivation

The theory of descent in modern algebraic geometry was introduced by Grothendieck
in the Séminaire Bourbaki [35], with details and proofs offered in SGA 1 [38, Exposé
VIII]. The origins of the subject go back at least to Weil, although his (less general)
results predate the modern language of schemes. This Appendix gives a self-contained
treatment of some of the more important results which are generally gathered under
the heading, “theory of descent.” Some of the easier steps are left as exercises, but all
of these are solved in the Answers.

The idea behind descent is that, under appropriate hypotheses, objects and mor-
phisms over a scheme can be described locally. An object is described (uniquely up
to canonical isomorphism) by an object on some cover, plus a gluing map satisfying
a cocycle condition. A morphism between two objects thus specified is determined by
giving a morphism locally (i.e., on the cover), which is compatible with the gluing maps.

Let us spell this out in the particular case of vector bundles on schemes, and for
simplicity, we take our covers to be Zariski covers, fine enough that they give local
trivializations. So let T be a scheme, and E a locally free sheaf of OT -modules of some
finite rank r. Then there exists a Zariski open cover (Ui) of T and isomorphisms

(1) λi : E|Ui
→ O⊕r

Ui

of OUi
-modules for each i. If we set Uij = Ui ∩ Uj, then for any pair i and j, the

isomorphisms λi and λj determine isomorphisms ϕij : O⊕r
Uij

→ O⊕r
Uij

via the diagram

O⊕r
Uij

ϕij

��

E|Uij

λi|Uij 88rrrrrr

λj |Uij
&&LLLLLL

O⊕r
Uij

(2)

Note that specifying the transition mappings ϕij is the same as giving GLr-valued
transition functions on each Uij . The ϕij satisfy the cocycle condition: ϕii is the
identity map for every i, and for every triple i, j, k, if we set Uijk = Ui ∩ Uj ∩ Uk, then
we have

(3) (ϕjk|Uijk
) ◦ (ϕij |Uijk

) = ϕik|Uijk
.

(Note that the condition that each ϕii be the identity follows from the latter condition,
applied to the triple i, i, i.)
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Now descent for locally free sheaves in the Zariski topology is a collection of asser-
tions which imply that, given an open cover (Ui), and a collection of morphisms ϕij
satisfying the cocycle condition (3), then there exists a locally free sheaf E (unique up
to canonical isomorphism) together with local trivializations (1) such that the diagram
(2) commutes for all i and j. There is a similar assertion for morphisms, to the effect
that if the locally free sheaf F also admits local trivializations µi : F|Ui

→ O⊕s
Ui

and
transition maps ψij , then there is a bijection between morphisms h : E → F of locally
free sheaves and collections of morphisms hi : O⊕r

Ui
→ O⊕s

Ui
for all i such that the diagram

O⊕r
Uij

ϕij

��

hi|Uij
// O⊕s

Uij

ψij

��

O⊕r
Uij hj |Uij

// O⊕s
Uij

commutes, for all i and j.
The assertions just spelled out are artificially restrictive. Indeed it is not necessary

for E to be trivialized on the cover (Ui). In fact we need not restrict to locally free
sheaves; the same considerations work in the context of arbitrary quasi-coherent sheaves.
Given a Zariski open covering {Ui} of T , and a collection Ei of quasi-coherent sheaves
on Ui, with isomorphisms ϕij : Ei|Uij

→ Ej|Uij
of sheaves of OUij

-modules, satisfying the
cocycle condition (3), then there is a quasi-coherent sheaf E on T , with isomorphisms
E|Ui

→ Ei, giving rise to these transition homomorphisms. And there is a similar version
of descent for morphisms between quasi-coherent sheaves: if E comes from Ei and ϕij ,
and F comes from Fi and ψij , then there is a canonical bijection between morphisms
h : E → F and collections hi : Ei → Fi of morphisms such that ψij ◦ hi|Uij

= hj |Uij
◦ ϕij

for all i, j. We will use this fact, which is a basic construction in algebraic geometry;
a reference is [EGA 0.3.3.1].

These assertions can be stated more succinctly, avoiding all the indices, by defining
T ′ to be the disjoint union of the open sets Ui, which comes with a canonical mapping
T ′ → T . The sheaves Ei determine a sheaf E ′ on T ′. The transition functions ϕij
amount to an isomorphism

ϕ : p∗1(E ′) → p∗2(E ′)

on T ′ ×T T
′, where p1 and p2 are the projections from T ′ ×T T

′ to T ′. The cocycle
condition asserts that p∗23(ϕ) ◦ p∗12(ϕ) = p∗13(ϕ) on T ′ ×T T

′ ×T T
′, where

pij : T
′ ×T T

′ ×T T
′ → T ′ ×T T

′

are the projections to the corresponding factors.
A key feature of Grothendieck’s descent theory is that it extends from Zariski cov-

erings to the more general étale and smooth coverings that are required for the theory
of stacks. In fact, the appropriate morphisms to use are quite general flat morphisms.

Notation A.1. Given a morphism f : T ′ → T of schemes, set T ′′ = T ′ ×T T
′, with

its two projections p1 and p2 from T ′′ to T ′. Let T ′′′ = T ′ ×T T
′ ×T T

′, which comes
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with three projections p12, p13, and p23 from T ′′′ to T ′′. We also have three projections
q1, q2, and q3 from T ′′′ to T ′, with qi = p1 ◦ pij and qj = p2 ◦ pij, 1 ≤ i < j ≤ 3.

Descent for objects says that an object specified on a cover, together with a
patching isomorphism satisfying a cocycle condition, determines an object defined on
the base, and this object is unique up to canonical isomorphism. In more traditional
terminology, every descent datum (pair consisting of an object defined on the cover,
with a patching isomorphism satisfying the cocycle condition) is effective (determines
an object on the base); the object on the base that realizes this effectivity is called a
solution to the descent problem posed by the given datum.

Descent for morphisms says that, if we are given two sets of descent data, to-
gether with respective objects on the base (solutions to the descent data), then to give a
morphism between these objects is the same as to give a morphism between the objects
on the cover, subject to a compatibility condition.

The next theorem spells this out in the case of quasi-coherent sheaves on schemes.
Following the statement are detailed explanations of its assertions. The next two sec-
tions are devoted to the proof of the theorem, while the rest of this appendix will discuss
applications to other descent situations, especially those involving schemes instead of
quasi-coherent sheaves.

Theorem A.2. Let f : T ′ → T be a flat morphism of schemes. Assume, further,
that f is surjective and either quasi-compact or locally of finite presentation. (a) Let E ′

be a quasi-coherent sheaf on T ′ and ϕ : p∗1E ′ → p∗2E ′ an isomorphism on T ′′ such that

p∗23ϕ ◦ p∗12ϕ = p∗13ϕ

on T ′′′. Then there exists a quasi-coherent sheaf E on T and an isomorphism λ : f ∗E →
E ′ on T ′ satisfying

p∗2λ = ϕ ◦ p∗1λ
on T ′′. Moreover the pair consisting of the sheaf E and the isomorphism λ is unique up
to canonical isomorphism.
(b) With notation as in (a), suppose (F ′, ψ) is another descent datum with solution
given by F and µ. Then, for every morphism h′ : E ′ → F ′ on T ′ satisfying

p∗2h
′ ◦ ϕ = ψ ◦ p∗1h′

on T ′′, there is a unique morphism h : E → F on T such that µ ◦ f ∗h = h′ ◦ λ on T ′.

The hypotheses on the morphism f (flat, surjective, etc.) will be discussed in Section
3. The hypothesis in (a), that p∗23ϕ ◦ p∗12ϕ = p∗13ϕ, means that the diagram

p∗12p
∗
1E ′

p∗12ϕ
// p∗12p

∗
2E ′ p∗23p

∗
1E ′

p∗23ϕ

��

p∗13p
∗
1E ′

p∗13ϕ
// p∗13p

∗
2E ′ p∗23p

∗
2E ′

commutes. The three equal signs denote canonical isomorphisms coming from the
equalities p1 ◦ pjk = qj = p2 ◦ pij.
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The conclusion in (a), that p∗2λ = ϕ ◦ p∗1σ, means that the diagram

p∗1f
∗E p∗1λ

// p∗1E ′

ϕ

��

p∗2f
∗E

p∗2λ
// p∗2E ′

commutes.
We clarify what it means in (a) for the solution to be unique up to canonical iso-

morphism. Precisely, it means that if F is another quasi-coherent sheaf on T , and
µ : f ∗F → E ′ is an isomorphism on T ′ satisfying p∗2µ = ϕ ◦ p∗1µ on T ′′, i.e., the diagram

p∗1f
∗F p∗1µ

// p∗1E ′

ϕ

��

p∗2f
∗F

p∗2µ
// p∗2E ′

commutes, then there is a unique isomorphism h : E → F such that µ ◦ f ∗h = λ on T ′,
i.e., the diagram

f ∗E f∗h
//

λ
��<

<<
<<

<<
f ∗F

µ
����

��
��

�

E ′

commutes. This uniqueness claim is in fact a special case of (b), applied to the identity
morphism on E ′.

The hypothesis in (b), that p∗2h
′ ◦ ϕ = ψ ◦ p∗1h′, means that the diagram

p∗1E ′

p∗1h
′

��

ϕ
// p∗2E ′

p∗2h
′

��

p∗1F ′

ψ
// p∗2F ′

commutes.
Finally, the conclusion in (b), that µ ◦ f ∗h = h′ ◦ λ, means that the diagram

f ∗E
λ

��

f∗h
// f ∗F

µ

��

E ′
h′

// F ′

commutes.
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2. The affine case

The general case of Theorem A.2 will be reduced to the affine case, which amounts
to some elementary commutative algebra. This algebra is worked out in this section.
No Noetherian or finiteness conditions on either rings or modules are required.

We are concerned with an arbitrary homomorphism A → A′ of commutative rings
with unit, which corresponds to a morphism f : T ′ → T , with T = Spec(A) and T ′ =
Spec(A′). Let A′′ = A′⊗AA

′, and A′′′ = A′⊗AA
′⊗AA

′, so we have identifications T ′′ =
Spec(A′′) and T ′′′ = Spec(A′′′). The projections p1 and p2 from T ′′ to T ′ correspond
to the homomorphisms x 7→ x ⊗ 1 and x 7→ 1 ⊗ x from A′ to A′ ⊗A A

′. Similarly, the
projections p12, p13, and p23 from T ′′′ to T ′′ correspond to the mappings from A′ ⊗A A

′

to A′′′ = A′ ⊗A A
′ ⊗A A

′ that take x ⊗ y to x ⊗ y ⊗ 1, x ⊗ 1 ⊗ y, and 1 ⊗x ⊗ y, respectively.
Projections q1, q2, and q3 from T ′′′ to T ′ correspond to mappings A′ → A′′′ given by
x 7→ x ⊗ 1 ⊗ 1, x 7→ 1 ⊗x ⊗ 1, and 1 ⊗ 1 ⊗x, respectively.

Definition A.3. A homomorphism A → A′ of commutative rings with unit is
flat if, for any exact sequence M1 → M2 → M3 of A-modules, the induced sequence
A′ ⊗A M1 → A′ ⊗A M2 → A′ ⊗A M3 (of A′-modules) is exact. The homomorphism is
called faithfully flat if it is flat and the corresponding map Spec(A′) → Spec(A) is
surjective.

Exercise A.1. (1) Show that a flat homomorphism A→ A′ is faithfully flat if and
only if, for any nonzero A-module M , A′ ⊗A M 6= 0. (2) Show that a homomorphism
A → A′ is faithfully flat if and only if the following condition is satisfied: a sequence
M ′ → M → M ′′ of A-modules is exact if and only if the sequence A′ ⊗A M

′ →
A′ ⊗AM → A′ ⊗AM

′′ is exact.

Exercise A.2. Suppose A→ A′ is faithfully flat. (1) Show that a homomorphism
M → N of A-modules is a monomorphism (resp. epimorphism, resp. isomorphism)
if and only if the homomorphism A′ ⊗A M → A′ ⊗A N is a monomorphism (resp.
epimorphism, resp. isomorphism). (2) Show that an A-module M is finitely generated
(resp. finitely presented, resp. flat, resp. locally free of finite rank n) if and only if the
A′-module A′⊗AM is finitely generated (resp. finitely presented, resp. flat, resp. locally
free of finite rank n).

For any homomorphism A→ A′, and any A-module M , there is a canonical homo-
morphism γ : M → A′⊗AM , taking u to 1 ⊗u. There are two canonical homomorphisms
A′ ⊗AM → A′ ⊗AA

′ ⊗AM , taking x ⊗u to x ⊗ 1 ⊗u and 1 ⊗x ⊗ u, corresponding to the
two projections p1 and p2.

Lemma A.4. Let M be an A-module. If A→ A′ is faithfully flat, then

M
γ→ A′ ⊗AM ⇉ A′ ⊗A A

′ ⊗AM

is exact, that is, the canonical homomorphism γ maps M isomorphically to the set of
elements in A′ ⊗AM that have the same image in A′ ⊗AA

′ ⊗AM by the two projection
homomorphisms. Equivalently, if one defines a homomorphism δ from A′ ⊗A M to
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A′ ⊗A A
′ ⊗AM by the formula δ(x ⊗ u) = 1 ⊗x ⊗ u− x ⊗ 1 ⊗u, then the sequence

0 →M
γ→ A′ ⊗AM

δ→ A′ ⊗A A
′ ⊗AM

of A-modules is exact.

Proof. By Exercise A.2 (2), it suffices to show that the sequence becomes exact
after tensoring it (on the left) over A by A′, i.e., that the sequence

0 −→ A′ ⊗AM
A′⊗γ−→ A′ ⊗A A

′ ⊗AM
A′⊗δ−→ A′ ⊗A A

′ ⊗A A
′ ⊗AM

is exact. Let µ : A′⊗AA
′ → A′ be the multiplication map, µ(x ⊗ y) = xy. The injectivity

of the first map A′ ⊗ γ is now immediate, since the mapping µ⊗M : A′ ⊗A A
′ ⊗AM →

A′ ⊗AM gives a left inverse to it. Suppose an element
∑
xi ⊗ yi ⊗ ui is in the kernel of

A′ ⊗ δ, i.e. ∑
xi ⊗ 1 ⊗ yi ⊗ ui =

∑
xi ⊗ yi ⊗ 1 ⊗ui.

Applying µ to the first two factors yields
∑

xi ⊗ yi ⊗ui =
∑

xiyi ⊗ 1 ⊗ui,

and
∑
xiyi ⊗ 1 ⊗ui is the image of

∑
xiyi ⊗ui in A′ ⊗A A

′ ⊗AM , as required. �

The proof of this lemma is a common one in descent theory: one makes a faithfully
flat base extension to achieve the situation where the covering map T ′ → T has a
section, in which case the assertion proves itself.

Although we don’t need it, a natural generalization of this lemma is true:

Exercise A.3. Define the Amitsur complex T • = T •(A′/A) for a homomorphism
A → A′ by setting T 0 = A, and, for n ≥ 1, T n is the tensor product of n copies
of A′ over A. Define δn : T n → T n+1 by: δ0 is the given map from A to A′, and
δn =

∑n
i=0(−1)iǫi, where ǫi(x1 ⊗ · · ·⊗xn) = x1 ⊗ · · ·⊗ xi ⊗ 1 ⊗xi+1 ⊗ · · ·⊗ xn. This is a

complex of A-modules. Show that, for any A-module M , if A → A′ is faithfully flat,
the complex T • ⊗AM is exact.

Descent for morphisms of modules amounts to the following easy consequence of
the preceding lemma:

Lemma A.5. If A → A′ is faithfully flat, and M and N are A-modules, then the
sequence

HomA(M,N) → HomA′(A′⊗AM,A′⊗AN) ⇉ HomA′⊗AA′(A′⊗AA
′⊗AM,A′⊗AA

′⊗AN)

is exact.

Proof. The exactness of Lemma A.4, applied toN , together with the left exactness
of Hom, gives the exactness of

HomA(M,N) → HomA(M,A′ ⊗A N) ⇉ HomA(M,A′ ⊗A A
′ ⊗A N).

Using the identifications HomA(M,P ) = HomB(B ⊗A M,P ) for any homomorphism
A → B and any B-module P , first for B = A′ and then for B = A′ ⊗A A

′, translates
this exact sequence into the exact sequence of the lemma. �
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Now let M ′ be an A′-module. We have, as we recall, projection maps p1 and p2

from Spec(A′′) to Spec(A′), where A′′ = A′ ⊗A A
′. Hence we have pullbacks p∗1(M

′) =
A′′ ⊗p1,A′ M ′ and p∗2(M

′) = A′′ ⊗p2,A′ M ′. The two pullbacks p∗1(M
′) and p∗2(M

′) can be
identified with M ′ ⊗A A

′ and A′ ⊗A M
′ respectively, where the actions of A′′ on these

modules are given by (x ⊗ y)·(u ⊗ z) = xu ⊗ yz and (x ⊗ y)·(z ⊗ u) = xz ⊗ yu respectively,
with x, y, and z in A′ and u in M ′. Similarly, the three pullbacks of M ′ by q1, q2, and
q3 to A′′′ can be identified with M ′ ⊗A A

′ ⊗A A
′, A′ ⊗AM

′ ⊗A A
′, and A′ ⊗A A

′ ⊗AM
′,

respectively, again with the diagonal actions of A′′′ = A′ ⊗A A
′ ⊗A A

′.
Suppose ϕ : M ′ ⊗A A

′ = p∗1(M
′) → p∗2(M

′) = A′ ⊗A M
′ is an isomorphism of A′′-

modules. This determines by the three pullbacks pij, isomorphisms

ϕij = p∗ij(ϕ) : q∗i (M
′) = p∗ij(p

∗
1(M

′)) → p∗ij(p
∗
2(M

′)) = q∗j (M
′).

For example, ϕ12 is the map from M ′⊗AA
′⊗AA

′ to A′⊗AM
′⊗AA

′ that takes u ⊗x ⊗ y
to ϕ(u ⊗x) ⊗ y; that is, if ϕ(u ⊗x) =

∑
xi ⊗ ui, then ϕ12(u ⊗x ⊗ y) =

∑
xi ⊗ui ⊗ y. Sim-

ilarly, ϕ13(u ⊗ y ⊗x) =
∑
xi ⊗ y ⊗ ui, and ϕ23(y ⊗ u ⊗x) =

∑
y ⊗ xi ⊗ui.

Descent for modules amounts to the following assertion:

Lemma A.6. Suppose A→ A′ is faithfully flat, M ′ is an A′-module, and ϕ : M ′ ⊗A

A′ → A′⊗AM
′ is an isomorphism of A′′-modules such that ϕ13 = ϕ23 ◦ϕ12 from q∗1(M

′)
to q∗3(M

′). Define the A-module M by

M = { u ∈M ′ |ϕ(u ⊗ 1) = 1 ⊗u }.
Then the canonical homomorphism λ : A′⊗AM →M ′, x ⊗ u 7→ x·u, is an isomorphism.

Proof. Let τ : M ′ → A′ ⊗AM
′ be defined by τ(u) = 1 ⊗u− ϕ(u ⊗ 1). We have an

exact sequence
0 →M →M ′ τ→ A′ ⊗AM

′

Tensoring this on the right with A′ over A gives the top row of the following diagram:

0 // M ⊗A A
′

ψ

��

// M ′ ⊗A A
′

ϕ

��

// A′ ⊗AM
′ ⊗A A

′

A′⊗ϕ
��

0 // M ′ // A′ ⊗AM
′ // A′ ⊗A A

′ ⊗AM
′

The bottom row is the exact sequence from Lemma A.4, applied to the A-module M ′.
The map ψ is defined by ψ(u ⊗x) = x · u, and we want to show ψ is an isomorphism.
Since the rows are exact, and the right two vertical maps are isomorphisms, this con-
clusion will follow if we verify that the diagram is commutative.

The left square commutes since, for u in M and x in A′, ϕ(u ⊗x) = (1 ⊗x)ϕ(u ⊗ 1) =
(1 ⊗x)(1 ⊗u) = 1 ⊗xu. To prove that the right diagram commutes, we must show that,
for any u in M ′ and x in A′, the element u ⊗x in M ′⊗AA

′ has the same image by either
route around the square. Let ϕ(u ⊗ 1) =

∑
yi ⊗ vi, with yi ∈ A′ and vi ∈M ′. Then

ϕ(u ⊗x) = (1 ⊗x)ϕ(u ⊗ 1) =
∑

yi ⊗xvi,

so the image of u ⊗x by the lower route is
∑

1 ⊗ yi ⊗xvi −
∑

yi ⊗ 1 ⊗xvi.
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On the upper route, u ⊗x maps to the right to 1 ⊗u ⊗x − ϕ(u ⊗ 1) ⊗x = 1 ⊗u ⊗x −∑
yi ⊗ vi ⊗x, which maps down to

1 ⊗ϕ(u ⊗x) −
∑

yi ⊗ϕ(vi ⊗ x) =
∑

1 ⊗ yi ⊗ xvi −
∑

yi ⊗ϕ(vi ⊗ x).

We are therefore reduced to verifying that
∑

yi ⊗ϕ(vi ⊗x) =
∑

yi ⊗ 1 ⊗xvi.

But this is exactly the assertion that ϕ23(ϕ12(u ⊗ 1 ⊗x)) = ϕ13(u ⊗ 1 ⊗x). �

To complete the proof that the construction of this lemma solves the descent problem
for modules, i.e., that it solves case (a) of Theorem A.2, we must verify that the identity
ϕ ◦ p∗1λ = p∗2λ is satisfied. This amounts to verifying that the diagram

A′ ⊗AM ⊗A A
′
p∗1λ

//

κ

��

M ′ ⊗A A
′

ϕ

��

A′ ⊗A A
′ ⊗AM

p∗2λ
// A′ ⊗AM

′

commutes, where κ(x ⊗ u ⊗ y) = x ⊗ y ⊗u. This amounts to the identity x ⊗λ(y ⊗u) =
ϕ(λ(x ⊗u) ⊗ y), i.e., x ⊗ yu = ϕ(xu ⊗ y), or (x ⊗ y)(1 ⊗u) = (x ⊗ y)ϕ(u ⊗ 1), which follows
from the fact that u is in M .

Similarly, we want Lemma A.5 to give a proof of (b) of Theorem A.2 in the affine
case. This means that we have A′-modules M ′ and N ′, with isomorphisms

ϕ : M ′ ⊗A A
′ → A′ ⊗AM

′ and ψ : N ′ ⊗A A
′ → A′ ⊗A N

′,

and we have A-modules M and N , with isomorphisms λ : A′⊗AM →M ′ and µ : A′⊗A

N → N ′, satisfying ϕ ◦ p∗1λ = p∗2λ and ψ ◦ p∗1µ = p∗2µ. We are given a homomorphism
h′ : M ′ → N ′ of A′-modules, satisfying the identity p∗2(h

′)◦ϕ = ψ◦p∗1(h′). We must show
that there is a unique homomorphism h : M → N of A-modules such that µ◦(A′⊗h) =
h′ ◦ λ. Set g′ = µ−1 ◦ h′ ◦ λ : A′ ⊗AM → A′ ⊗AN . If we show that p∗1(g

′) = p∗2(g
′), then

Lemma A.5 will produce a unique homomorphism h : M → N such that g′ = A′ ⊗ h.
This says that h′ ◦ λ = µ ◦ (A′ ⊗ h), as required. To conclude the proof, we calculate:

p∗1(g
′) = p∗1(µ

−1 ◦ h′ ◦ λ) = p∗1(µ)−1 ◦ p∗1(h′ ◦ λ) = p∗2(µ)−1 ◦ ψ ◦ p∗1(h′) ◦ p∗1(λ)

= p∗2(µ)−1 ◦ p∗2(h′) ◦ ϕ ◦ p∗1(λ) = p∗2(µ
−1 ◦ h′) ◦ p∗2(λ) = p∗2(g

′),

as required. The uniqueness assertion in (a) is a special case of (b), so the theorem is
proved in the affine case.

The overall structure of the proofs in this section is worth noting, as it will be
repeated below in the proof of Theorem A.2. First, we proved descent for morphisms in
the case of objects pulled back from the base (Lemma A.5). Then we showed that every
descent datum is effective (Lemma A.6). We saw as a formal consequence that descent
for morphisms holds in the case of an arbitrary pair of descent data, each admitting
a solution, and from this that the solution to any descent problem is unique up to
canonical isomorphism.
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3. The general case

In this section, we complete the proof of Theorem A.2. Recall that a morphism
f : T ′ → T of schemes is faithfully flat if it is flat and surjective. It is not enough
to assume f is faithfully flat for the conclusions of the theorem to hold, as we’ll see
below in Exercise A.6. To pass from the affine case (Lemmas A.5 and A.6) to the case
of general schemes we’ll need some additional hypothesis on the morphism f . In fact,
there are two additional hypotheses that we may impose, and either one will suffice to
establish descent for objects and morphisms, in the context of quasi-coherent sheaves:

(i) f is fpqc, that is, faithfully flat and quasi-compact. We recall this means that
the pre-image, under f , of any affine open subset of the base is covered by
finitely many affine open subsets.

(ii) f is fppf, that is, faithfully flat and locally of finite presentation. The impor-
tant fact needed here is that every morphism that is flat and locally of finite
presentation is open [EGA IV.2.4.6].

The notations fpqc and fppf come from the French terminology for the conditions
on f (fidèlement plat, quasi-compact and fidèlement plat, de présentation finie).

As described at the end of the previous section, to prove Theorem A.2, it suffices to
prove descent for morphisms of objects pulled back from the base and to show that every
descent datum is effective. In other words, Theorem A.2 follows from the following pair
of assertions.

Lemma A.7. Assume f : T ′ → T is (i) fpqc or (ii) fppf. Let E and F be quasi-
coherent sheaves on T . Then, for every morphism h′ : f ∗E → f ∗F on T ′ such that
p∗1h

′ = p∗2h
′ on T ′′ there is a unique morphism h : E → F on T such that f ∗h = h′.

Lemma A.8. Assume f : T ′ → T is (i) fpqc or (ii) fppf. Let E ′ be a quasi-coherent
sheaf on T ′ and ϕ : p∗1E ′ → p∗2E ′ an isomorphism on T ′′ such that p∗23ϕ ◦ p∗12ϕ = p∗13ϕ on
T ′′′. Then there exists a quasi-coherent sheaf E on T and an isomorphism λ : f ∗E → E ′

on T ′ such that p∗2λ = ϕ ◦ p∗1λ on T ′′.

Let us say that f satisfies descent for morphisms if the conclusion of Lemma A.7
is valid for f . Let us say that f satisfies effective descent if both the conclusion of
Lemma A.7 and of Lemma A.8 are valid for f . We have proved in the previous section
that every faithfully flat morphism of affine schemes satisfies effective descent. We saw
in the first section that every Zariski open covering satisfies effective descent. These
two facts will be combined to deduce what is claimed in Lemmas A.7 and A.8, namely
that every morphism that is fpqc or fppf satisfies effective descent.

The argument rests on the following two claims. Let f : S → T and g : R → S be
morphisms of schemes.

First claim: Suppose g satisfies descent for morphisms, and suppose for any morphism
g′ : R′ → S ′ obtained from g by a base change with respect to an arbitrary morphism
S ′ → S and any pair of quasi-coherent sheaves E ′ and F ′ on S ′, the map induced by
pullback g′∗ : Hom(E ′,F ′) → Hom(g′∗E ′, g′∗F ′) is injective. Then f satisfies descent for
morphisms if and only if f ◦ g satisfies descent for morphisms.
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To prove this, we consider the following diagram:

R×S R
ℓ

//

r1
&&MMMMMMMMMMM r2

&&MMMMMMMMMMM R×T R
k

//

q1

��

q2

��

S ×T S

p1

��

p2

��

R
g

// S
f

// T

(4)

Given quasi-coherent sheaves E and F on T , if h′′ : g∗f ∗E → g∗f ∗F satisfies q∗1h
′′ = q∗2h

′′,
then r∗1h

′′ = ℓ∗q∗1h
′′ = ℓ∗q∗2h

′′ = r∗2h
′′, so by descent for morphisms for g there exists a

unique h′ : f ∗E → f ∗F such that g∗h′ = h′′. The morphism k factors as R ×T R →
R ×T S → S ×T S, a pair of morphisms each obtained from g by base change. Now
since k∗p∗1h

′ = k∗p∗2h
′ it follows that p∗1h

′ = p∗2h
′. If descent for morphisms holds for f ,

it follows that there exists a unique morphism h : E → F such that f ∗h = h′, and hence
descent for morphisms holds for f ◦ g. Conversely, suppose f ◦ g satisfies descent for
morphisms. If we are given quasi-coherent sheaves E and F on T , and if h′ : f ∗E → f ∗F
satisfies p∗1h

′ = p∗2h
′, then h′′ := g∗h′ satisfies q∗1h

′′ = q∗2h
′′, so there exists a morphism

h : E → F satisfying g∗f ∗h = h′′, and hence f ∗h = h′.

Exercise A.4. Use this first claim to show that every affine faithfully flat morphism
of schemes satisfies descent for morphisms.

Second claim: Suppose g satisfies effective descent, and suppose any morphism obtained
from g by base change satisfies descent for morphisms. Then f satisfies effective descent
if and only if f ◦ g satisfies effective descent.

We refer to the diagram (4). For the “only if” portion of the claim, we suppose f
satisfies effective descent. Now suppose we are given a quasi-coherent sheaf E ′′ on R
together with an isomorphism ϕ′ : q∗1E ′′ → q∗2E ′′ satisfying the cocycle condition

(5) π∗
13ϕ

′ = π∗
23ϕ

′ ◦ π∗
12ϕ

′

where πij : R×T R×T R → R×T R denote the various projections. By pulling back (5)
by the morphism R×S R×S R → R×T R×T R, we obtain the cocycle identity for the
cover g. So, by effective descent for the morphism g, there exists a sheaf E ′ on S together
with an isomorphism λ′ : g∗E ′ → E ′′ such that r∗2λ

′ = k∗ϕ′ ◦ r∗1λ′. Now we claim there
exists a morphism ϕ : p∗1E ′ → p∗2E ′ such that q∗2λ

′ ◦ h∗ϕ = ϕ′ ◦ q∗1λ′. By the first claim,
k (a composite of two pullbacks of g, as we saw in the proof of the first claim) satisfies
descent for morphisms. Now consider the morphism q∗2λ

′−1 ◦ϕ′ ◦ q∗1λ′ : k∗p∗1E ′ → k∗p∗2E ′.
For the existence of ϕ as promised we must check the agreement of the two pullback
to (R ×T R) ×S×TS (R ×T R). This fiber product is identified, via the map which on
points is given by (w, x, y, z) 7→ (w, y, z, x), with the fiber product R×S R×T R×S R,
whereupon the agreement of the two pullbacks reduces to the identity

(6) π∗
14ϕ

′ = π∗
34ϕ

′ ◦ π∗
23ϕ

′ ◦ π∗
12ϕ

′.

In fact (6) is the pullback of a similar identity on R ×T R ×T R ×T R, and the latter
is deduced by combining the pullback of (5) by π123 with the pullback of (5) by π134

(here πij and πijk denote projections from quadruple fiber products). Now ϕ satisfies the
cocycle condition for the covering map f , since the map R×TR×TR→ S×T S×T S can
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be written as a composite of three morphisms, each obtained from g by base change, and
via this map the cocycle condition we are claiming pulls back to (5). By effective descent
for f there exists a quasi-coherent sheaf E on T with an isomorphism λ : f ∗E → E ′

satisfying p∗2λ = ϕ ◦ p∗1λ. Hence effective descent holds for f ◦ g.
Exercise A.5. Show, conversely, that under the hypotheses of the second claim, if

f ◦ g satisfies effective descent, then effective descent holds for f .

We now complete the proof of Lemmas A.7 and A.8. We start by letting (Ti), i ∈ I,
be an affine open cover of T . For each i, we let (T ′

i,j), j ∈ Ji be an affine open cover of

f−1(Ti).
Suppose we are in case (i) of the lemmas, that is, f is faithfully flat and quasi-

compact. Then the set Ji maybe taken to be finite, for every i. Now for each i ∈ I, the
map fi :

∐
j∈Ji

T ′
i,j → Ti is a faithfully flat morphism of affine schemes. We consider

the following commutative diagram

∐
i,j T

′
i,j

‘

fi
//

��

∐
i Ti

��

T ′
f

// T

(7)

The vertical maps are Zariski open coverings, and for such maps we know effective
descent holds. By the affine case (Lemmas A.5 and A.6), effective descent holds for
each morphism fi, hence as well for the top map in (7). By Exercise A.4, any morphism
obtained from the latter by base change satisfies descent for morphisms. So, by the
second claim, the composite map

∐
T ′
i,j → T in (7) satisfies effective descent. Again

invoking the second claim, we conclude that effective descent holds for f .
We turn to case (ii) of the lemmas, where f is fppf and hence open. Fix i ∈ I. We

let Ui,j = f(T ′
i,j) for all j ∈ Ji, so (Ui,j) is a Zariski open covering of Ti. It follows1

that each morphism T ′
i,j → Ui,j is affine, so in particular is fpqc. By case (i) of the

assertions, then, each map T ′
i,j → Ui,j satisfies effective descent. Now, to conclude, we

consider a square as in (7) but with
∐

i,j Ui,j in the upper right-hand corner, and we
reason as above except we appeal to case (i) at the second step of the deduction.

Exercise A.6. Show that Theorem A.2 (a) fails for the covering map
∐

p

Spec Zp → Spec Z.

Note that f is faithfully flat, but is neither fpqc nor fppf.

4. Categorical formulation

There is a category-theoretic approach to stating the above descent results. The
proposition in this section outlines how the results appear in this language; one often
sees them expressed this way in the literature.

1By [EGA II.1.6.2], any morphism from an affine scheme to a separated scheme is affine. Note
that each Uij is separated since it is an open subscheme of a separated, in fact affine, scheme Ti.
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Fix schemes T and T ′ and a morphism f : T ′ → T . Let C(T ) be the category of
quasi-coherent sheaves on T , with their usual morphisms as sheaves of OT -modules.
Let C(T ′/T ) be the category whose objects are pairs (E ′, ϕ) of descent data, with
a morphism from (E ′, ϕ) to (F ′, ψ) being a homomorphism h′ : E ′ → F ′ such that
p∗2h

′◦ϕ = ψ◦p∗1h′. There is a canonical functor C(T ) → C(T ′/T ), taking a quasi-coherent
sheaf E on T to the pair consisting of the sheaf f ∗E and the canonical isomorphism
p∗1f

∗E ∼= (f ◦ p1)
∗(E) = (f ◦ p2)

∗(E) ∼= p∗2f
∗E ; we will sometimes use can to denote this

canonical isomorphism. (The cocycle condition p∗13can = p∗13can ◦ p∗23can amounts to
the compatibility of the canonical isomorphisms among pullbacks to T ′′′.)

Proposition A.9. If f : T ′ → T is an fpqc morphism or an fppf morphism of
schemes, then the induced functor from the category C(T ) of quasi-coherent sheaves of
OT -modules to the category C(T ′/T ) of descent data is an equivalence of categories.

Proof. Let (E ′, ϕ) be an object of C(T ′/T ). To give an isomorphism (f ∗E , can) ∼→
(E ′, ϕ) is, by definition, the same as to give an isomorphism λ : f ∗E → E ′ satisfying
p∗2λ = ϕ ◦ p∗1λ. So essential surjectivity of the functor is equivalent to the condition in
Theorem A.2(a).

If we have isomorphisms (f ∗E , can) ∼→ (E ′, ϕ) and (f ∗F , can) ∼→ (F ′, ψ) then The-
orem A.2(b) is the assertion that the map

HomC(T )(E ,F) → HomC(T ′/T )((E ′, ϕ), (F ′, ψ))

(obtained by applying the functor and composing with the isomorphisms) is bijective.
In the case of identity morphisms 1(f∗E,can) and 1(f∗F ,can), this is the condition for the
functor to be fully faithful. �

Remark A.10. There is a larger category C0(T
′/T ) whose objects consist of pairs

(E ′, ϕ) where E ′ is a quasi-coherent sheaf on T ′ and ϕ : p∗1E ′ → p2E ′ is an isomorphism.
Morphisms in C0(T

′/T ) are defined just as in C(T ′/T ), making C(T ′/T ) a full subcat-
egory of C0(T

′/T ). This subcategory has the property that, given an object (E ′, ϕ)
of C(T ′/T ), if (E ′, ϕ) → (F ′, ψ) is an isomorphism in C0(T

′/T ) then (F ′, ψ) is also in
C(T ′/T ). The verification of this fact involves a diagram chase. This fact tells us that if
the descent problem corresponding to an object (F ′, ψ) of C0(T

′/T ) admits a solution,
meaning that F ′ is isomorphic to a sheaf f ∗F compatibly with ψ, then (F ′, ψ) lies in
C(T ′/T ), i.e., ψ must satisfy the cocycle condition.

5. Faithfully flat descent

In this section we give some of the descent statements that are important for the
theory of stacks. Most of these results are rather quick consequences of Theorem A.2.
More challenging applications will be given in the last section. First we have a descent
result for vector bundles.

Proposition A.11. Let f : T ′ → T be a morphism of schemes that is fpqc or
fppf. Then: (a) Given a locally free sheaf of finite type E ′ on T ′ and an isomorphism
ϕ : p∗1E ′ → p∗2E ′ such that p∗23ϕ ◦ p∗12ϕ = p∗13ϕ, there exists a locally free sheaf of finite
type E on T and an isomorphism λ : f ∗E → E ′ satisfying p∗2λ = ϕ ◦ p∗1λ, and these are
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unique up to canonical isomorphism.
(b) With notation as in (a), suppose (F ′, ψ) is another descent datum with solution
given by F and µ. Then, for every morphism h′ : E ′ → F ′ satisfying p∗2h

′ ◦ϕ = ψ ◦ p∗1h′
there is a unique morphism h : E → F such that µ ◦ f ∗h = h′ ◦ λ.

Proof. This follows from Theorem A.2, coupled with Exercise A.2. �

Next we turn to descent for affine schemes.

Proposition A.12. Let f : T ′ → T be a morphism of schemes that is fpqc or fppf.
(a) Given an affine morphism of schemes P ′ → T ′ and an isomorphism ϕ : P ′×T T

′ →
T ′×TP

′ over T ′′ satisfying the cocycle condition, there exists an affine morphism P → T
and isomorphism λ : T ′ ×T P → P ′ over T ′, unique up to canonical isomorphism, such
that T ′ ×T λ = ϕ ◦ (λ×T T

′).
(b) With notation as in (a), suppose (Q′, ψ) is another descent datum with solution
given by Q → T and µ. Then, for every morphism h′ : P ′ → Q′ over T ′ satisfying
(T ′ ×T h

′) ◦ ϕ = ψ ◦ (h′ ×T T
′) there is a unique morphism h : P → Q such that

µ ◦ (T ′ ×T h) = h′ ◦ λ.
We will see that descent for morphisms reduces to the statement that the functor

Hom(−, X) satisfies the sheaf axiom (for any fpqc or fppf cover), which holds for an
arbitrary scheme X.

Proposition A.13. Let f : T ′ → T be a morphism of schemes that is fpqc or fppf.
Let X be a scheme. If g : T ′ → X is a morphism of schemes such that g ◦ p1 = g ◦ p2,
then there is a unique morphism h : T → X such that h ◦ f = g.

The proof of this proposition requires some preparatory results. Below we denote by
f# : OT → f∗OT ′ the morphism of structure sheaves induced by a morphism of schemes
f : T → T ′. Let p : T ′′ → T be the composition f ◦ p1 = f ◦ p2.

Lemma A.14. Suppose f : T ′ → T is fpqc or fppf. Then the sequence

0 −→ OT
f#

−→ f∗OT
f∗p

#
1 −f∗p

#
2−→ p∗OT ′′

is exact.

Proof. By Theorem A.2(b) applied to E = F = OT and adjointness of pushfoward
and pullback, the sequence

(8) 0 −→ Γ(T,OT )
f#

−→ Γ(T, f∗OT ′)
f∗p

#
1 −f∗p

#
2−→ Γ(T, p∗OT ′′)

is exact. The sequence (8) with T replaced by any open subscheme of T is still exact,
so the sequence of sheaves is exact. �

Lemma A.15. Suppose f : T ′ → T is fpqc. Let Z be a subset of T such that f−1(Z)
is closed in T ′. Then Z is a closed subset of T .

Proof. Since f is surjective, it suffices to show that if f−1(Z) is closed, then

(9) f−1(Z) = f−1(Z)
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where Z denotes the closure of Z. It suffices to verify (9) when T and T ′ are affine, so
we may suppose T = SpecA and T ′ = SpecA′. Introduce the ideals

I =
⋂

p∈Z

p and I ′ =
⋂

p′∈f−1(Z)

p
′,

corresponding to closed subsets Z ⊂ T and f−1(Z) ⊂ T ′, respectively. We have I ′∩A =
I (viewing A as a subring of A′). In other words, I fits into an exact sequence

(10) 0 −→ I −→ A −→ A′/I ′.

Tensoring (10) by A′ identifies I⊗AA
′ with the kernel of the composite of A′ → A′⊗AA

′,
x 7→ 1⊗x, with the quotient map by the ideal I ′⊗AA

′. The ideal A′⊗A I
′ has the same

radical as the ideal I ′ ⊗A A
′, since (f ◦ p1)

−1(Z) is the closed subset of T ′′ associated
with both. Thus

√
I ⊗A A′ = I ′, and (9) is established. �

Exercise A.7. If f : T ′ → T is any surjective morphism of schemes, then for any
points x and y in T such that f(x) = f(y), there exists z ∈ T ′′ such that p1(z) = x and
p2(z) = y.

Proof of Proposition A.13. By Exercise A.7, the map h that we are required
to produce is completely determined on the set-theoretic level. By Lemma A.15 in the
fpqc case, or by the fact that fppf maps are open, the map h is continuous. Finally, the
required map of structure sheaves h# : OX → h∗OT is determined uniquely by looking
at h∗ applied to the exact sequence from Lemma A.14. �

Proof of Proposition A.12. To prove (a), we need to show is the existence of
the solution to a descent problem. To give a scheme, affine over T , is the same as
giving a quasi-coherent sheaf of OT -algebras. This sheaf (as a sheaf of modules) is
constructed by descent for quasi-coherent sheaves, and is given the structure of OT -
algebra (multiplication map) using descent for morphisms of quasi-coherent sheaves.

For (b), the exactness of

(11) HomT (P,Q) → HomT ′(T ′ ×T P, T
′ ×T Q) ⇉ HomT ′′(T ′′ ×T P, T

′′ ×T Q)

is the same as the exactness of

HomT (P,Q) → HomT (T ′ ×T P,Q) ⇉ HomT (T ′′ ×T P,Q),

which follows from Proposition A.13.
As in the previous sections, the existence of the solution to a descent problem plus

exactness of (11) imply the full assertions of both statements of this proposition. �

Torsors for an affine group scheme provide an important example of affine morphisms
of schemes. We recall that if G is a group scheme over T then a left G-torsor is a scheme
E (the total space) with a map E → T (the structure map), together with a leftG-action
a : G×E → E which upon pullback by some étale cover T ′ → T becomes isomorphic to
the trivial G-torsor G×T ′ (with action of G on itself by left multiplication). Examples
are any unramified two-sheeted cover (for G = Z/2, i.e., the constant group scheme
T ×Z/2 → T over any T ) and the complement of the zero section of a line bundle (for
the multiplicative group Gm). (The same applies to right instead of left actions.) A
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consequence of Proposition A.12 is that effective descent holds for G-torsors whenever
G is an affine group scheme over the base scheme. Note that the action of G on E is
given by a map of affine schemes, to which descent of morphisms applies.

Corollary A.16. Let f : T ′ → T be a morphism of schemes that is fpqc or fppf.
Let G be an affine group scheme over T . Then: (a) Given a G-torsor E ′ on T ′ and
an isomorphism ϕ : p∗1E

′ → p∗2E
′ over T ′′ satisfying the cocycle condition over T ′′′ there

exists a G-torsor E on T and G-equivariant isomorphism λ : f ∗E → E ′ over T ′, unique
up to canonical isomorphism, such that p∗2λ = ϕ ◦ p∗1λ.
(b) Let notation be as in (a), and suppose (F ′, ψ) is another descent datum with solution
given by F and µ. Then, for every G-equivariant isomorphism h′ : E ′ → F ′ over T ′

satisfying p∗2h
′ ◦ ϕ = ψ ◦ p∗1h′ there is a unique G-equivariant isomorphism h : E → F

over T such that µ ◦ f ∗h = h′ ◦ λ.

6. Non-effective descent: an example

In this section we show how descent can fail for proper morphisms. In the next
section we will see how, with projective morphisms and suitable additional data, it is
possible to overcome this problem.

Let T be a smooth projective threefold over the complex numbers which has a 2-to-1
étale cover f : T ′ → T , such that there exists a nodal curve Z in T whose pre-image
in T ′ consists of the union of two smooth curves E and F meeting transversely at two
points that we denote P and Q.

Now form X ′ by modifying T ′ along E ∪ F . Near P , we first blow up E, and then
we blow up the proper transform of F . Near Q, we first blow up F , and then the proper
transform of E. Away from {P,Q}, the order of blow-up is irrelevant, so we can glue
these together to make a scheme X ′.

Since T ′ is a 2-to-1 cover of T it has an involution that respects the map to T .
Because of the order in which we performed the blow-ups, this involution actually
extends to an involution of X ′. Both the involution of T ′ and that of X ′ are without
fixed points. We can express the problem of trying to form the quotient of X ′ by the
involution as a descent problem. The pair consisting of the object X ′ → T ′ (in the
category of schemes over T ′), together with the isomorphism

X ′ ×T T
′ → T ′ ×T X

′

which is the identity map over the identity component of T ′′ and the involution over the
other component, is a descent datum. This descent datum, we claim, is non-effective,
i.e., there is no scheme quotient of X ′ by its involution.

Indeed, suppose X is a scheme over T with a map π : X ′ → X making

X ′ //

π

��

T ′

��

X // T

a cartesian diagram. Consider, in X ′, the pre-images A∪B of P and C∪D of Q, where
each of A, B, C, D is a rational curve. Now we make a calculation in the ring of cycles
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modulo algebraic equivalence [27, §10.3] on X. Denoting this ring by B∗(X), we have,
with a suitable labeling of the curves, equations [B] = [C] + [D] and [D] = [A] + [B] in
B∗(X ′), and hence

(12) [A] + [C] = 0

in B∗(X). Since π is finite and flat of degree 2, we find from (12) that

(13) 2π∗[A] = π∗([A] + [C]) = 0

in B∗(X). This is impossible if X is a scheme. Indeed, if U denotes an affine neighbor-
hood in X of the generic point of π(A), and if we take Y to be a a generically chosen
hypersurface of U , then the closure Y of Y in X meets π(A) properly in at least one
point. This means that [Y ] · π∗[A] is a zero-cycle class of positive degree, which is a
contradiction to (13).

Of course, the quotient of X ′ by the involution exists as an analytic space. This
analytic space quotient is, in effect, Hironaka’s example of an algebraic space which is
not a scheme (cf. [47, Exa. B.3.4.1]). So, effective descent fails for general schemes.
The category of algebraic spaces, which contains quasi-separated schemes as a full
subcategory, has the advantage over the category of schemes in that effective descent
holds for general fppf morphisms. We remark that this descent property, stated in this
text as Proposition ??2, relies on Artin’s criterion for a stack to be algebraic (Theorem
??3), whose proof is not easy!

Exercise A.8. Construct a non-effective descent datum with T a threefold over the
real numbers and f the map induced by base change via R → C. This demonstrates
that there exist an algebraic space, separated and of finite type over a field, which is
not a scheme, but which becomes a scheme after a finite extension of the base field.

7. Further descent results

Despite the failure of effective fppf (and fpqc) descent for general morphisms of
schemes, there are restricted classes of morphisms of schemes for which effective descent
is known to hold. We saw that affine morphisms form one such class of morphisms.

It is important for the theory of stacks that quasi-affine and (polarized) quasi-
projective morphisms make up two other such classes. Let us recall that a morphism
is quasi-affine if it can be factored as a quasi-compact open inclusion followed by an
affine morphism. If f : X → Y is any separated quasi-compact morphism of schemes,
then in the canonical factorization

(14) X
g→ Spec f∗OX

h→ Y,

g is an open inclusion if and only if f = h ◦ g is quasi-affine [EGA II.5.1.6].
Quasi-projective morphisms enjoy a similar characterization, factoring through
Proj(

⊕
f∗OX(n)). The Proj construction relies on a choice of relative ample invertible

sheaf OX(1), which must be included as part of the descent datum.

2A reference to a statement in Part II of the book, which might not appear for a while.
3Another reference to Part II of the book.
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Proposition A.17. Let f : T ′ → T be a morphism of schemes that is fpqc or fppf.
Then: (a) Given a quasi-affine morphism of schemes P ′ → T ′ and an isomorphism
ϕ : P ′ ×T T

′ → T ′ ×T P
′ over T ′′ satisfying the cocycle condition, there exists a quasi-

affine morphism P → T and isomorphism λ : T ′ ×T P → P ′ over T ′, unique up to
canonical isomorphism, such that T ′ ×T λ = ϕ ◦ (λ×T T

′).
(b) With notation as in (a), suppose (Q′, ψ) is another descent datum with solution
given by Q → T and µ. Then, for every morphism h′ : P ′ → Q′ over T ′ satisfying
(T ′ ×T h

′) ◦ ϕ = ψ ◦ (h′ ×T T
′) there is a unique morphism h : P → Q such that

µ ◦ (T ′ ×T h) = h′ ◦ λ.

Proof. Let t′ denote the morphism P ′ → T ′. We have the canonical factorization

(15) P ′ → Spec(t′∗OP ′) → T ′.

Set E ′ = t′∗OP ′ and P
′

= Spec E ′. Since f is flat, we have a canonical isomorphism
p∗1E ′ ∼→ (t′ ×T T

′)∗OP ′×TT ′ . Under this isomorphism, the morphisms we obtain by
pulling back (15) by p1,

(16) P ′ ×T T
′ → P

′ ×T T
′ → T ′′,

constitute the canonical factorization of P ′ ×T T
′ → T ′′. Similarly,

(17) T ′ ×T P
′ → T ′ ×T P

′ → T ′′,

gives the canonical factorization of T ′ ×T P
′ → T ′′, under the canonical isomorphism

p∗2E ′ ∼→ (T ′ ×T t
′)∗OT ′×TP ′.

The isomorphism ϕ : P ′×T T
′ → T ′×T P

′ determines an isomorphism ϕ̄ : P
′×T T

′ →
T ′ ×T P

′
. Since ϕ satisfies the cocycle condition, so does ϕ̄. Now by Proposition A.12,

there is an affine morphism P → T and an isomorphism λ : T ′ ×T P → P
′
satisfying

T ′ ×T λ = ϕ̄ ◦ (λ×T T
′).

Since P
′
is isomorphic to T ′ ×T P

′, the morphism P
′ → P is fpqc if f is fpqc and is

fppf if f is fppf. Moreover we can canonically identify P
′ ×P P

′
with P

′ ×T T
′. To do

this, we start with the cube with cartesian faces and extend the top face with cartesian
squares involving the isomorphism λ, as shown in the following diagram, where f̃ is
used to denote the second projection from T ′ ×T P .

T ′ ×T P
′ P

′

×T ′p2
//

T ′×Tλ
−1wwooo

ooo
P

′

λ−1zzuu
uu

uu

P
′ ×T T

′

ϕ̄
22dddddddddddddddddddddddddddd λ−1×T T

′

//
P

′

×T ′p1

zztt
tt

tt
T ′′ ×T P

//

wwooo
ooo

��

T ′ ×T P

��

f̃

wwoooooooo

P
′ λ−1

// T ′ ×T P
f̃

//

��

P

��

T ′′
p2

//
p1

vvmmmmmmmmmm T ′

fvvmmmmmmmmmm

T ′
f

// T
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By the condition on λ, the upper triangle commutes. Using Lemma A.15 in the case
f is fpqc, or the fact that fppf morphisms are open, we see that there is a one-to-

one correspondence between open subschemes U ⊂ P and open subschemes U ′ ⊂ P
′

satisfying

(18) (P
′ ×T ′ p1)

−1(U ′) = ϕ̄−1
(
(P

′ ×T ′ p2)
−1(U ′)

)
.

In (15) we have P ′ realized as an open subscheme of P
′
. The pre-image of P ′ by P

′×T ′p1,

respectively by P
′ ×T ′ p2, is the image of the open inclusion in (16), respectively (17).

Now (18) holds since we have a commutative diagram

P ′ ×T T
′ //

ϕ

��

P
′ ×T T

′

ϕ̄

��

T ′ ×T P
′ // T ′ ×T P

′

So there is a unique open subscheme P ⊂ P satisfying (f̃ ◦ λ−1)−1(P ) = P ′. Now
the scheme P and the restriction of λ to T ′ ×T P constitute a solution to the descent
problem posed by P ′ and ϕ. �

The large diagram in the proof of this proposition illustrates a general principle. To
give the descent datum (P ′, ϕ) is equivalent to giving a scheme P ′′ with morphism to
T ′′ and an equivalence relation

(p̃1, p̃2) : P ′′ → P ′ × P ′

compatible with (p1, p2) : T ′′ → T ′×T ′. The compatibility condition is that the diagram

P ′′
p̃i

//

��

P ′

��

T ′′
pi

// T ′

is cartesian for i = 1, 2. (To be an equivalence relation means that (p̃1, p̃2) is a locally
closed embedding4 satisfying conditions that generalize the usual conditions when S is a
set for a subset of S×S to be an equivalence relation.) We take P ′′ to be P ′×T T

′, with
p̃1 the projection map to P ′ and p̃2 the composite of ϕ and the projection T ′×T P

′ → P ′.
In the language of equivalence relations, effectivity amounts to providing a scheme P
over T and a map P ′ → P such that P ′′ ∼= P ′ ×P P

′. Many descent problems can be
stated in the language of equivalence relations (see [38]). In this appendix we stick to
the language of descent data, though in the next result, descent for quasi-projective
schemes, we employ the notation for the maps that we have just introduced:

p̃1 : P ′ ×T T
′ → P ′,(19)

p̃2 : P ′ ×T T
′ ∼→ T ′ ×T P

′ → P ′.(20)

4The correct condition is really monomorphism, but the more restrictive condition suffices for the
discussion of effectivity since the diagonal morphism of any scheme is a locally closed embedding.
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Proposition A.18. Let f : T ′ → T be a morphism of schemes that is fpqc or fppf.
Given a quasi-projective morphism of schemes P ′ → T ′, a relatively ample invertible
sheaf L′ on P ′, an isomorphism ϕ : P ′ ×T T

′ → T ′ ×T P
′ over T ′′ satisfying the cocycle

condition, and an isomorphism ω : p̃∗1L′ → p̃∗2L′ satisfying the cocycle condition on
P ′×T T

′′, where p̃1 and p̃2 are the maps of (19)–(20), there exists a scheme P with quasi-
projective morphism P → T and relatively ample invertible sheaf L, an isomorphism
λ : T ′ ×T P → P ′ over T ′ and, with f̃ : P ′ → P the composition of λ−1 and projection,
an isomorphism χ : f̃ ∗L → L′; these satisfy T ′ ×T λ = ϕ ◦ (λ×T T

′) and p̃∗2χ = ω ◦ p̃∗1χ.
The solution to the descent problem is unique up to canonical isomorphism.

As above, we set P ′′ = P ′×T T
′. If we further define P ′′′ = P ′×T T

′′ then the usual
cocycle condition on ϕ is expressed by the commutativity of the triangle

P ′′′ //

!!DD
DD

DD
DD

T ′ ×T P
′′

yyttttttttt

T ′′ ×T P
′

where the maps are the ones obtained from ϕ by base change. There are projection
maps p̃12 and p̃13 (obtained from p12 and p13 by base change) and p̃23 (the composite
P ′′′ → T ′ ×T P

′′ → P ′′). Now the cocycle condition on ω is that the diagram

p̃∗12p̃
∗
1L′

p̃∗12ω
// p̃∗12p̃

∗
2L′ p̃∗23p̃

∗
1L′

p̃∗23ω

��

p̃∗13p̃
∗
1L′

p̃∗13ω
// p̃∗13p̃

∗
2L′ p̃∗23p̃

∗
2L′

commutes.
The condition on χ is commutativity of the diagram

p̃∗1f̃
∗L

p̃∗1χ
// p̃∗1L′

ω

��

p̃∗2f̃
∗L

p̃∗2χ
// p̃∗2L′

where the equality f̃ ◦ p̃1 = f̃ ◦ p̃2 is a consequence of the condition on λ (as detailed in
the large commutative diagram in the proof of Proposition A.17).

Before we give the proof of this result, we recall that a quasi-projective morphism is
a morphism of finite type which factors as an open embedding followed by a map of the
form Proj(S) → X where S is a graded sheaf of quasi-coherent OX -algebras. Associated
to a separated morphism of finite type of schemes f : X → Y and an invertible sheaf L
on X is a graded sheaf of algebras S :=

⊕
n≥0 f

∗(L⊗n), open subscheme U ⊂ X, and
factorization of the restriction of f to U as

U → Proj(S) → Y.
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Now [EGA II.4.6.3] states that the map f is quasi-projective if and only if U = X and
X → Proj(S) is an open embedding. Further, for a morphism of schemes to be of finite
type is a Zariski local condition, and this is a condition that holds for any morphism if
it holds after fpqc base change ([EGA IV.2.7.1(v)]).

Proof of Proposition A.18. We introduce P ′′ = P ′ ×T T
′ as above, with mor-

phism t′′ : P ′′ → P ′. Consider the composite isomorphism

p∗1t
′
∗L′ ∼= t′′∗p̃

∗
1L′ t

′′

∗
ω→ t′′∗ p̃

∗
2L′ ∼= p∗2t

′
∗L′

of two base-change isomorphisms and the pushforward of ω. We claim that t′∗L′, to-
gether with this isomorphism, constitutes a descent datum, and hence determines by
Theorem A.2 a quasi-coherent sheaf S1 on T . Verifying the cocycle condition amounts
to writing down a large diagram whose commutativity results by (i) naturality of the
base change isomorphism, (ii) the property that a composite of base change morphisms
resulting from two commuting squares glued together equals the base change morphism
coming from the large outer diagram (see the Glossary), and (iii) the cocycle condition
on ω.

The same consideration applies as well to L′⊗n yielding a sheaf Sn on T , for all
n ≥ 0. So, we get a graded quasi-coherent sheaf S = ⊕n≥0Sn on T which is given an
algebra structure by using descent for morphisms of quasi-coherent sheaves.

The remainder of the argument exactly parallels the proof of Proposition A.17. We

have the canonical factorization of P ′ → T ′ through P
′
:= Proj(

⊕
t′∗L′⊗n), with descent

datum ϕ : P
′×T T

′ → T ′×T P
′
. A solution is given by P := Proj(S). As before there is

a uniquely determined open subscheme P ⊂ P whose pullback is the image of P ′ → P
′
.

Now P → T with T ′ ×T P → P ′ and the restriction of the invertible sheaf OP (1) to P
constitute a solution to the descent problem. �

Proposition A.18 is used to show that various families of curves determine stacks.
It is also are used to show that other moduli problems, such as abelian varieties with
various kinds of polarization, give rise to stacks.

Remark A.19. The proof of Proposition A.17 is in fact the special case L′ = OP ′

of the proof just given. In fact there is a common generalization of Propositions A.17
and A.18. This is the statement that effective descent holds for schemes equipped
with relatively ample invertible sheaves. The proof is obtained by copying the proof of
Proposition A.18 and changing “of finite type” to “quasi-compact” throughout.

A modern descent result – which is not needed in this book – stems from the study
of principal bundles on curves. Consider a scheme T with a covering by two Zariski
open subsets. Then, the cocycle condition on the transition mappings is vacuous, so any
isomorphism of objects on the overlap determines an object on T . One might expect
a similar result for the cover consisting of the formal neighborhood of a divisor on T
and the complement of the divisor. So, for instance, a vector bundle on a curve C over
a field k should be determined uniquely up to isomorphism by a vector bundle on the

complement of a k-rational point x, a vector bundle on Spec Ôx,C , and an isomorphism
on the overlap. Here is the precise result:
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Proposition A.20. Let T = SpecA be an affine scheme, and let f : T ′ → T
be the cover given by T ′ = T ′

1 ∐ T ′
2, where T ′

1 ⊂ T is the complement of the divisor
corresponding to a non-zero-divisor a ∈ A and T ′

2 is Spec of the completion of A with
respect to the a-adic topology. Let T ′′ = T ′

1 ×T T
′
2 with projections pi to T ′

i . Given a
quasi-coherent sheaves E ′

i on T ′
i , for i = 1 and 2 such that E ′

2 is f -regular (i.e., such that
multiplication by f induces an injective map E ′

2 → E ′
2) and an isomorphism ϕ : p∗1E ′

1 →
p∗2E ′

2, there exists a locally free sheaf E on T , unique up to canonical isomorphism, with
an isomorphism λ′ : f ∗E → E ′ satisfying p∗2λ = ϕ ◦ p∗1λ.

We remark that Proposition A.20 does not follow from faithfully flat descent. In
fact, the map f is not even flat in general. What is true is that f is faithful, i.e., we
have f ∗E = 0 if and only if E = 0 for quasi-coherent E . This “faithful descent” result
is proved by Beauville and Laszlo in [9] and has important applications in conformal
field theory (see [8] for a survey) and in the geometric Langlands program.

Answers to Exercises

A.1. (1) For ⇒, a nonzero element of M determines an inclusion A/I →M , hence
an inclusion A′/IA′ → A′ ⊗AM . With m any maximal ideal containing I, it suffices to
show A′/mA′ 6= 0, and this holds by surjectivity of Spec(A′) → Spec(A). For ⇐, the
crucial fact is that p ∈ SpecA implies A/p → A′/pA′ is injective. Indeed, if the image in
A′ of some a ∈ Arp lies in pA′ then (p+aA)/p would be a nonzero A-module becoming
zero under A′ ⊗A −. Now any maximal ideal of the localization Ap/pAp ⊗A/p A

′/pA′

gives an element of SpecA′ that maps to p. The condition in (2) is readily shown to be
equivalent to that given in (1); a reference is [14, Proposition I.3.1.1].

A.2. (1) If ρ is the homomorphism, look at the exact sequence

0 → Ker(ρ) → M → N → Coker(ρ) → 0.

(2) If A′ ⊗AM is finitely generated, one can find a finitely generated free A-module F
and a morphism F → M such that A′ ⊗A F → A′ ⊗AM is surjective. Then (1) shows
that F → M is surjective. The same argument on the kernel of F → M gives the
corresponding assertion for finitely presented. The flat case follows directly from the
definitions, and the last follows from the fact that locally free of finite rank is equivalent
to flat and finitely presented. A reference for this last fact is [14, Corollary II.5.2.2].

A.3. It suffices to prove that A′ ⊗A T
• ⊗A M is exact. One can prove this as in

the lemma, or, more elegantly, by defining a chain homotopy hn : A′ ⊗A T
n ⊗A M →

A′ ⊗A T
n−1 ⊗AM by the formula hn(x ⊗ x1 ⊗ · · ·⊗ xn ⊗m) = x · x1 ⊗x2 · · ·⊗ xn ⊗m, and

verifying that hn+1 ◦ δn + δn−1 ◦ hn = 1A′⊗Tn⊗M .

A.4. Cover T by affines Ti, and let Si = f−1(Ti). Descent for morphisms holds for
each Si → Ti by the affine case, hence as well for

∐
Si →

∐
Ti. Since Zariski coverings

satisfy descent for morphisms, we may deduce descent for morphisms for
∐
Si → T ,

and then for T ′ → T .
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A.5. Given E ′ on S and ϕ : p∗1E ′ → p∗2E ′ satisfying the cocycle condition, pull back
the cocycle condition via R ×T R ×T R → S ×T S ×T S and use effective descent for
f ◦ g to conclude there exists E on T and λ′ : g∗f ∗E → g∗E ′ such that q∗2λ

′ = k∗ϕ ◦ q∗1λ′.
Since k ◦ ℓ factors through the image of S in S ×T S (by the diagonal morphism), we
have r∗2λ

′ = ℓ∗q∗2λ
′ = ℓ∗q∗1λ

′ = r∗1λ
′, hence there exists λ : f ∗E → E ′ such that g∗λ = λ′.

Now k∗p∗2λ = q∗2g
∗λ = k∗ϕ ◦ q∗1g∗λ′ = k∗(ϕ ◦ p∗1λ), hence p∗2λ = ϕ ◦ p∗1λ.

A.6. A non-effective descent datum is given by multiplication by p/q on the trivial
rank 1 free module on Spec Zp ⊗Z Zq, for every pair p and q of prime numbers.

A.7. What is true more generally is that if T1 and T2 are any schemes mapping to
T , with x ∈ T1 and y ∈ T2 mapping to the same point t ∈ T , then the fiber product
T1 ×T T2 contains a point z with p1(z) = x and p2(z) = y. Localizing, we may suppose
we are in the affine case with x, y, and t all closed points. Passing to closed subschemes
we are reduced to the assertion that the tensor product of two fields over a third field
is a nonzero ring and hence contains a prime ideal.

A.8. Repeat the given construction using an irreducible curve defined over R which
becomes the union of two irreducible components (meeting at nodes) after extending
the base field to C.


