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CHAPTER 5

Deligne–Mumford stacks

In this chapter, we will continue to work with the category S of schemes over a fixed
base scheme Λ, endowed with the étale topology.

Deligne and Mumford identified a class of stacks as algebraic stacks. These are
known now as Deligne–Mumford stacks. They are all isomorphic to stacks of the form
[R ⇉ U ], where R ⇉ U is an groupoid scheme with étale structure morphisms and
quasi-compact relative diagonal (which implies quasi-affine relative diagonal, so that
[R ⇉ U ] is a stack). Conversely, if R ⇉ U is any groupoid scheme with étale structure
morphisms and quasi-compact relative diagonal, then [R ⇉ U ] will be a Deligne–
Mumford stack.

1. Representable morphisms

A morphism of CFGs f : X → Y is called representable if, after base change to
any scheme, it becomes a morphism of schemes. If this morphism of schemes always
possesses some property (like flat, or smooth, or separated), then we will say that f
possesses the same property.

Definition 5.1. Let f : X → Y be a morphism of CFGs. If, for every scheme T
and morphism T → Y, the fiber product X ×Y T is isomorphic to a scheme, then we
say that f is representable.

Example 5.2. Here are some examples of representable morphisms.

(1) If f : X → Y is a morphism of schemes, then f : X → Y is a representable
morphism, by Example 2.25(1).

(2) Let G be an algebraic group. We recall the morphism triv : Λ → BG, that
associates to each scheme the trivial G-torsor over the scheme. Then triv : Λ →
BG is representable, by Example 2.25(3).

(3) The forgetful morphism from Mg,1 to Mg is representable, by Example 2.25(4).

Definition 5.3. Let P be a property of morphisms of schemes f : X → Y that
satisfies:

(1) P is preserved by arbitrary base extension, i.e., if f has property P and Y ′ → Y
is an arbitrary morphism then X ×Y Y ′ → Y ′ also has property P.

(2) P is local for the étale topology on Y , i.e., if {Yα → Y } is an étale covering
family, and each X ×Y Yα → Yα has property P, then f has property P.

Then we say that a representable morphism f : X → Y of CFGs has property P if, for
any scheme T and any morphism T → Y, the morphism X×YT → T , has property P.
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Notice, that since f : X → Y is representable, X ×Y T is isomorphic to a scheme,
and then X ×Y T → T can be identified with a morphism of schemes (see Example
2.9(1)). This morphism of schemes is required to have property P (for any scheme T
and morphism T → X) in Definition 5.3.

Example 5.4. If G is a smooth quasi-affine group scheme (over Λ), then triv : Λ →
BG is smooth. If the group scheme G is étale and quasi-affine (e.g., a finite group),
then triv : Λ → BG is étale. The forgetful morphism Mg,1 → Mg (where g ≥ 2) is
smooth and proper.

The following proposition lists, for future reference, many of the properties that
satisfy conditions (1) and (2) of Definition 5.3. The fact of being preserved under base
change is, in each case, either part of the definition (e.g., universally open), an imme-
diate consequence of the definition (e.g., surjective), or a standard fact from algebraic
geometry (e.g., étale). We provide, in each case, the appropriate reference to EGA for
the property being local in the étale topology. (Warning: usually the precise statement
in EGA is that a property holds if it holds after a faithfully flat quasi-compact base
change. Any étale morphism is flat and locally of finite presentation, hence is open,
and so the EGA statements plus the fact that these properties are local for the Zariski
topology imply that they are local for the étale topology.)

Proposition 5.5. The following properties P of morphisms of schemes satisfy con-
ditions (1) and (2) of Definition 5.3.

(i) surjective, radiciel (universally injective), universally bijective [EGA IV.2.6.1],
(ii) universally open, universally closed, quasi-compact [EGA IV.2.6.4],
(iii) separated, quasi-separated, locally of finite type, locally of finite presentation,

finite type, finite presentation, proper, flat, an open embedding, a closed em-
bedding, an isomorphism, a monomorphism [EGA IV.2.5.1, IV.2.7.1],

(iv) an open embedding with dense image, a locally closed embedding,
(v) affine, quasi-affine, finite, quasi-finite [EGA IV.2.7.1],
(vi) locally of finite type with fibers of dimension ≤ d, locally of finite type with

fibers (empty or) of pure dimension d [EGA IV.4.1.4],
(vii) geometrically connected/reduced/irreducible fibers [EGA IV.4.5.6, IV.4.6.10],
(viii) locally of finite type with geometrically Cohen–Macaulay/normal/regular fibers

[EGA IV.6.7.8],
(ix) formally unramified [EGA IV.16.4.5, IV.17.2.1],
(x) unramified, smooth, étale [EGA IV.17.7.4].

Only part (iv) of Proposition 5.5 requires further justification, given below. Our
treatment of locally closed embeddings uses a preliminary lemma. Notice that
[EGA IV.2.7.1] includes an argument applicable to quasi-compact embeddings, making
use of the scheme-theoretic image (the smallest closed subscheme of the target through
which a given morphism can be factored [EGA I.9.5.3]); without quasi-compactness we
cannot appeal to the existence result [EGA I.9.5.1, IV.1.7.8] for the scheme-theoretic
image.
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Given a locally closed embedding of schemes i : X → Y , there is a well-defined
largest Zariski open subset U ⊂ Y that contains the image of i as a closed subset.
Precisely, U is the complement in Y of the set i(X) r i(X). Regarding U as an open
subscheme, the morphism i then factors as a closed embedding of schemes X → U
followed by the open embedding U → Y . (See [EGA I.4.1.3, I.4.2.1].)

Lemma 5.6. Let i : X → Y be a locally closed embedding of schemes. Let g : Y ′ →
Y be a morphism of schemes that is flat and locally of finite presentation, and set
X ′ = X ×Y Y ′, with map i′ : X ′ → Y ′ (also a locally closed embedding). Let U =

Y r
(

i(X) r i(X)
)

and U ′ = Y ′ r
(

i′(X ′) r i′(X ′)
)

. Then U ′ = g−1(U).

Proof. We have i′(X ′) ⊂ g−1
(

i(X)
)

, hence

U ′ ⊃ g−1(U).

The image g(U ′) is open in Y , because a morphism that is flat and locally of finite
presentation is open. We observe that there is a fiber diagram

X ′ //

��

U ′

��

X // g(U ′)

in which the vertical maps are faithfully flat and locally of finite presentation. Since
the top horizontal map is a closed embedding, it follows that the bottom horizontal
map is also a closed embedding. Hence g(U ′) is contained in U . So

U ′ ⊂ g−1(g(U ′)) ⊂ g−1(U),

and we have the desired result. �

Proof of Proposition 5.5. We treat part (iv). We already know that for a
morphism to be an open embedding is preserved by base change and local for the étale
topology. The corresponding statements for an open embedding with dense image now
follow immediately from the fact that étale morphisms are open. It remains only to treat
locally closed embeddings. Let f : X → Y be a morphism of schemes, let g : Y ′ → Y
be an étale cover, and denote by f ′ the morphism from X ′ = X ×Y Y ′ to Y ′ obtained
by base change. We suppose that f ′ is a locally closed embedding.

We set Y ′′ = Y ′ ×Y Y ′, with projections p1, p2 : Y ′′ → Y ′, and denote by f ′′ the
morphism from X ′′ = X ×Y Y ′′ to Y ′′. We define U ′ = Y ′ r

(

f ′(X ′) r f ′(X ′)
)

and

U ′′ = Y ′′
r

(

f ′′(X ′′) r f ′′(X ′′)
)

. Lemma 5.6 implies that

p−1
1 (U ′) = U ′′ = p−1

2 (U ′).

Hence, there exists a unique open subscheme U ⊂ Y such that g−1(U) = U ′.
We have a commutative diagram

X ′ //

��

U ′ //

��

Y ′

��

X // U // Y
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in which the right-hand square and the outer square are cartesian, so the left-hand
square is also cartesian. Since X ′ → U ′ is a closed embedding and U ′ → U is faithfully
flat and locally of finite presentation, it follows that X → U is a closed embedding.
Hence f , which is the composite bottom morphism in the diagram, is a locally closed
embedding. �

Exercise 5.1. Give two examples of properties of morphisms of schemes which do
not satisfy conditions (1) and (2).

Given a stack X, we of course have the forgetful functor to the base category X → S.
Identifying S with Λ, we can regard this as a morphism

(5) f : X → Λ.

This morphism f is representable if and only if X is isomorphic to X for some scheme
X. So we may speak of a stack X as being representable, meaning that it is isomorphic
to a scheme, or equivalently, that the morphism (5) is representable.

Example 5.7. Here are some examples of representable stacks.

(1) The CFG Hilbg,r of Example 2.14 (g ≥ 2, r ≥ 1) is a representable stack.

(2) The stack M0,n is representable (for n ≥ 3).

To show that a given stack X is isomorphic to some X, there is an easy initial
reduction step to the case of families over affine base schemes. For if families over an
affine base scheme, up to unique isomorphism, are identified with morphisms from the
base scheme to X, then a patching argument gives the same result for an arbitrary base
scheme.

Let X be the stack Hilbg,r or M0,n, and let g ≥ 2, n = 0 in case (1) and g = 0, n ≥ 3
in case (2). Let S = Spec(A) be an affine scheme, with family of stable n-pointed genus
g curves π : C → S. We suppose, in case (1) that we are also given an invertible sheaf
L on S and an N -tuple of generating sections of ω⊗r

C/S ⊗π∗L, where N = (2r−1)(g−1).

By [EGA IV.8.9.1], there exists a finitely-generated subring A0 of A with a finite-
type morphism π0 : C0 → S0 = Spec(A0), and in case (1) also an invertible sheaf L0

on S0, such that there is an isomorphism C ∼= C0 ×S0
S (over S), and in case (1)

also an isomorphism of L with the pullback of L0. Consider now the inductive system
of subrings Aλ ⊂ A, finitely generated and containing A0, and set Sλ = Spec(Aλ) and
Cλ = C0×S0

Sλ. Let C ′

0 → S0 be another morphism of finite type, and set C ′

λ = C ′

0×S0
Sλ

and C ′ = C ′

0 ×S0
S. Then, by [EGA IV.8.8.2(i)] we have a bijection of sets

lim−→HomSλ
(C ′

λ, Cλ)
∼→ HomS(C ′, C).

Other results about projective limits of schemes ([EGA IV.8.5.4, IV.8.10.5, IV.11.2.6])
tell us that sections of a line bundle, and properties such as properness and flatness,
come from Cλ → Sλ for suitable λ. Replacing A0 with such Aλ, we may therefore
assert that C0 → S0 is a family of stable n-pointed genus g curves; in case (1) we have
generating sections σ1, . . ., σN ∈ Γ(C0, ω

⊗r
C0/S0

⊗ π∗

0L0) inducing a closed embedding

C0 → P
N−1
S0

; and the pullback to S can be identified with the given object of X over S.
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So we are reduced to the case of an affine Noetherian base scheme, and now we can
apply Hilbert scheme machinery to assert that Hilbg,r is representable (by a suitable

subscheme of the Hilbert scheme of PN−1).
More machinery (moduli spaces, etc.) is required for the assertion that M0,n is rep-

resentable, so we restrict ourselves to a single case, n = 4, and show that M0,4
∼= P

1. We
still use the relative dualizing sheaf, for which an elementary description can be found
in [64, Defn. 6.4.7, Exer. 6.4.5, 6.4.6]. Now ωC/S(s1 + s2 + s3 + s4) is relatively ample
by by [EGA III.4.7.1] (since it is ample on fibers). Considering the twist by decreasing
number of sections (4, down to 1) we see that on fibers the dimension of the space of
sections goes down by 1 each time a section is omitted. The geometric consequence
is that the resulting embedding into a 2-dimensional projective space bundle has the
property that the 4 sections are mapped to 4 points in general position in P2. Here,
“in general position” means that no 3 of the points lie on a line. It is a standard fact
that any ordered collection of 4 points in general position in P

2 are sent by a unique
projective linear transformation to some chosen collection of 4 points:

[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1].

Applying this projective linear transformation, the resulting family of conics (each
smooth or a union of 2 lines) must be defined by an equation of the form

Axy + Bxz + Cyz = 0

with A + B + C = 0. This leads to a canonical isomorphism

M0,4
∼= Proj(Z[A, B, C]/(A + B + C)).

An additional example of representable stack is the stack of smooth families of genus
g curves (g ≥ 2) with Jacobi level n structure, for n ≥ 3 (Example 2.15). Then the
representability is a result of Serre (cf. Appendix to Grothendieck1).

The next result gives some of the formal properties of representable morphisms of
stacks.

Proposition 5.8. Let X, Y, X′, Y′, and Z be stacks.

(i) If f : X → Y and g : Y → Z are representable morphisms, then g ◦ f : X → Z
is representable.

(ii) If f : X → Y is representable and Y is representable, then X is representable.
(iii) If f : X → Y is representable and Y′ → Y is an arbitrary morphism, then

X ×Y Y′ → Y′ is representable.
(iv) If f : X → Y and f ′ : X′ → Y′ are representable, then f ×f ′ : X×X′ → Y×Y′

is representable.
(v) If f : X → Y and g : Y → Z are morphisms such that g and g ◦ f are repre-

sentable, then f is representable.

1J.-P. Serre, Rigidité du foncteur de Jacobi d’échelon n ≥ 3, appendix to A. Grothendieck, Tech-
niques de construction en géometrie analytique, X: Construction de l’espace de Teichmüller, Seminaire
H. Cartan, 13e année (1960/61) Fasc 2, no. 17, Secrétariat mathématique, Paris, 1962.
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Proof. For (i), we have X ×Z T ∼= X ×Y (Y ×Z T ) (Exercise 2.6). The case Z = Λ
of (i) is (ii). Another application of Exercise 2.6 gives (iii). For (iv), we use the
isomorphism (X×X′)×Y×Y′ T ∼= (X×YT )×T (X′×Y′ T ) (Exercise (X×X′)×Y×Y′ Z ∼=
(X ×Y Z) ×Z (X′ ×Y′ Z) belongs in Section 2.5). For (v), given T → Y we have the
following 2-cartesian diagram

X ×Y T //

��

T

��

X ×Z T //

��

Y ×Z T //

��

T

��

X // Y // Z

(6)

where the right-hand vertical map is the composite T → Y → Z. The hypothesis
implies that the stacks in the second row are all representable. So X×YT is isomorphic
to a fiber product of schemes, hence is also representable. �

Exercise 5.2. If a representable morphism X → Y has property P (for some
property P satisfying the conditions of Definition 5.3) and Y′ → Y is an arbitrary
morphism, then show that X ×Y Y′ → Y′ also has property P.

Proposition 5.9. Let P be a property of morphisms of schemes that is preserved
by arbitrary base extension and local for the étale topology. Let f : X → Y be a rep-
resentable morphism of stacks. Let g : Y′ → Y be a morphism of stacks, and assume
that for every object y of Y, over a scheme T , there exists an étale cover T ′ → T such
that the pull-back of y to T ′ is isomorphic to an object in the image of g. Then f has
property P if and only if the morphism X ×Y Y′ → Y′ obtained by base change has
property P.

Proof. The forward implication is taken care of by Exercise 5.2. For the reverse
implication, we let f ′ : X ×Y Y′ → Y′ denote the morphism obtained by base change,
and we suppose that f ′ has property P. If T is a scheme and T → Y is a morphism,
we have to verify that X ×Y T → T has property P.

By hypothesis there is an étale cover T ′ → T such that the composite morphism
T ′ → Y factors, up to 2-isomorphism, as a morphism T ′ → Y′ followed by g. Then we
have a diagram where the squares are 2-cartesian

X ×Y T ′ //

��

T ′

��

X ×Y Y′
f ′

//

��

Y′

g

��

X
f

// Y
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The morphism f ′ has property P. Hence so does the top map. Since P is local for the
étale topology it follows that X ×Y T → T has property P. �

Proposition 5.9, applied in the case that Y′ = U , a representable stack, tells us that
to test whether the morphism f has property P it may be enough to check whether the
single morphism f ′ (now a morphism of schemes) has property P.

Proposition 5.10. Let f : X → Y be a representable morphism of stacks. Let
g : Y′ → Y be a representable surjective morphism of stacks. Then f is surjective if
and only if the morphism X ×Y Y′ → Y′ obtained by base change is surjective.

Proof. The proof is similar to the proof of Proposition 5.9. Suppose f ′ : X×YY′ →
Y′ is surjective. For arbitrary T → Y we have to show that X ×Y T → T is surjective.
Let T ′ be a scheme, with T ′ ∼= T ×Y Y′. So T ′ → T is surjective. The hypothesis
implies that X×Y T ′ → T ′ is surjective. So the composite X×Y T ′ → T is surjective as
well. Since this factors through X ×Y T it follows that X ×Y T → T is surjective. �

Remark 5.11. The definition of representable morphism (and representable stack)
given in this section will remain valid throughout Part I of the book. However, in Part
II we will need to re-define the notion of representable morphism, replacing schemes
by algebraic spaces. Algebraic spaces will not appear, however, until later in Part
I. Once we have algebraic spaces at our disposal, we will then have two notions of
representability: representable morphisms will be representable by algebraic spaces,
and then morphisms which satisfy the condition given in Definition 5.1 (representability
by schemes) will be called strongly representable. An important point will be that the
definition of Deligne–Mumford stack, which uses the notion of representable morphism,
does not change when we switch to the new notion of representability in Part II.

2. Stacks with representable diagonal

Given a stack X, we are particularly interested in properties of the diagonal X →
X × X. There are two motivations for this. First, there was the important role of
the (relative) diagonal in the setting of groupoid schemes, that we saw in the previous
chapter. Second, the diagonal produces, via base change, arbitrary fiber products over
X (Exercise 2.7). The central role played by the fiber product in algebraic geometry is
reflected in the approach (taken by Deligne and Mumford) to the definition of algebraic
stack, which assigns particular importance to the diagonal of a stack.

Proposition 5.12. Given a stack X, the following are equivalent.

(1) The diagonal morphism X → X × X is representable.
(2) For arbitrary schemes T and U and morphisms T → X and U → X the fiber

product T ×X U is representable.
(3) Any morphism T → X (where T is a scheme) is representable.
(4) For any scheme T and pair of morphisms x : T → X and y : T → X the fiber

product T x×X,y T is representable.
(5) For any scheme T and pair of objects x, y of XT , the sheaf IsomX(x, y) is

representable by a scheme over T .
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Proof. We have (1) implies (2), by Exercise 2.7, which gives U×XV ∼= U × V ×X×X

X. The implications (2) ⇒ (3) ⇒ (4) are immediate. For (4) ⇒ (5), we have the
following description of the stack associated with the sheaf IsomX(x, y):

IsomX(x, y) ∼= (T x×X,y T ) ×T×T T .

Lastly, by the 2-cartesian diagram

IsomX(x, y) //

��

T

��

X // X × X

we have (5) implies (1). �

Remark 5.13. Let X be a stack with representable diagonal, and let t : T → X
u : U → X be arbitrary morphisms. Then, working through the implications (5) ⇒ (1)
⇒ (2) explicitly, we have

T ×X U ∼= IsomX(p∗1t, p
∗

2u)

where p1 and p2 denote projections from T×U . In particular, the fiber product T x×X,yT
appearing in (4) is IsomX(p∗1x, p∗2y).

We have all the ingredients in place in order to state the definition of Deligne–
Mumford stack.

Definition 5.14. A stack X is a Deligne–Mumford stack if it satisfies the fol-
lowing two properties:

(1) The diagonal X → X×X is representable, and is quasi-compact and separated.
(2) There exists a scheme U and a morphism U → X which is étale and surjective.

Notice that once the diagonal is asserted to be representable, it makes sense to
describe it as quasi-compact and separated (both of these are valid properties P ac-
cording to Proposition 5.5). Also, as a consequence of having representable diagonal,
the morphism U → X is representable (by Proposition 5.12), hence it is sensible to
speak of this morphism as being étale and surjective.

Here are some results that can be used in some cases to simplify the verification of
(1) and (2).

Proposition 5.15. Let X be a stack. Suppose, for every scheme T and objects x and
y of XT there exists an étale cover f : T ′ → T such that IsomX(f ∗x, f ∗y) is represented
by a scheme, quasi-affine over T ′. Then the diagonal X → X × X is representable and
quasi-affine. (So, in particular the diagonal is quasi-compact and separated.)

Proof. By hypothesis, there is a scheme Y ′ with quasi-affine morphism Y ′ → T ′,
and an isomorphism IsomX(f ∗x, f ∗y) ∼= hY ′ of sheaves on T ′, where hY ′ denotes the
functor of points of Y ′. Set T ′′ = T ′ ×T T ′, with projections p1 and p2 to T ′ and
morphism F : T ′′ → T . Now we have isomorphisms IsomX(F ∗x, F ∗y) ∼= hY ′×T T ′ and
IsomX(F ∗x, F ∗y) ∼= hT ′×T Y ′ These give rise to an isomorphism ϕ : Y ′×T T ′ → T ′×T Y ′.
Because of similar isomorphisms of sheaves over T ′×T T ′×T T ′, we see that ϕ satisfies the
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cocycle condition. By Proposition A.17, there is a scheme Y with quasi-affine morphism
Y → T , and an isomorphism λ : T ′ ×T Y → Y ′ such that T ′ ×T λ = ϕ ◦ (λ ×T T ′).

Since IsomX(x, y) and hY are both sheaves for the étale topology on T , we get
an isomorphism IsomX(x, y) ∼= hY . Concretely, given g : S → T and g∗x ∼= g∗y, we
get, by pullback, an isomorphism over S ×T T ′, and this corresponds to a morphism
S ×T T ′ → Y ′. Consider the composite morphism S ×T T ′ → Y ′ ∼= T ′ ×T Y → Y with
λ−1 and the second projection. Using the compatibility of λ it follows that the two
morphisms S ×T T ′′ → Y obtained by pullback are equal, hence there is an induced
morphism S → Y . This is a morphism of sheaves on T that, after restriction to T ′,
becomes an isomorphism, hence is itself an isomorphism. �

Now we are prepared to give the first examples of Deligne–Mumford stacks.

Example 5.16. Let X be a scheme, and assume that X is quasi-separated (over
the base scheme). Then X is a DM stack.

We recall that to be quasi-separated means to have quasi-compact diagonal (every
separated scheme is quasi-separated, and so is every locally Noetherian scheme). That
means that axiom (1) is satisfied. The identity map X → X is étale and surjective, so
axiom (2) is satisfied.

Example 5.17. Let G be a finite group, or more generally a group scheme, étale
and quasi-finite over the base scheme. Then BG is a DM stack. If G acts on a quasi-
separated scheme X, then [X/G] is a DM stack.

To show that Axiom (1) is satisfied, we use Proposition 5.15. Given a pair of G-
torsors over a scheme T , we know they can be trivialized on some étale cover, so we
are reduced to showing that IsomX(x, y) is representable in case both x and y are
the trivial G-torsor. Then IsomX(x, y) is represented by the scheme T × G, and this
is quasi-affine over T . We claim that the morphism Λ → BG corresponding to the
trivial G-torsor over the base scheme satisfies the condition of Axiom (2). By Example
2.25(3), this morphism becomes, after base change, the morphism E → T , where E is
a G-torsor over T , hence is an étale cover of T .

Exactly the same argument takes care of Axiom (2) for [X/G], using the morphism
X → [X/G]. For Axiom (1) we are, as above, reduced to considering trivial G-torsors.
Now a trivial G-torsor T × G with equivariant morphism to X is determined uniquely
by a morphism T → X (this will be the restriction of the equivariant morphism to
T × {eG} and will determine the morphism T × G → X by equivariance).

Exercise 5.3. Let f and g be a pair of morphisms T → X, and let x and y
denote the corresponding equivariant morphisms T ×G → X. Then Isom [X/G](x, y) is
represented by a scheme, quasi-affine over T , and Axiom (1) for [X/G] is satisfied.

Consider a stack [X/G] where G is an algebraic group of positive dimension. In
general, this will not be a DM stack, e.g., in the case X = Λ, so [X/G] = BG.

Exercise 5.4. Let G be an algebraic group (or group scheme) of positive dimension
(over the base scheme). Then BG is not a DM stack.
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However we will see that [X/G] is a DM stack when G (assumed to be a group
scheme, smooth and separated over Λ) acts on X with finite, reduced geometric stabi-
lizers. We need to avoid the positive-dimensional stabilizers, e.g., of the trivial action
of G on Λ in Exercise 5.4. In characteristic p > 0 it is also possible for stabilizers to be
finite but non-reduced. (The action of the multiplicative group scheme Gm = A1 r {0}
on itself by t · z = tpz has stabilizer µp, the subgroup scheme of Gm defined by tp = 1.)
If we avoid this sort of phenomenon as well, then we get a DM stack. Showing this
requires a criterion of Deligne and Mumford, which we will present later in this chapter.

In particular, the stack Mg is isomorphic to a stack of the form [PGL5g−5\Hilbg,3]
where Hilbg,3 is a locus in the Hilbert scheme of P5g−6 (see Example 1.2C). We will see
that PGL5g−5 acts with finite reduced geometric stabilizers. The criterion of Deligne
and Mumford will then show that Mg is a DM stack. (The same argument will apply
to Mg.)

We will conclude this section with some formal statements about stacks with rep-
resentable diagonal. These will be useful later, e.g., in showing that any fiber product
of DM stacks is again a DM stack.

Lemma 5.18. Let f : X → Y be a morphism of stacks. If Y has representable
diagonal then the natural map X ×Y X → X × X is representable.

Proof. The morphism X ×Y X → X × X is obtained by base change from the
representable diagonal morphism Y → Y × Y. �

Proposition 5.19. (a) If X → Y is a morphism of stacks with representable diag-
onal then the relative diagonal X → X ×Y X is representable.

(b) If X → Y is a representable morphism of stacks, and if Y has representable
diagonal, then X has representable diagonal.

(c) If f : X → Y and g : Y → Z are two morphisms of stacks such that g ◦ f is
representable and Y and Z have representable diagonal then f is representable.

Proof. The representable diagonal morphism X → X × X factors as

(7) X → X ×Y X → X × X.

By Lemma 5.18 the morphism X×Y X → X×X is representable. Thus by Proposition
5.8(v) X → X ×Y X is also representable. This proves (a).

If Y has representable diagonal and X → Y is representable, then the identity
morphism of X factors as X → X×YX → X, the relative diagonal followed by projection
onto the second factor. The latter is obtained by base change from X → Y, hence is
representable. So the relative diagonal is also representable, by Proposition 5.8(v).
Combining this observation with Lemma 5.18, we have the diagonal of X expressed in
(7) as a composite of representable morphisms. This establishes (b).

For (c), we factor f as
X → X ×Z Y → Y.

The first map is gotten by base change from Y → Y ×Z Y, which is representable by
(a). The second map comes via base change from g ◦ f , and this is representable by
hypothesis. So f is representable. �
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3. Atlases for DM stacks

Here we make the dictionary between stacks and groupoids precise in the case of
DM stacks. To every DM stack X and every choice of étale atlas U (scheme with étale
surjective morphism to X) there is an symmetry groupoid, and this will be an étale
groupoid scheme with quasi-compact separated relative diagonal. Conversely, given
such groupoid scheme the associated stack of torsors will be a DM stack.

Many of the proofs of facts about DM stacks start by considering a groupoid scheme
presentation and then working with the groupoid scheme. Also, étale groupoid schemes
are concrete objects (we have written down many étale groupoid schemes already in
Chapters 1 through 4): if you write down an étale groupoid scheme then you get a
concrete example of a DM stack.

Proposition 5.20. Let X be a DM stack. Let U be a scheme, and u an object of
XU such that the associated morphism u : U → X is étale and surjective. Then, if we
take R to be a scheme with R ∼= SymX(u, u), the associated symmetry groupoid R ⇉ U
has quasi-affine relative diagonal and there is an induced isomorphism X ∼= [R → U ].

Proof. Since X has representable diagonal, the symmetry groupoid SymX(u, u) is
indeed isomorphic to R for a scheme R, and we have a groupoid scheme s, t : R ⇉ U
by Proposition 3.5. The relative diagonal R → U × U factors as

(8) R
∆R−→ R × R

s×t−→ U × U

where ∆R denotes the diagonal of R. Both morphisms in (8) are locally quasi-finite
[EGAErrIII.20], hence so is their composite. The composite R → U × U is quasi-
compact and separated, since the diagonal of X has these properties. Now we apply
[EGA IV.18.12.12], which says that a morphism that is quasi-finite (i.e., quasi-compact
and locally quasi-finite) and separated is quasi-affine. So R → U × U is quasi-affine.

We can now apply Proposition 4.19 to obtain an isomorphism X ∼= [R ⇉ U ].
Indeed, since U → X is étale and surjective, for an arbitrary scheme T with x : T → X
the morphism obtained by base change U ×XT → T is étale and surjective. Let T ′ be a
scheme, with T ′ ∼= U ×X T . By this isomorphism, there are maps T ′ → U and T ′ → T ,
and an isomorphism in XT ′ between the pullbacks x|T ′ and u|T ′. With the étale cover
T ′ → T , the hypothesis of Proposition 4.19 is fulfilled. �

As a converse, we have that any étale groupoid scheme with quasi-compact separated
relative diagonal gives rise to a DM stack. This arises as a corollary to the following
statement.

Proposition 5.21. Let s, t : R ⇉ U be a groupoid scheme such that the relative
diagonal (s, t) : R → U × U is quasi-affine, and set X = [R ⇉ U ]. Then X has
representable diagonal. Moreover, if P is any property of morphisms of schemes that is
stable under base change and local for the étale topology, then:

(i) The diagonal X → X×X has property P if and only if R → U×U has property
P.

(ii) The morphism U → X (corresponding to the identity of U) has property P if
and only if s (or t) has property P.
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Proof. We may use Proposition 5.15 to check representability of the diagonal. By
definition, objects of X are étale locally trivial (R ⇉ U)-torsors. So representability of
the diagonal follows, if we can show that for an arbitrary scheme T and morphisms x,
y : T → U , IsomX(x, y) is representable by a scheme, quasi-affine over T . But this is
isomorphic to Isom [R⇉U ]pre(x, y), since the stackification morphism is a fully faithful
functor. Immediately from the definition, the latter is represented by the fiber product

T ×U×U R

of the morphism (x, y) : T → U × U and the relative diagonal of the groupoid scheme.
This is a scheme, quasi-affine over T . So X has representable diagonal.

We may now apply Proposition 5.9 to the morphism U × U → X × X, respectively
to U → X, to obtain statement (i), respectively (ii). �

Corollary 5.22. Let R ⇉ U be an étale groupoid scheme such that the relative
diagonal R → U × U is quasi-compact and separated. Set X = [R ⇉ U ]. Then X is a
DM stack, with étale surjective morphism U → X.

Proof. The relative diagonal R → U × U is, by hypothesis, quasi-compact and
separated. By the argument of the proof of Proposition 5.20 involving the factorization
(8), the relative diagonal is locally quasi-finite, hence quasi-affine.

Now by Proposition 5.21, X is a stack with representable quasi-compact separated
diagonal and étale surjective morphism U → X. �

By Proposition 4.20, the étale surjective morphism u : U → X produced in Corollary
5.22 satisfies SymX(u, u) ∼= R, and the associated symmetry groupoid is the given
groupoid scheme R ⇉ U . In this way, the results in this section tell us how to go back
and forth between DM stacks and étale groupoid schemes with quasi-compact separated
relative diagonal.

Example 5.23. We have seen that [X/G] is a DM stack if G is a group scheme,
quasi-affine and étale over the base scheme, acting on a quasi-separated scheme X.
The morphism X → [X/G] is étale surjective (Example 5.17). A groupoid scheme
presentation is the transformation groupoid X × G ⇉ X (Example 3.9). We have
[X/G] ∼= [X ×G ⇉ X] (Proposition 4.19). This is the isomorphism X ∼= [R ⇉ U ] that
results from taking X = [X/G] and U = X (with morphism corresponding to the trivial
G-torsor) in Proposition 5.20.

The groupoid scheme associated to a DM stack depends on a choice of étale sur-
jective map from a scheme. So there can be different groupoid schemes arising from
the same DM stack. As an easy example of this, for any quasi-separated scheme X,
we have seen that X is a DM stack, and for any étale surjective map U → X we have
X ∼= [R ⇉ U ] where R = U ×X U . (In fact, in the previous chapter we observed that
we have such an isomorphism.) The next exercise gives a more interesting example of
atlases of a DM stack.

Exercise 5.5. Let X be a scheme and Y → X an unramified degree 2 cover. Let
G = S3, the symmetric group on 3 elements, and set X = X × BG.
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(i) We have X ∼= [X ×G ⇉ X], coming from the obvious étale morphism X → X.
(ii) There is another étale surjective morphism X → X×BG, given by the identity

map on the first factor and the image of the (Z/2Z)-torsor Y → X under
the map B(Z/2Z) → BG coming from a nontrivial group homomorphism
Z/2Z → G (Example 2.9(2)).

(iii) Taking R so that R ∼= X ×X X, the fiber product of the morphism in (ii) with
itself, we have X ∼= [R ⇉ X], with R generally different from X × G.

Remark 5.24. Let us examine the argument at the end of the proof of Proposition
5.20 more closely. We used the étale cover u : U → X to obtain an étale cover of an
arbitrary scheme T , given an object of X over T , such that the object after pullback
becomes isomorphic to a pullback of u. Simply, we formed the fiber product, and that
gave us the étale cover of T .

We know, more generally, that a smooth surjective morphism of schemes ad-
mits sections étale locally. Precisely, if Y → X is a smooth surjective morphism of
schemes, then there exists an étale cover X ′ → X and a morphism X ′ → Y over X
[EGA IV.17.16.3(ii)]. Hence if X is any stack and U a scheme, then any representable
smooth surjective morphism u : U → X has the property that any object of X (over a
scheme T ) admits, after pullback to some étale cover (of the scheme T ), a morphism
to u in X.

Let us return to the isomorphism X ∼= [R ⇉ U ], where U is any étale cover of a
quasi-separated scheme X. By Remark 5.24, such an isomorphism still holds if U → X
is smooth surjective. That is because the existence of étale local sections lets us apply
Proposition 4.19, which tells us that the obvious morphism [R ⇉ U ]pre → X give rise
to such an isomorphism.

If the covering U → X is only flat, and not smooth, then [R ⇉ U ] need not be
isomorphic to X. In fact, it need not be a DM stack at all, as we see in the next
exercise. The subject of flat groupoid schemes is a delicate one, and to obtain good
results, one has to work in the fppf topology (where covering families are morphisms,
locally of finite presentation, whose images cover the target scheme). Flat groupoid
schemes, and the fppf topology, are not needed in Part I of this book, but will make an
appearance in Part II.

Exercise 5.6. Let f : U → X be a covering of smooth projective irreducible curves
over the complex numbers, which is totally ramified above some point x ∈ X. (This
means that f−1(x) consists of a single point u ∈ U .) Set R = U×X U and X = [R ⇉ U ].
Then X has representable separated quasi-compact diagonal, but there exists no étale
surjective morphism V → X for any scheme V .

4. A Criterion for a stack to be a Deligne-Mumford stack

Often, the most natural presentation of a Deligne–Mumford stack has a smooth,
rather than an étale atlas. In this section we state and prove a criterion, due to Deligne
and Mumford, that allows us to determine when stacks with smooth covers are in fact
DM stacks.
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First we need a preliminary result.

Lemma 5.25. Let X be a stack such that the diagonal of X is representable, sep-
arated, and quasi-compact. Assume there exists a surjective morphism W → X with
the property that for every closed point w ∈ W there exists a scheme Uw and an étale
morphism Uw → X such that the projection morphism Uw ×X W → W has nonempty
fiber over w. Then X is a DM stack.

Proof. It remains only to exhibit a scheme U with étale surjective morphism
U → X. We claim that we can take U =

∐

Uw (disjoint union taken over all closed
points w ∈ W ). Since each Uw → X is étale, it follows that U → X is étale. To
show it is surjective, we use Proposition 5.10, which tells us it is enough to verify that
U ×X W → W is surjective. Since this is an étale morphism it is open, hence is suffices
to show that every closed point of W is contained in the image. This is the case, since
by hypothesis, for any closed point w ∈ W the image of the morphism Uw ×X W → W
contains w. �

Theorem 5.26. Let X be a stack, and assume that

(1) X has representable, separated, and quasi-compact diagonal,
(2) there exists a scheme U and a morphism U → X that is smooth and surjective,
(3) the diagonal of X is formally unramified.

Then X is a DM stack.

Before we give the proof, we discuss the conditions appearing in the statement. We
let R denote a scheme, with R ∼= U ×X U , which must exists by condition (1). So we
have a groupoid scheme s, t : R ⇉ U . There is a basic 2-cartesian diagram

R
(s,t)

//

��

U × U

��

X // X × X

(9)

The right-hand morphism in (9) is a product of representable morphisms, and hence
is representable by Proposition 5.8(iv). It is smooth surjective since it is a product of
smooth surjective morphisms. Now by Remark 5.24 we are able to apply Proposition
5.9, which tells us that under the assumption that X satisfies (1) and (2) the remaining
hypothesis (3) is equivalent to the hypothesis

(3′) The morphism R → U × U is formally unramified.

Still under the assumption that X satisfies (1) and (2), we observe that the factor-
ization (8) of R → U ×U as the diagonal of R followed by the smooth morphism s× t,
gives us that the morphism R → U × U is locally of finite type.

A morphism of schemes f : X → Y is formally unramified if and only if Ωf = 0
(cf. the Glossary). When f is locally of finite type, there are two additional equivalent
characterizations. First is that for every closed point y ∈ Y the fiber f−1(y) is discrete
and reduced, and the residue field of every point of f−1(y) is a separable extensions
of the residue field of y. Second is that f has discrete reduced fibers at all geometric
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points. Every (locally closed) embedding of schemes is unramified, as is every étale
morphism. By definition, a morphism is unramified if it is formally unramified and
locally of finite presentation; however, as pointed out in [EGA IV.17.4.10], many of
the basic results concerning unramified morphisms apply as well to morphisms that are
formally unramified and locally of finite type.

To make the link with stacks of torsors, we see that hypotheses (1), (2), and (3)
imply that the relative diagonal R → U × U is quasi-finite (since it is locally of fi-
nite type and quasi-compact, with discrete fibers) and separated, hence quasi-affine by
[EGA IV.18.12.12]. Now Remark 5.24 lets us apply Proposition 4.19 to conclude that
X ∼= [R ⇉ U ].

Remark 5.27. Conversely, by Proposition 5.21, if R ⇉ U is a smooth groupoid
scheme with quasi-compact, separated, formally unramified relative diagonal, then X =
[R ⇉ U ] satisfies conditions (1), (2), and (3) of Theorem 5.26.

The criterion to be a DM stack in Theorem 5.26 is really an alternative characteri-
zation of DM stacks. That is because every DM stack satsifies (1), (2), and (3). Indeed,
conditions (1) and (2) follows directly from the definition of DM stack. Condition (3′)
holds for any DM stack X with étale cover U → X and R ∼= U ×X U , because the
factorization (8) expresses the relative diagonal as a composite of an embedding and
an étale morphism.

Proof of Theorem 5.26. Vital for the proof are the basic cartesian diagrams
arising from the groupoid scheme, which we recall here:

R t×s R
pr2

//

pr1
��

R

s

��

R t×s R
m

//

pr1
��

R

s

��

R t×s R
pr2

//

m

��

R

t
��

R
t

// U R s
// U R

t
// U

We first observe that we can express U as a disjoint union
∐

Un of subschemes, such
that Un → X is smooth of relative dimension n, for each n ≥ 0; the argument makes
use of these diagrams. We have R =

∐

Rn, where Rn is the locus (open and closed in
R) of points of R where the morphism t has relative dimension n. Because formation
of such a locus commutes with arbitrary base change, we have

pr−1
1 (Rn) = { p ∈ R t×s R | pr2 has relative dimension n at p } = m−1(Rn)

Hence there exists a unique (open and closed) subscheme Un ⊂ U satisfying s−1(Un) =
Rn. The Un’s cover U (because their pre-images by s cover R), and Un → X is smooth
of relative dimension n (by Proposition 5.9 combined with Remark 5.24).

We denote by x : U → X the given smooth cover. An outline for the proof, now, is
as follows:

• Define a locally free sheaf Ωx on U (which should be thought of as a sheaf of
relative differentials of U over X) and a morphism ϕ : ΩU → Ωx; under the
hypotheses the morphism is surjective.
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• For any closed point w ∈ U , show there is a Zariski open neighborhood of w
on which the rank of Ωx is constant and on which there exist global functions
f1, . . ., fn (where n is the rank of Ωx) such that Ωx is spanned by the dfi;
shrinking U to this neighborhood and letting f := (f1, . . . , fn) : U → An we
have (x, f) : U → X × A

n étale.
• For Y ⊂ An which is étale (over Spec(Z)) we have f−1(Y ) → X étale, and if

Y is chosen suitably then we can set Uw := f−1(Y ) and apply Lemma 5.25 (to
the cover U → X) to conclude that X is a DM stack.

The last step is the “slice” step. In this step we see that the morphism x, restricted
a general enough slice (locally closed subscheme of codimension n) of U , will be étale.
However it is not possible in general to arrange for the slice to pass through the given
point w. There can be bad points through which no slice is étale over X; for an example
of this, see Exercise 5.7. The content of Lemma 5.25 is that it is enough for there to
exist a point p ∈ R such that s(p) lies on a good slice and t(p) = w.

We recall that the sheaf of relative differentials of a morphism of schemes X → Y
is ΩY/X := NY/Y ×XY , the conormal sheaf to the relative diagonal (cf. the Glossary).
We have x : U → X, a morphism where the target is a stack, rather than a scheme,
but since U ×X U ∼= R we have a relative diagonal e : U → R that is a morphism of
schemes. So we define

Ωx := NU/R = Ne,

the conormal sheaf to the identity morphism of the groupoid scheme. The composite

U → R → U × U

gives rise to a pullback map NU/U×U → NU/R, and this we take as our the morphism

ϕ : ΩU → Ωx.

There is an important compatibility after pullback by s. By the cartesian diagram

R
(e◦s,1R)

//

s

��

R t×s R
pr2

//

pr1
��

R

s

��

U
e

// R
t

// U

we have

(10) s∗Ωx
∼= NR/R t×sR

∼= Ωt

where the latter isomorphism uses the identification of R t×s R with the fiber product
of t with itself, by (m, pr2). Now we claim that this fits into a commutative diagram

s∗ΩU

s∗ϕ
//

��

s∗Ωx

∼

��

ΩR
// Ωt

(11)
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where the left-hand and bottom morphisms are the pullback morphism on differentials
by the morphism s and the morphism from differentials on R to relative differentials
by t, respectively. Each of these sheaves of differentials is a conormal sheaf:

s∗NU/U×U
//

��

s∗NU/R

��

NR/R×R // NR/R t×sR

This diagram commutes because formation of the conormal sheaf is functorial
([EGA IV.16.2.1]) and we have the following commutative diagram:

R
(e◦s,1R)

//

s

��

R t×s R
(m,pr2)

//

pr1
��

R × R

s×s

��

U
e

// R
(s,t)

// U × U

So far we have used only hypotheses (1) and (2). By commutativity of (11) and the
fact that s is smooth and surjective, the surjectivity of ϕ is equivalent to surjectivity
of the composite morphism

(12) s∗ΩU → Ωt.

The first fundamental exact sequence of differentials (cf. the Glossary) of the sequence
of morphisms

R
(s,t)−→ U × U

pr2−→ U

is

s∗ΩU → Ωt → ΩR/U×U → 0

(where we are identifying Ωpr2 with pr∗1 ΩU and using functoriality of the induced mor-
phisms on sheaves of differentials). Hence surjectivity of (12) is equivalent to the
vanishing of ΩR/U×U . And this is precisely condition (3′). So, we have established that
the morphism ϕ is surjective.

Let w ∈ U be a closed point. We have w ∈ Un for some n = n(w), which is the rank
of Ωx at w. Since ϕ is surjective, there exists an open neighborhood of w in Un, and
regular functions f1, . . ., fn such that df1, . . ., dfn generate Ωx on this neighborhood.
To maintain simplicity of notation, let us replace U momentarily by this neighborhood
(and replace R by the open subset of points which map by both s and t into this
neighborhood, so R ⇉ U is again a groupoid scheme; cf. Example 3.15). So f1, . . .,
fn ∈ Γ(U,OU), and the morphism

f := (f1, . . . , fn) : U → A
n

is such that the composite

(13) O⊕n
U

∼= f ∗ΩAn → ΩU → Ωx

is an isomorphism.
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There is a 2-cartesian diagram

R
(t,f◦s)

//

s

��

U × A
n

x×1An

��

U
(x,t)

// X × A
n

(14)

So by Proposition 5.9 and Remark 5.24, the morphism (x, t) : U → X × A
n is étale if

and only if the morphism

(t, f ◦ s) : R → U × A
n

is étale. By [EGA IV.17.11.2], given two schemes smooth over some base scheme, a
given morphism (over the base schemes) is étale if and only if the induced morphism
on relative differentials is an isomorphism. Viewing R and U × A

n as schemes over U ,
this induced morphism is

O⊕n
R

∼= (t, f ◦ s)∗ΩU×An/U → Ωt.

This composite factors as

O⊕n
R

∼= (f ◦ s)∗ΩAn → s∗ΩU → Ωt

where the last morphism is the morphism (12), which we have seen factors, further,
through s∗Ωx in (11). So the induced morphism on differentials is s∗ of the isomorphism
(13) followed by the isomorphism (10), and the second step has been accomplished.

For any locally closed subscheme Y ⊂ An = An
Spec(Z) we have a diagram

f−1(Y ) //

��

X × Y //

��

X

U // X × A
n

with 2-cartesian square, where the bottom horizontal map is étale, and hence the hor-
izontal map above it is also étale. If Y is étale over Spec(Z), then the projection
morphism X × Y → X is étale, so the composite morphism of the top row is an étale
morphism. We will restrict attention to Y ⊂ An that are étale over Spec(Z). To
complete the third step, and hence the entire proof (by applying Lemma 5.25 with
Uw = f−1(Y )), we need to show that étale Y can be chosen, so that (f ◦ s)−1(Y ) has
nontrivial intersection with the fiber t−1(w). The left-hand morphism in the composite

(15) t−1(w) → A
n
k(w) → A

n

is obtained by base change of the top morphism in (14) by {w}×An → U ×An, hence
is étale, and in particular is open. Here k(w) denotes the residue field of w. There
are now two cases to consider. If k(w) has characteristic 0, then there exists a rational
point (z1, . . . , zn) ∈ An

Q over which the composite (15) has nonempty fiber. If k(w)
has characteristic p > 0 then there exists a point of t−1(w) whose residue field is a
finite extension of the prime field Fp, and this point has image which is a closed point
z ∈ An. In either case, there exists étale Y ⊂ An containing z. In the characteristic
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0 case, Y can be defined by inverting a suitable positive integer N and equating the
ith generator of the coordinate ring of An with zi for each i. In characteristic p a
regular system of parameters of OAn

Fp
,z can be lifted to characteristic 0 and Y can be

taken to be a suitable neighborhood of z in the scheme defined by these equations; cf.
[EGA IV.17.16.3(i)]. �

For the transformation groupoid of a group action, the most natural sort of condition
to consider is a condition on the (geometric) stabilizers. The next result says that to
verify condition (3′) of Theorem 5.26 it suffices to check that the stabilizer of a groupoid
scheme is unramified.

Proposition 5.28. Let s, t : R ⇉ U be a smooth groupoid scheme with quasi-
compact separated relative diagonal. Define the stabilizer of R ⇉ U to be top morphism
in the cartesian diagram

S //

��

U

∆U

��

R
(s,t)

// U × U

(16)

If the stabilizer has finite reduced geometric fibers then R → U × U is formally unram-
ified.

So, if an algebraic group G (or, more generally, a group scheme, smooth and sep-
arated over the base scheme) acts on a quasi-separated scheme X with finite reduced
geometric stabilizers, then [X/G] is a DM stack.

Proof. Let Ω be an algebraically closed field, and let x, y ∈ U(Ω). Let us denote
by Sx the fiber of the stabilizer over x. Set Rx,y := (s, t)−1(x, y); we need to show that
Rx,y is reduced and finite over Spec(Ω). Assume that Rx,y is nonempty, and choose
z ∈ R(Ω) satisfying s(z) = x and t(z) = y. Now m(−, i(z)) is a morphism

(17) Rx,y → Sx.

Multiplication with z, by the groupoid scheme axioms, gives rise to a morphism in the
other direction, establishing that (17) is an isomorphism. Under the hypothesis, Sx is
finite and reduced, hence so is Rx,y. �

Example 5.29. Let V be a representation of Gm, over a field k. If none of the
weights of the Gm action divide the characteristic of k then [V r {0}/Gm] is DM stack.
In Chapter 10 we will study DM stacks of the form [A2

r {0}/Gm] in some detail.

Exercise 5.7. Consider the 2-dimensional representation of Gm with weights 1 and
1 over the field k = Fp(t), where p is any prime number.

(i) We have [A2
k r {0}/Gm] ∼= P

1
k.

(ii) If we call C ⊂ A
2
kr{0} a good slice if C → [A2

kr{0}/Gm] is étale, then necessary
and sufficient conditions for C to be a good slice are that C is smooth (over k)
of pure dimension 1 and the tangent line to C at every geometric point does
not pass through the origin of A2.
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(iii) There exist points in A2
k r {0} which are not contained in any good slice.

Example 5.30. The stacks Mg and Mg are DM stacks. This will be shown in
Chapter 7 by showing that they are isomorphic to quotient stacks, for an action of a
projective linear group on a locus in a Hilbert scheme, with finite reduced geometric
stabilizers.

Example 5.31. The stack Ag of principally polarized g-dimensional abelian va-

rieties is a DM stack over Spec Z. These stacks admit toroidal compactifications Ag

which are also DM stacks over Spec Z. For a reference see the book by Faltings and
Chai [25].

Proposition 5.32. (a) If X → Y is a representable quasi-separated morphism and
Y is a DM stack, then X is a DM stack.

(b) If X, Y, and Z are DM stacks then any fiber product X ×Z Y is a DM stack.
(c) If f : X → Y and g : Y → Z are morphisms of DM stacks, and if g ◦ f is

representable, then f is representable.

Proof. For (a), we know that X has representable diagonal by Proposition 5.19(b).
The proof of that statement uses the factorization of the diagonal of X, in (7), as the
relative diagonal of X → Y followed by a morphism to X × X. The latter morphism
is obtained by base change from the diagonal of Y (Lemma 5.18), and hence is quasi-
compact and separated. The former morphism, when composed with pr2 : X×YX → X,
yields 1X. And pr2 is obtained from base change by X → Y, hence is representable and
quasi-separated. Now [EGA I.5.5.1(v)] and [EGA IV.1.2.4] tell us that when f : X →
Y and g : Y → Z are morphisms of schemes with g quasi-separated and g ◦ f separated
and quasi-compact, then f is separated and quasi-compact. Since 1X is separated and
quasi-compact, it follows that X → X ×Y X is separated and quasi-compact. So X
has representable, separated, quasi-compact diagonal. If V → Y is an étale surjective
morphism, and U is a scheme with U ∼= X×Y V , then we have étale surjective U → X,
and so X is a DM stack.

Using the isomorphism X ×Z Y ∼= Z ×Z×Z (X × Y), the special case Z = Λ of (b),
combined with (a), implies the general case of (b). So we are reduced to showing that
X × Y is a DM stack. The stack X × Y has representable diagonal since its diagonal
factors as X×Y → X×X×Y×Y → X×Y×X×Y, a product of representable morphisms
(which is representable by Proposition 5.8(iv)) composed with an isomorphism. Since a
product of separated morphisms is separated and a product of quasi-compact morphisms
is quasi-compact ([EGA I.5.5.1](iii) and [EGA I.6.6.4](iv)), the diagonal of X × Y is
quasi-compact and separated. Since a product of étale surjective morphisms is étale
surjective, we have U × V → X × Y, where U and V denote étale covers of X and of
Y, and (b) is established. (We get these assertions about products of representable
morphisms by following the proof of Proposition 5.8(iv), e.g., (U × V ) ×X×Y T ∼=
(U ×X T ) ×T (V ×Y T ).)

Lastly, (c) follows directly from Proposition 5.19(c). �

Remark 5.33. In the proof of Proposition 5.32, we could observe, moreover, that
the morphism 1X is locally of finite type, hence by [EGA I.6.6.6] X → X ×Y X is also
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locally of finite type. We have already seen that it is quasi-compact and separated. So,
the relative diagonal X → X ×Y X of an arbitrary morphism of DM stacks X → Y is
separated and of finite type.

Answers to Exercises

5.1. The property of being a regular embedding is local for the étale topology but
not invariant under base change. Being projective is invariant under base change but
not even Zariski local.

5.2. This follows from (X ×Y Y′) ×Y′ T ∼= X ×Y T .

5.3. Let S be a scheme, and h : S → T a morphism. Then a G-equivariant isomor-
phism S×G → S×G is given by (s, g) 7→ (s, α(s)g) for a unique morphism α : S → G.
To be compatible with the morphisms to X is the condition f(h(s))·g = g(h(s))·(α(s)g).
Hence Isom [X/G](x, y) is represented by the scheme (T × G) ×X×X X where the mor-
phism T × G → X × X sends (t, g) to (f(t), g(t) · α(s)) and where the morphism
X → X × X is the diagonal.

5.4. Given any scheme U and surjective morphism f : U → BG, corresponding to
a G-torsor E → U , we have a fiber diagram

E
f ′

//

��

Λ

��

U
f

// BG

The morphism f ′ has positive-dimensional fibers, hence cannot be étale. So f is not an
étale morphism, and Axiom (2) for BG fails.

5.5. We get X ∼= [R ⇉ X] where R is an inner form of S3 over X, specifically
R = X

∐

X
∐

Y
∐

Y .

5.6. The stack X has representable, separated, quasi-compact diagonal by Propo-
sition 5.21. Suppose V → X is étale; we show that the image of V ×X U → U must
not contain u, hence V → X is not surjective. Replacing V by an étale cover we may
assume that V → X factors up to 2-isomorphism through U (since by definition objects
of X are étale locally trivial (R ⇉ U)-torsors). Consider the 2-cartesian diagram

V ×X U //

��

R
t

//

s

��

U

��

V // U // X

The composite top map is étale, hence V ×X U is representable by a scheme that is
smooth over the complex numbers. Now V must be locally of finite type (over the
complex numbers), since the morphism V → U , after base change by s, becomes a
morphism that is locally of finite type. By [EGA IV.17.7.7] a scheme that admits an
fppf cover by a smooth scheme must be smooth, so V must be smooth. It follows that
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V → U is flat, hence so is V ×X U → R, and so the image of the latter morphism must
be contained in the smooth locus of R. Hence it does not contain the (unique) point of
R lying above x.

5.7. As discussed after the statement of Theorem 5.26 we have [A2
k r {0}/Gm] ∼=

[(A2
k r {0}) × Gm ⇉ A2

k]. The obvious map A2
k r {0} → P1

k is a Gm-torsor, i.e.,
(A2 r {0})×P1 (A2 r {0}) ∼= (A2 r {0})×Gm, hence [(A2

k r {0})×Gm ⇉ A2
k]
∼= P1 by

Remark 5.24. Hence C is good if and only if C → P
1
k is étale, and this is equivalent to

the stated conditions. If C contains the point defined by x2 − t = y = 0, then we see by
computing with a local defining equation that C has horizontal tangent line through
the point (

√
t, 0).


