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CHAPTER 3

Groupoids and Atlases

For an atlas for a stack, one has schemes R and U , with a morphism from R to
U ×U (not usually an embedding). Conditions are put on these data that, in case R is
contained in U × U , make R an equivalence relation. This is the notion of a groupoid

scheme, which is the subject of this chapter (cf. [30]). These will be the atlases (or
groupoid presentations) for stacks.

1. Groupoid schemes

A groupoid scheme, or algebraic groupoid,1 consists of two schemes and five
morphisms, satisfying several properties. One has a scheme U , a scheme R, two mor-
phisms s and t from R to U , a morphism e from U to R, a morphism m : R t×s R → R
(where R t×s R denotes the fiber product R×U R constructed from the two maps t and
s), and a morphism i : R → R, satisfying the five properties listed below.

All of this makes sense over an arbitrary base category S, and then one defines
a groupoid object in S. A key example to keep in mind is a groupoid set. This
notion coincides precisely with the notion of a small category in which all morphisms
are isomorphisms. From this example one can in fact figure out what the axioms must
be. Here are the axioms:

(1) The composites U
e

−→ R
s

−→ U and U
e

−→ R
t

−→ U are the identity maps on
U :

U
e //

1U ��@
@@

@@
@@

R

s

��

U
e //

1U ��@
@@

@@
@@

R

t
��

U U

(2) If pr1 and pr2 are the two projections from R t×s R to R, then s ◦ m = s ◦ pr1

and t ◦ m = t ◦ pr2:

R t×s R
m //

pr1
��

R

s

��

R t×s R
pr2 //

m

��

R

t
��

R s
// U R

t
// U

1The second choice of “algebraic groupoid” compares nicely with “algebraic group”, and is common
in the literature. It does conflict with the use of groupoid for a kind of category. In category language,
cf. [65], what we call a groupoid scheme is an “internal groupoid in the category of schemes”.
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52 Groupoids and Atlases

(3) (Associativity) The two maps m◦ (1R×m) and m◦ (m×1R) from R t×s R t×s R
to R are equal:

R t×s R t×s R
1R×m

//

m×1R

��

R t×s R

m

��
R t×s R m

// R

(4) (Unit) The two maps m ◦ (e ◦ s, 1R) and m ◦ (1R, e ◦ t) from R to R are equal to
the identity on R:

R
(e◦s,1R)

//

1R
$$HH

HH
HH

HH
HH

H R t×s R

m

��

R
(1R,e◦t)

//

1R
$$HH

HH
HH

HH
HH

H R t×s R

m

��
R R

(5) (Inverses) i ◦ i = 1R, s ◦ i = t and (therefore) t ◦ i = s, and m ◦ (1R, i) = e ◦ s
and m ◦ (i, 1R) = e ◦ t:

R
i //

1R ��?
??

??
??

? R

i
��

R
i //

s
��?

??
??

??
? R

t
��

R
(1R,i)

//

s

��

R t×s R

m

��

R

t
��

(i,1R)
// R t×s R

m

��
R R U e

// R U e
// R

Note by (1) that s and t are always surjective. These axioms have some redundancy,
but others could be added. For example:

Exercise 3.1. (a) Show that i ◦ e = e. (b) Show that m ◦ (e, e) = e. (c) Show that
m ◦ (i ◦ pr2, i ◦ pr1) = i ◦ m. (d) Show that the diagrams of axiom (2) are cartesian.

Example 3.1. Any morphism U → X of schemes determines a groupoid scheme.
For this, take R = U ×X U , with s and t the two projections, e the diagonal map, and
i the map switching the two factors. Identifying R t×s R with U ×X U ×X U , the map
m is the projection onto the first and third factors.

Example 3.2. If U = Λ (the base scheme) then the axioms for a groupoid scheme
reduce to axioms for R to be a group scheme over Λ (with multiplication m : R×R → R,
identity section e : Λ → R, and inverse map i : R → R).

Example 3.3. An important example of a groupoid scheme arises whenever an
algebraic group G acts on the right on a scheme U . Set R = U×G, and let s : U×G → U
be projection and t : U ×G → U the action. The map e : U → U ×G takes u to (u, eG),
where eG is the identity element of G. The map i takes (u, g) to (u · g, g−1), and

m
(
(u, g), (u · g, h)

)
= (u, gh).

We may identify R t×s R with U × G × G by the map
(
(u, g), (u · g, h)

)
7→ (u, g, h).

Under this identification, m becomes the map (u, g, h) 7→ (u, gh).
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Example 3.3′. For a left action, we have a groupoid scheme with R = G×U , s the
projection, t the action, e(u) = (eG, u), i(g, u) = (g−1, g · u), and m

(
(g, u), (h, g · u)

)
=

(hg, u).

A groupoid scheme can be denoted (U, R, s, t, m, e, i), or more simply R ⇉ U . We
call the groupoid scheme an étale groupoid scheme if the two morphisms s and t
are étale. Similar terminology is used for other adjectives such as smooth or flat. The
groupoid scheme for M1,1 in Example 3.10 is an étale groupoid scheme. The groupoids
X × G ⇉ X and G × X ⇉ X (Examples 3.9 and 3.9′) are étale groupoids when G
is étale over the base field (e.g., a finite group), and are smooth groupoids when G is
smooth (e.g., an algebraic group over a field).

A morphism of groupoid schemes from (U ′, R′, s′, t′, m′, e′, i′) to (U, R, s, t, m, e, i)
is a pair (φ, Φ), where φ : U ′ → U and Φ: R′ → R are morphisms of schemes. These are
required to be compatible with the structure morphisms defining each groupoid scheme,
in the obvious sense: s ◦Φ = φ ◦ s′, t ◦ Φ = φ ◦ t′, e ◦ φ = Φ ◦ e′, m ◦ (Φ×Φ) = Φ ◦m′,
and i ◦ Φ = Φ ◦ i′.

Example 3.4. If G acts on U , and H acts on V , and θ : G → H is a homomorphism
of algebraic groups, and φ : U → V is an equivariant map (so φ(u, g) = φ(u) · θ(g) for
u ∈ U and g ∈ G), this determines a morphism (φ, Φ) from the groupoid scheme
U × G ⇉ U to V × H ⇉ V , with Φ(u, g) = (φ(u), θ(g)).

2. Groupoids and CFGs

It will be possible to go back and forth between algebraic groupoids and CFGs. An
algebraic groupoid will describe a CFG, much the way that a scheme can be described
by patching. But this goes via a process that requires several steps; these will be
presented over the course of this chapter and the next chapter. We start with the easier
direction, that of producing an algebraic groupoid from a CFG.

Proposition 3.5. Let X be a CFG, U a scheme, and u : U → X a morphism.

Assume given an isomorphism between U ×XU and R for some scheme R. Then R and

U form a groupoid scheme, with the pair of projection maps

s, t : R ∼= U ×X U ⇉ U.

and the following additional maps:

(i) e : U → R is the composite U → U ×X U ∼= R, where the first map sends h to

(h, h, 1u(h)),
(ii) m is the map from U ×X U ×X U ∼= R t×U,s R to U ×X U ∼= R given by

(h, h′, h′′, ϕ, ϕ′) 7→ (h, h′′, ϕ′ ◦ ϕ),

(iii) i : R ∼= U ×X U → U ×X U ∼= R, where (h, h′, ϕ) 7→ (h′, h, ϕ−1).

In the definition of m, notice that we make use of the isomorphism U ×X U ×X

U ∼= R t×U,s R of Example 2.27. We also repeatedly use the correspondence between
morphisms of schemes and morphisms of the associated CFGs (Example 2.9(1)).
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Proof. We have to verify the axioms. We verify the Associativity axiom (3) and
leave the verification of the other axioms to the reader. Let

(h, h′, h′′, h′′′, ϕ, ϕ′, ϕ′′)

be an object of U ×X U ×X U ×X U , which is identified with R t×s R t×s R. If we apply
m × 1R, we get (h, h′′, h′′′, ϕ′ ◦ ϕ, ϕ′′). Applying m produces (h, h′′′, ϕ′′ ◦ (ϕ′ ◦ ϕ)). If,
intead, we apply 1R × m and then m, we get (h, h′′′, (ϕ′′ ◦ ϕ′) ◦ ϕ). Since composition
of morphisms in the category X is associative, we have ϕ′′ ◦ (ϕ′ ◦ϕ) = (ϕ′′ ◦ϕ′) ◦ϕ. So,
the two maps m ◦ (1R × m) and m ◦ (m × 1R) are equal. �

According to Proposition 2.20, to specify the morphism u : U → X is equivalent to
specifying an object of X over U . We are adopting the notational convention to use
the same symbol for both the object and the morphism; this means that for a given
morphism f : S → U of schemes, u(S, f) will be the (chosen) pullback f ∗(u). Now
Proposition 3.5 can be interpreted as saying that an object u of X over a scheme U
determines an algebraic groupoid, provided that the corresponding fiber product of U
with itself over X is isomorphic to a scheme.

Fiber products of schemes over a target CFG will occur so frequently, that they
deserve a special notation. We introduce this now.

Definition 3.6. Let X be a CFG over a base category S of schemes. Let U and
V be schemes, and let u and v be objects of X over U and over V , respectively. These
determine morphisms (which are unique up to canonical 2-isomorphisms) u : U → X

and v : V → X. The symmetry CFG of u and v is the fiber product U u×X,v V . It
will be denoted SymX(u, v).

By Remark 2.26, the CFG SymX(u, v) has sets as fibers. Concretely, the fiber over
S is the set of triples (f, g, ϕ) where f : S → U and g : S → V are morphisms and
ϕ : f ∗(u) → g∗(v) is an isomorphism in XS. To say that SymX(u, v) is isomorphic to T
for some scheme T is to say that the set of triples (f, g, ϕ) is naturally isomorphic to
the set of morphisms S → T . This condition only depends on the isomorphism class of
u and the isomorphism class of v.

According to Proposition 3.5, now, if SymX(u, u) is isomorphic to a scheme, then
it determines an algebraic groupoid.

Definition 3.7. Let X be a CFG, U a scheme, and u an object of XU . If there
is a scheme R and an isomorphism SymX(u, u) ∼= R, then the groupoid R ⇉ U of
Proposition 3.5 will be called the symmetry groupoid of u.

The notation SymX(u, u) ⇉ U could be used to denote the symmetry groupoid,
although we will tend to avoid doing this, because it hides the fact that there is a
nontrivial hypothesis in Proposition 2.20, that the fiber product of U with itself over X

should be isomorphic to a scheme.
The notions of symmetry CFG and symmetry groupoid also make sense over an

arbitrary base category S. The symmetry groupoid of u, when it exists, will be a
groupoid object in S.

Here are some examples of symmetry groupoids.
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Example 3.8. Suppose X = X. Let f : U → X be a morphism, determining (by
composition with f) a morphism f : U → X. The fiber product U×X U is isomorphic to
U ×X U by Example 2.25(1). So, the corresponding symmetry groupoid is the algebraic
groupoid of Example 3.1.

Example 3.9. For X = [X/G], we take U = X with the trivial G-torsor X × G
and action map X × G → X. The corresponding f : X → [X/G] maps h : S → X to
the torsor S ×G → S with equivariant map S ×G → X, (s, g) 7→ h(s) · g (cf. Example
2.9(4)). So an object of X ×[X/G] X consists of h, h′ : S → X, and G-equivariant
S × G → S × G, (s, g) 7→ (s, ϕ(s)g) (for some ϕ : S → G) such that the diagram

S × G

(s,ϕ(s)g) ##GGGGGGGG

h(s)·g
// X

S × G
h′(s)·g

>>}}}}}}}}

commutes, i.e., h′(s) ·ϕ(s) = h(s). In other words, h′(s) = h(s) ·ϕ(s)−1. So, we identify
X ×[X/G] X with X ×G so that h, h′, and S×G ∼→ S×G as above are sent to (h, ϕ−1).
Then, s is the first projection and t is the group action. We have e = (1X , eG). To
compute m, say ((h, ϕ−1), (h′, ϕ′−1)) is an object of X×[X/G]X×[X/G]X. The composite
isomorphism S × G → S × G is (s, g) 7→ (s, ϕ′(s)ϕ(s)g). The inverse of ϕ′(s)ϕ(s)
is ϕ(s)−1ϕ′(s)−1, so m sends ((h, ϕ−1), (h′, ϕ′−1)) to (h, ϕ−1ϕ′−1). Similarly, i sends
(h, ϕ−1) to (h · ϕ−1, ϕ). We have reproduced the algebraic groupoid of Example 3.3.

In particular, for X = BG we can take U = Λ and obtain the groupoid scheme
G ⇉ Λ with m : G × G → G the multiplication of G and i : G → G the inverse.

Example 3.9′. There is a similar story for X = [G\X], again with U = X. We
take f to be the morphism X → [G\X] which sends h : S → X to G × S → S
and G × S → X, (g, s) 7→ g · h(s). An object of X ×[G\X] X is given by h, h′, and
G × S → G × S, (g, s) 7→ (gϕ(s), s) such that ϕ(s)h′(s) = h(s). Again it is convenient
to rewrite this as h′(s) = ϕ(s)−1h(s), so that X ×[G\X] X ∼= G × X, with this object
going to (ϕ−1, h). So the algebraic groupoid is G × X ⇉ X where s is projection, t is
action, e = (eG, 1X), m((ϕ−1, h), (ϕ′−1, h′)) = (ϕ′−1ϕ−1, h), and i(ϕ−1, h) = (ϕ, ϕ−1 · h).

Example 3.10. Consider the CFG of elliptic curves X = M1,1 over S = (Sch/C).
Recall from §1.5 the modular families Cα → Sα of elliptic curves and the schemes Rα,β

of pairs of points of Sα, Sβ with isomorphism of the corresponding elliptic curves. The
modular families are an object of M1,1 over U := S1∐S2. We claim that Sα×M1,1

Sβ
∼=

Rα,β. Then it follows that U ×M1,1
U ∼= R where R :=

∐
1≤i,j≤2 Ri,j, and we recover the

algebraic groupoid R ⇉ U that we had claimed would be an atlas for M1,1.
The morphism Sα → M1,1 associates to T → Sα the family of elliptic curves

T ×Sα
Cα → T . This comes with a section σα : T → T ×Sα

Cα. We need to exhibit
a bijection between isomorphisms ϕ : T ×Sα

Cα → T ×Sj
Cj over T and morphisms

T → Rα,j . For this, it suffices to treat the case that T is affine, T = Spec(A). We
have an isomorphism ϕ∗O(3σβ) ∼= O(3σα). This is determined up to automorphism
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of O(3σα), i.e., an element of O∗(T ×Sα
Cα) = A∗. Expressing each family of curves

by an equation in Weierstrass form corresponds to a particular kind of choice of basis
for the space of global sections of O(3σβ), resp. O(3σα). With respect to these bases,
pullback of global sections by ϕ corresponds to an element of PGL3(A). The Weierstrass
equations constrain this to be of diagonal form, say with diagonal entries λ, µ, 1, and
we are reduced to the computations of §1.5.

The first step in turning a groupoid scheme into a stack is to associate, in a simple
way, a CFG to a given groupoid scheme R ⇉ U . This CFG will be denoted [R ⇉ U ]pre.
It won’t quite be a stack, but it will be a prestack, a term that will be defined in §4.1
and that explains our choice of notation. A further step called stackification will be
required to turn this prestack into a stack. If the groupoid scheme satisfies certain
hypotheses, then this stack will be an algebraic stack. These steps will make up the
other half of the dictionary between algebraic stacks and groupoid schemes.

Definition 3.11. Let R ⇉ U be a groupoid scheme. The associated prestack

will be the CFG [R ⇉ U ]pre defined as follows. An object over a scheme S is a morphism
g : S → U . A morphism over f : S ′ → S from g′ : S ′ → U to g : S → U is a morphism
γ : S ′ → R satisfying s◦γ = g′ and t◦γ = g ◦f . If g : S → U is an object of [R ⇉ U ]pre

then the identity morphism 1g is given by e ◦ g : S → R. Composition of morphisms in
[R ⇉ U ]pre is defined using the multiplication map of the groupoid, as follows. If we
have a pair of composable morphisms as pictured

S ′′

γ′

--

f ′ ''NNNNNNNNN g′′

YYYYYYYYYYYYYYYY

,,YYYYYYYYYYYYY

R
t

��
s

��
S ′

γ 00

f &&NNNNNNNNN
g′

// U

S
g

88qqqqqqqqq

then t◦γ′ = g′◦f ′ = s◦γ◦f ′, so there is an induced morphism (γ′, γ◦f ′) : S ′ → R t×sR.
Now we define γ ◦ γ′ = m(γ′, γ ◦ f ′).

Exercise 3.2. (i) With this definition, [R ⇉ U ]pre is a category, i.e., composition
of morphisms is associative. (ii) This category, with the obvious functor to S, is a CFG,
with the pullback of an object determined just by composing morphisms of schemes.

Example 3.12. Let G be an algebraic group, and consider the classifying stack
BG. We have already seen that Λ ×BG Λ ∼= G, and the associated groupoid scheme
is G ⇉ Λ. Now [G ⇉ Λ]pre is equivalent to the category of trivial G-torsors. Indeed,
there is just one object over any S in S, and isomorphisms from this object to itself
correspond bijectively with morphisms S → G.

We see concretely why an extra step is necessary to recover the stack BG. What
goes wrong with [G ⇉ Λ]pre is that all the nontrivial G-torsors are missing! Indeed,
the definition of G-torsor includes the requirement to be locally trivial for the given
topology (in the first examples, this will be the étale topology). So far, the topology
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has not entered into any of our constructions. The topology will play an essential role
in the definition of a stack, and in the procedure for recovering a stack from an atlas
presentation.

3. Constructions with groupoid schemes

Groupoid schemes provide a means of carrying out explicit constructions which
mirror what takes place in the world of stacks. Because of their explicit nature, carrying
out these constructions provides a good way of getting a sense of how stacks behave.
We focus on three concrete constructions.

Example 3.13. There is an algebraic groupoid realization of fiber products. Let
R ⇉ U , R′ ⇉ U ′, and R′′ ⇉ U ′′ be groupoid schemes, and let morphisms of groupoid
schemes (φ′, Φ′) and (φ′′, Φ′′) to R ⇉ U from R′ ⇉ U ′, resp. from R′′ ⇉ U ′′, be given.
Then the category

(1) [R′
⇉ U ′]pre ×[R⇉U ]pre [R′′

⇉ U ′′]pre

is isomorphic to the category

(2) [R′ ×U R ×U R′′
⇉ U ′ ×U R ×U U ′′]pre.

This is the groupoid where, in these fiber products the scheme to the left of U maps to
U by a “target” map, and the scheme to the right maps by a “source” map (e.g., the
first fiber product involves R′ mapping to U by t ◦ Φ′) and where the source and tar-
get maps send (r′, r, r′′) to (s′(r′), m(Φ′(r′), r), s′′(r′′)) and (t′(r′), m(r, Φ′′(r′′)), t′′(r′′)),
respectively. Indeed, an object over S of the fiber product (1) is a map S → U ′,
a map S → U ′′, and an isomorphism (map S → R whose composition with s is
S → U ′ → U and whose composition with t is S → U ′′ → U). That is precisely a

morphism S → U ′ ×U R ×U U ′′. A morphism over S̃ → S from (ũ′, r̃, ũ′′) to (u′, r, u′′)
will be a pair of morphisms, i.e., R′- and R′′-valued points over T . Calling these r′ and
r′′, the compatibility condition is the commutativity of the following square:

φ′(ũ′)
Φ′(r′)

//

r̃
��

φ′(u′)

r

��zzu
u

u
u

u

φ′′(ũ′′)
Φ′′(r′′)

// φ′′(u′′)

The middle factor R in R′ ×U R×U R′′ corresponds to a choice of dotted arrow, so that
r̃ and r are recovered as compositions of arrows — this accounts for the appearance of
m in the formulas for the source and target maps of the groupoid scheme (2). We have
an isomorphism on the level of objects and morphisms; from this the reader can work
out the formulas for the identity, multiplication, and inverse in (2).

Exercise 3.3. Work this out explicitly in the case that the morphisms (φ′, Φ′) and
(φ′′, Φ′′) are both the morphism (eG, 1Λ) from Λ ⇉ Λ to G ⇉ Λ. The result should be
a groupoid presentation for G (in the sense of Example 3.8). Notice that the correct
answer is not Λ ×G Λ ⇉ Λ ×Λ Λ.
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Example 3.14. Given R′ ⇉ U ′ and R′ ⇉ U , a morphism γ : U ′ → R will associate
to every object of [R′ ⇉ U ′]pre a morphism in [R ⇉ U ]pre (by composition with γ). We
can give an explicit description of the category

(3) HOM([R′
⇉ U ′]pre, [R ⇉ U ]pre).

The objects are morphisms (φ, Φ) of groupoid schemes. The morphisms from (φ, Φ) to

(φ̃, Φ̃) corespond bijectively with morphisms of schemes γ : U ′ → R satisfying s◦γ = φ,

t ◦ γ = φ̃, and m(γ ◦ s, Φ̃) = m(Φ, γ ◦ t).

Every morphism of groupoid schemes will determine a morphism of stacks. The
converse is not true, as we have seen. For instance, given a G-torsor on a scheme X,
a corresponding morphism X → BG will be (isomorphic to) one that comes from a
morphism from X ⇉ X to G ⇉ Λ only when the given G-torsor is trivial. However,
if we take U → X to be an étale cover which trivializes the given G-torsor, and R =
U ×X U (Example 3.1), then R ⇉ U will be a different atlas for X (Example 3.8), and
there will exist a morphism from R ⇉ U to G ⇉ Λ reproducing, up to isomorphism,
the given morphism X → BG.

Example 3.14 will yield, as an application, a method for computing the set of 2-
morphisms between a pair of morphisms of stacks. If f and g are morphisms of stacks
X′ → X, represented concretely by morphisms of groupoids from R′ ⇉ U ′ to R ⇉ U ,
then any 2-morphism f ⇒ g will come from a unique morphism in the HOM-category
(3) of associated CFGs. Now we know that this HOM-category can be described entirely
in terms of morphisms of schemes.

Example 3.15. Here is a general construction which produces a new groupoid
scheme starting with a groupoid scheme R ⇉ U and a morphism U ′ → U . This
construction encapsulates refinements of atlases (e.g., when U ′ → U is an étale covering
map), as well as the atlases of sub-CFGs (e.g., when U ′ is an open subscheme of U).
First, we recall that a morphism of groupoid schemes R′ ⇉ U ′ to R ⇉ U that satisfies
Conditions 1.3(i)–(ii) corresponds, morally at least, to an isomorphism of stacks. Given
R ⇉ U and an arbitrary morphism U ′ → U , we choose the R′ dictated by Condition
1.3(i). Then we obtain a groupoid scheme R′ ⇉ U ′, where R′ = R ×U×U (U ′ ×U ′), the
projection to U ′ × U ′ is (s′, t′), and m′((r, u′

1, u
′
2), (r̃, u

′
2, u

′
3)) = (m(r, r̃), u′

1, u
′
3).

Exercise 3.4. In case R ⇉ U is the atlas for M1,1 (Example 3.10) and U ′ =
Spec(C) is a point mapping to u0 ∈ U , then R′ will be Aut(E0) where E0 is the elliptic
curve corresponding to the point u0.

To continue the discussion of Example 3.15, suppose now that U ′ →֒ U is the
inclusion of a (locally closed) subscheme, and suppose further that

(4) s−1(U ′) = t−1(U ′).

Then R′ will be equal to s−1(U ′). When R ⇉ U is an atlas for an algebraic stack X,
there will be a dictionary between algebraic substacks of X and subschemes U ′ of U
satisfying (4). Substacks of an algebraic stack will play a role analogous to subschemes
of a scheme. For instance, for [X/G], these will be the [Y/G] as Y ranges over the
G-invariant subschemes of X.
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Just as a complex algebraic variety is made up of a collection of points (satisfying
the defining equations of the variety), a stack satisfying appropriate hypotheses (e.g., a
reduced Deligne–Mumford stack, separated and of finite type over Spec(C)) will have
“points”, each of which is a copy of BG for some finite group G. The moduli stacks of
curves and complex orbifolds described the Introduction can be thought of in this way,
and one can thus get a rough picture of what a stack “looks like”.

Condition (4) is significant; it fails, e.g., if U ′ is a point of U (for general R ⇉ U).
The next exercise indicates how to “saturate” U ′ to a bigger subscheme which will satisfy
(4). So, for instance, in Exercise 3.4, a point of U will determine a point-like closed
substack, isomorphic to B(Aut(E0)). The next exercise will tell us how to produce the
corresponding closed subscheme of U that satisfies (4).

Exercise 3.5. Let U ′
0 be a subscheme of U . Define U ′ = t(s−1(U ′

0)). This satisfies
(4), at least as subsets of R. [Hint: both sides are equal to pr2((s ◦ pr1)

−1(U ′
0)).]

In good cases, the U ′ produced in Exercise 3.5 will make sense as a subscheme
of U , and (4) will hold as an equality of subschemes of R. For instance, usually s
and t will be étale, or smooth, or flat and locally of finite presentation. Any of these
is enough to guarantee that s and t are open morphisms. Then, whenever U ′

0 is an
open subscheme of U , the scheme U ′ produced in Exercise 3.5 will be a larger open
subscheme of U . It will satisfy the equality (4): both s−1(U ′) and t−1(U ′) will be equal
to the same open subscheme R′ ⊂ R. There will be a corresponding open substack,
having a groupoid presentation R′ ⇉ U ′. It will further emerge that the groupoid
scheme R′

0 := R ×U×U (U ′
0 × U ′

0) ⇉ U ′
0 that arises by applying the construction of

Example 3.15 to the morphism U ′
0 → U , is another groupoid presentation for this

substack.
In the next chapter, when we have the stackification [R ⇉ U ] of [R ⇉ U ]pre at our

disposal, we will give statements concerning these stacks [R ⇉ U ] which are analogous
to the statements appearing in Examples 3.13 through 3.15.

Answers to Exercises

3.1. (a) i ◦ e = m ◦ (e ◦ s ◦ (i ◦ e), i ◦ e) = m(e ◦ t ◦ e, i ◦ e) = m(e, i ◦ e) = e.
(b) m ◦ (e, e) = m ◦ (e ◦ s ◦ e, e) = m ◦ (e ◦ s, 1R) ◦ e = e. (c) Copy a proof that
(f · g)−1 = g−1 · f−1 in a group, or better, in a groupoid, with arrows f : x → y,
g : y → z. Start with the analogue of (g · f)−1 · (g · f) = 1x, which is the identity
m ◦ (m, i ◦m) = e ◦ s ◦m. Corresponding to ((g · f)−1 · g) · f = 1x, we have the identity
m ◦ (pr1, m ◦ (pr2, i ◦ m)) = e ◦ s ◦ m [which is true since m ◦ (pr1, m ◦ (pr2, i ◦ m)) =
m ◦ (m ◦ (pr1, pr2), i ◦ m)) = m ◦ (m, i ◦ m)]. Next write (g · f)−1 · g = f−1, and prove
the identity m ◦ (pr2, i ◦ m) = i ◦ pr1. Finally, multiply on the right by g−1. This gives
m ◦ (i ◦ pr2, i ◦ pr1) = m ◦ (i ◦ pr2, m ◦ (pr2, i ◦ m)) = m ◦ (m ◦ (i ◦ pr2, pr2), i ◦ m)) =
m ◦ (e ◦ t ◦ pr2, i ◦ m)) = m ◦ (e ◦ t ◦ pr2, i ◦ m)) = m ◦ (e ◦ s ◦ i ◦ m, i ◦ m)) = i ◦ m, as
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required. (d) The left-hand square comes from the following diagram with fiber squares

R t×s R
(i◦pr1,m)

∼
//

pr1
��

R t×s R
pr2 //

pr1
��

R

s

��
R

i
∼

// R
t // R

while a similar diagram takes care of the right-hand square.

3.2. Given S ′′′ → S ′′ → S ′ → S, a triple of composable morphisms gives rise to
(γ′′, γ′ ◦ f ′′, γ ◦ f ′ ◦ f ′′) → R t×s R t×s R t×s R. Applying m ◦ (1R ×m) = m ◦ (m× 1R)
gives associativity of composition of morphisms in [R ⇉ U ]pre.

3.3. This is Λ ×Λ G ×Λ Λ ⇉ Λ ×Λ G ×Λ Λ, which is G ⇉ G.

3.4. We have R′ = (s, t)−1(u0, u0), which is the automorphism group of E0.

3.5. We have s−1(t(s−1(U ′
0))) = pr2(pr−1

1 (s−1(U ′
0))) = pr2(m

−1(s−1(U ′
0))). The last

step, showing this equals t−1(t(s−1(U ′
0))), uses the fact from Exercise 3.1(d) that R t×sR

is, by (pr2, m), isomorphic to the fiber product of t : R → U with itself.


