Adventures in Supersingularland: An Exploration of Supersingular Elliptic Curve Isogeny Graphs

Sarah Arpin University of Colorado Boulder

Number Theory Series LA - Occidental College

October 26th, 2019

This is joint work with Catalina Camacho-Navarro, Kristin Lauter, Joelle Lim, Kristina Nelson, Travis Scholl, Jana Sotáková. [ACL⁺19]

Overview

- Elliptic Curve Highlights
- 2 Cryptographic Motivation
- 3 Meet the Graphs
- 4 From \mathbb{F}_p to the Spine
- 5 Through the Looking Glass: Mirror Involution

6 Conclusion

j-Invariants of Supersingular Elliptic Curves

Definition

For any elliptic curve E/K, *j*-invariant $j(E) \in K$ identifies E up to isomorphism over \overline{K} .

Isomorphism classes over \mathbb{F}_{p^2} : *j*-invariant uniquely identifies class Isomorphism classes over \mathbb{F}_p : 2 classes of supersingular EC's per *j*-invariant

Isogenies

Definition

An **isogeny** $\phi : E_1 \to E_2$ is a group homomorphism of elliptic curves, which can be identified with (and computed from) its finite kernel.

Properties: [Sil09]

- The kernel of a nonzero isogeny is a finite group.
- The degree of an isogeny is equal to the size of the kernel.
- Every isogeny $\phi: E_1 \to E_2$ has a dual $\hat{\phi}: E_2 \to E_1$ of the same degree.
- ℓ : prime $\neq p$; there are $\ell + 1$ outgoing ℓ -isogenies from E

\mathbb{F}_p -Endomorphism Rings of Supersingular EC's

Theorem ([DG16])

For a supersingular elliptic curve E defined over \mathbb{F}_p , $End_{\mathbb{F}_p}(E)$ is an order in $\mathbb{Q}(\sqrt{-p})$ which contains $\mathbb{Z}[\sqrt{-p}]$.

10

$$\mathcal{O}_{\mathbb{Q}(\sqrt{-p})}$$

$$\mid$$

$$\mathbb{Z}[\sqrt{-p}]$$
and
$$\mathcal{O}_{\mathbb{Q}(\sqrt{-p})} \cong \begin{cases} \mathbb{Z}[\sqrt{-p}] & \text{if } p \equiv 1 \pmod{4} \\ \mathbb{Z}\left[\frac{1+\sqrt{-p}}{2}\right] & \text{if } p \equiv 3 \pmod{4} \end{cases}$$

Cryptographic Motivation

WANT:

- Public Key: graph vertex; Private Key: a connected vertex
- A graph that's easy to navigate,
- But too tangled to re-trace steps.

Supersingular Isogeny Graphs:

- Vertices: $\overline{\mathbb{F}_p}$ -isomorphism classes of supersingular elliptic curves
- Edges: degree- ℓ isogenies (\Leftrightarrow subgroups of $E(\overline{\mathbb{F}_p})$ of size ℓ)

Three Graphs

- Full graph $\mathcal{G}_{\ell}(\overline{\mathbb{F}_p})$
- Spine S: subgraph taking only \mathbb{F}_p vertices of $\mathcal{G}_{\ell}(\overline{\mathbb{F}_p})$
- Graph generated over \mathbb{F}_{p} : $\mathcal{G}_{\ell}(\mathbb{F}_{p})$

I: $\mathcal{G}_{\ell}(\overline{\mathbb{F}_{p}})$: The full supersingular ℓ -isogeny graph

p: a fixed prime (BIG); ℓ : a fixed prime (small)

 $p = 83, \ell = 2; z_1 = 17i + 38, \overline{z}_1 = 66i + 38$

Meet the Graphs

II: The Spine S: Subgraph of \mathbb{F}_p -vertices in $\mathcal{G}_{\ell}(\overline{\mathbb{F}_p})$

 $p = 83, \ell = 2$

III: $\mathcal{G}_{\ell}(\mathbb{F}_p)$: The supersingular ℓ -isogeny graph, over \mathbb{F}_p

 $p = 83, \ell = 2$

$\mathcal{G}_2(\mathbb{F}_p)$: Volcanoes

[Sut13]. p: a prime; E: supersingular elliptic curve over $\overline{\mathbb{F}_p}$

$$\mathsf{End}_{\mathbb{F}_p}(E) \cong egin{cases} \mathbb{Z}[\sqrt{-p}] \ \mathbb{Z}\left[rac{1+\sqrt{-p}}{2}
ight] \end{cases}$$

Definition

If
$$\operatorname{End}_{\mathbb{F}_p}(E) \cong \mathbb{Z}\left[\frac{1+\sqrt{-p}}{2}\right]$$
, then *E* lies on the surface of the volcano..
If $\operatorname{End}_{\mathbb{F}_p}(E) \cong \mathbb{Z}\left[\sqrt{-p}\right]$, then *E* lies on the floor of the volcano.

Structure of $\mathcal{G}_2(\mathbb{F}_p)$

[DG16]. For $\ell = 2$:

Theorem (Theorem 2.7 [DG16])

- $p \equiv 1 \pmod{4}$: Vertices paired together in isolated edges,
- p ≡ 3 (mod 8): Vertices form a volcano; surface is one vertex, connected to three vertices on the floor,
- p ≡ 7 (mod 8): Vertices form a volcano; each surface vertex is connected 1:1 with the floor.

Structure of $\mathcal{G}_{\ell}(\mathbb{F}_p)$

For $\ell > 2$:

Theorem (Theorem 2.7 [DG16])

- $\left(\frac{-p}{\ell}\right) = 1$: two ℓ -isogenies
- $\left(\frac{-p}{\ell}\right) = -1$: no ℓ -isogenies

 $p = 103, \ell = 3$:

Possible changes, passing from $\mathcal{G}_{\ell}(\mathbb{F}_p)$ to $\overline{\mathbb{F}_p}$

Definition (3.13 [ACL+19])

- If two distinct components of G_ℓ(F_p) have exactly the same set of vertices up to *j*-invariant, then they will stack over F_p.
- A component of G_ℓ(F_p) will fold if it contains both vertices corresponding to each *j*-invariant in its vertex set.
- Two distinct components of $\mathcal{G}_{\ell}(\mathbb{F}_p)$ will attach with a new edge.
- Two distinct components of G_ℓ(F_p) will attach along a *j*-invariant if one vertex of each share a *j*-invariant (only possible for ℓ > 2).

Rules to pass from $\mathcal{G}_{\ell}(\mathbb{F}_p)$ to $\overline{\mathbb{F}_p}$

Observations:

- (Corollary 3.9 [ACL⁺19]) Twists are either both on the surface or both on the floor, except for j = 1728.
 - For $j \neq 1728$, $\operatorname{End}_{\mathbb{F}_p}(E) \cong \operatorname{End}_{\mathbb{F}_p}(E^t)$
- When *j* = 1728 is supersingular, one twist is on the surface, the other on the floor. They are 2-isogenous.
- (Lemma 3.11 [ACL⁺19]) Edges from the same vertex don't collapse.
- (Corollary 3.12 [ACL⁺19]) Twists have the same neighbor sets.

What actually happens for $\ell > 2$?

Theorem (Proposition 3.9 [ACL+19])

While passing from $\mathcal{G}_{\ell}(\mathbb{F}_p)$ to S, the only possible events are stacking, folding and n attachments by a new edge and m attachments along a *j*-invariant with $m + 2n \leq 2\ell(2\ell - 1)$.

What actually happens for $\ell = 2$?

Theorem (Theorem 3.26 of [ACL+19])

Only stacking, folding or at most one attachment by a new edge are possible. In particular, no attachments by a j-invariant are possible.

Through the Looking Glass: Mirror Involution

Frobenius

$$\pi: E: y^2 = x^3 + ax + b \rightarrow E^{(p)}: y^2 = x^3 + a^p x + b^p$$
$$(x, y) \mapsto (x^p, y^p)$$
$$j(E) \mapsto j(E)^p$$

Definition (Mirror Involution)

If j is a supersingular j-invariant, so is its \mathbb{F}_{p^2} -conjugate j^p . If $\exists \ell$ -isogeny $\phi : E(j_1) \to E(j_2)$ then $\exists \ell$ -isogeny $\phi' : E(j_1)^p \to E(j_2)^p$. The *p*-power Frobenius map on \mathbb{F}_{p^2} gives the **mirror involution** on $\mathcal{G}_{\ell}(\overline{\mathbb{F}_p})$.

$$\cdots \rightarrow j_1 \rightarrow j_2 \rightarrow j_3 \rightarrow \cdots$$

Mirror Involution gives:

$$\cdots \to j_1^p \leftarrow j_2^p \leftarrow j_3^p \leftarrow \cdots$$

Mirror Paths

$$j_0 \to j_1 \to \cdots \to j_n \to \mathbf{j} \to j_n^p \to \cdots \to j_1^p \to j_0^p$$
$$j_0 \to j_1 \to \cdots \to j_n \to j_n^p \to \cdots \to j_1^p \to j_0^p$$

How often are paths of the first type? Second type?

How far are conjugate *j*-invariants in $\mathcal{G}_2(\overline{\mathbb{F}_p})$?

Figure 4.1: Distances measured between conjugate pairs and arbitrary pairs of vertices not in \mathbb{F}_p for the prime p = 19489.

Figure 4.2: Distances between 1000 randomly sampled pairs of arbitrary and conjugate vertices for the prime p = 1000003.

How often are conjugate *j*-invariants 2-isogenous?

Figure 5.3: Proportion of 2-isogenous conjugate pairs in $G_2(\overline{\mathbb{F}_p})$ for p > 10000

Summary

- We understand completely how to pass from $\mathcal{G}_{\ell}(\mathbb{F}_p)$ into $\mathcal{G}_{\ell}(\overline{\mathbb{F}_p})$.
- Mirror involution gives a new perspective on supersingular isogeny graph structure.
- Vertices which are conjugate appear to be closer than random vertices, at least for ℓ = 2.

Conclusion

Thank you.

 Sarah Arpin, Catalina Camacho-Navarro, Kristin Lauter, Joelle Lim, Kristina Nelson, Travis Scholl, and Jana Sotáková.
 Adventures in Supersingularland. submitted, 2019.
 https://arxiv.org/abs/1909.07779.

C. Delfs and S. D. Galbraith.

Computing isogenies between supersingular elliptic curves over \mathbb{F}_p . *Des. Codes Cryptography*, 78(2):425–440, 2016. https://arxiv.org/pdf/1310.7789.pdf.

Joseph H. Silverman. *The Arithmetic of Elliptic Curves, 2nd Edition.* Springer-Verlag, New York, N.Y., 2009.

Andrew Sutherland.

Isogeny volcanoes.

The Open Book Series, 1(1):507–530, Nov 2013.