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This is joint work with Catalina Camacho-Navarro, Kristin Lauter, Joelle
Lim, Kristina Nelson, Travis Scholl, Jana Sotdkova. [ACLT19]
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Elliptic Curves

Definition

An elliptic curve is a smooth, projective, algebraic curve of genus 1 with
a fixed point, usually denoted Of.

E:ZY? = X3+ aXZ%+ bZ3
E:y>=x3+Ax+B

[Nas18]
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j-Invariant

Definition

The j-invariant is a number which identifies an elliptic curve defined over
a field K up to isomorphism over K.

—y'=a'tr
—y =1z
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Supersingular Elliptic Curves

Definition ([Sil09])

Let E be an elliptic curve defined over a field K of characteristic p < co.
E is supersingular iff one of the following equivalent conditions hold:

@ the multiplication-by-p map [p] : E — E is purely in separable and
J(E) S sz,

@ Endg(E) is a maximal order in a quaternion algebra.
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F,-Endomorphism Ring

Theorem ([DG16])

For a supersingular elliptic curve E defined over Fp,, Endg,(E) is an order

in Q(\/—p) which contains Z[/—p].

Oa(v=p)

|
Z[\/=7]

d O N Z|\/—p] if p=1 (mod 4)
V=P Tz [Hfﬁ} if p=3 (mod 4)
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Isogenies

Definition

An isogeny ¢ : E; — E, is a morphism between elliptic curves such that
¢(OE1) = OEz-

Theorem (Corollary 111.4.9 [Sil09])

The kernel of a nonzero isogeny is a finite group.

Theorem (Theorem 111.4.10(c) [Sil09])

The degree of an isogeny is equal to the size of the kernel.
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Isogenies, |l

Theorem (Proposition 111.4.12 [Sil09])

If E is an elliptic curve and ® is a finite subgroup of E, then there are a
unique elliptic curve E' and a separable isogeny ¢ such that

¢:E— E', kerg = 0.
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Isogenies, |l

Theorem (Proposition 111.4.12 [Sil09])

If E is an elliptic curve and ® is a finite subgroup of E, then there are a
unique elliptic curve E' and a separable isogeny ¢ such that

¢:E— E', kerg = 0.

Let's do a quick example.
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E(F11) :y* =x*+x E'(F11) : y? = x3 — 4x
[0:0:1] [0:0:1]
OE:[O:le[O:LO]:OEI
[5:3:1] [2:0:1]
[9:10:1] [3:2;1]
5:8:1] 3:9:1]
[91111] [4;2;1]
[7:3:1] [4:9:1]
[83611]%[6:4:1]
[7:8:1] [6:7:1]
[8:5:1] [9:0:1]
[10:3:1]7[10;5:1]
[10:8: 1] [10:6:1]
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Cryptographic Motivation

WANT:
o Public Key: graph vertex; Private Key: /-isogenous graph vertex.
@ A graph that's easy to navigate,
@ ...but too tangled to re-trace steps.
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Cryptographic Motivation

WANT:
o Public Key: graph vertex; Private Key: /-isogenous graph vertex.
@ A graph that's easy to navigate,
@ ...but too tangled to re-trace steps.
Supersingular Isogeny Graphs have
@ Vertices: IET,—isomorhism classes of supersingular elliptic curves
o Edges: degree-¢ isogenies (< subgroups of E(F,) of size /)
e *With a little extra information, isogenies commute!
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Cryptographic Motivation

WANT:
o Public Key: graph vertex; Private Key: /-isogenous graph vertex.
@ A graph that's easy to navigate,
@ ...but too tangled to re-trace steps.
Supersingular Isogeny Graphs have
@ Vertices: IET,—isomorhism classes of supersingular elliptic curves
o Edges: degree-¢ isogenies (< subgroups of E(F,) of size /)
e *With a little extra information, isogenies commute!

p = 1409
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Quick-and-Dirty Supersingular Isogeny Diffie-Hellman
(SIKE)
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Quick-and-Dirty Supersingular Isogeny Diffie-Hellman

(SIKE)

Alice Public Babette

YA _E __¥B

EA / \ EB

EB><EA

+ +
v8(P), ¢B(Q) a(P), va(Q)

va(Eg) = Ep vB(Ea) = Ep
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Hard Problems

@ Given E1, Ep, find an £"-isogeny between them.
@ Given E, pa(E), and ¢p(E), find pa(ps(E)) = ¢B(pa(E)).
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Hard Problems

@ Given E1, Ep, find an £"-isogeny between them.
@ Given E, pa(E), and ¢p(E), find pa(ps(E)) = ¢B(pa(E)).

s

2, dr.:aré-'-'e::r_';:th'mg IFsconfising
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Three Graphs
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l: G¢(F,): The full supersingular (-isogeny graph

p: a fixed prime (BIG); ¢: a fixed prime (small)

p=830=2 2 =17i 4+ 38,Z; = 66/ + 38 2246



ll: The Spine S: Subgraph of F,-vertices in G,(FF,)

¢

p=283,4=2
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I1l: Go(Fp): The supersingular ¢-isogeny graph, over F,

w @
(%) (%) 72
& O O

p=3834=2
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gﬁ(Fp) Z S!

@ Vertices: Twists are separated and identified
o Edges: Field of definition of isogenies changes

The structure of Gy(F,) is well understood:
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Volcanoes

p: a prime; E: supersingular elliptic curve over F,

(g1

If p=1 (mod 4), Endr,(E) = Z[\/—p].

Definition

If Endr,(E) = Z {HF} then E lies on the surface of the volcano..
If Endr,(E) = Z[\/—p], then E lies on the of the volcano.
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Structure of Go(FFp)

Well-studied by Delfs and Galbraith [DG16]. For ¢ = 2:

Theorem (Theorem 2.7 [DG16])
@ p=1 (mod 4): Vertices paired together in isolated edges,

@ p =3 (mod 8): Vertices form a volcano; surface is one vertex,
connected to three vertices on the floor,

@ p=7 (mod 8): Vertices form a volcano,; each surface vertex is
connected 1:1 with the floor.

ML

3=7 (mod 8
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Structure of G,(F,)

For ¢ > 2:
Theorem (Theorem 2.7 [DG16])

o (=£) = 1: two horizontal {-isogenies

o (=£) = —1: no (l-isogenies

p=103,{=3:
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How does Gy(FF,,) change when we pass to F,?

~ 'T knew
tho I was
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How does Gy(FF,,) change when we pass to F,?

Observations:

@ (Corollary 3.9 [ACL"19]) Twists are either both on the surface or
both on the floor, except for j = 1728.

o For j #1728, Endp,(E) = Endg, (E*)

@ When j = 1728 is supersingular, one twist is on the surface, the other
on the floor. They are 2-isogenous.

o (Lemma 3.11 [ACL"19]) Edges don't collapse.
@ (Corollary 3.12 [ACL*19]) Twists have the same neighbor sets.

® ©®

OO NN
@ W& O
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How does Gy(FF,,) change when we pass to F,?

Definition (3.13 [ACL*19])
o If two distinct components of Gy(F,) have exactly the same set of
vertices up to j-invariant, then they will stack over F,.

e A component of Gy(F,) will fold if it contains both vertices
corresponding to each j-invariant in its vertex set.

e Two distinct components of Gy(F,) will attach with a new edge.

e Two distinct components of G,(F,) will attach along a j-invariant if
one vertex of each share a j-invariant (only possible for ¢ > 2).

(b) The spine S C G2(F,) for p = 431.
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What actually happens for ¢ > 27

Theorem (Proposition 3.9 [ACL*19])

While passing from Gy(IF,) to S, the only possible events are stacking,
folding and n attachments by a new edge and m attachments along a
J-invariant with m+2n < 2¢(2¢ — 1).
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p=283(=3

(28)
</
0@ @@ ©
@GQ
@

G3(FFg3):
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What actually happens for ¢ = 27

Theorem (Theorem 3.26 of [ACL*19])

Only stacking, folding or at most one attachment by a new edge are
possible. In particular, no attachments by a j-invariant are possible.

godoes
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Through the Looking Glass: Mirror Involution
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Frobenius

p-power Frobenius m on [Fpp:
w(a) = aP

If a € Fp, then a” = a.
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Frobenius

p-power Frobenius m on [Fpp:
w(a) = aP

If a € Fp, then a” = a.
On elliptic curves:

7 E:Y2Z=X3 4 aXZ2+b7% 5 EP . y27 — X3 4 PXZ2 + pPZ3
[X:Y:Z]— [XP:YP:ZP]

J(EP)) = j(E)P
The Frobenius will also apply to paths in G,(F,):

R e R g e AR
Apply 7 to the vertices and get:

We call jP the conjugate of ;.
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Mirror Involution

Definition

If j is a supersingular j-invariant, so is its I ,-conjugate jP. If there is an
t-isogeny ¢ : E(j1) — E(j2) then there exists an /-isogeny

¢ EGr)P — Eb)P. B
The p-power Frobenius map on IF» gives the mirror involution on G,(I,).

Jo—=jt == jn =i R = = L =
Jo—=ji = =jn—=JE = = = 4§

How often are paths of the first type? Second type?
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How far are conjugate j-invariants in Go(IF,)?

2 4 6 8 10 12 14 2 4 6 8 10 12 14

(a) Distances between conjugale pairs. (b) Distances between arbitrary pairs.

Figure 4.1: Distances measured between conjugate pairs and arbitrary pairs of vertices not in F,
for the prime p = 19489.

100

5 10 15 5 10 15

(a) Distances between conjugate pairs. (b) Distances between arbitrary pairs.

Figure 4.2: Distances between 1000 randomly sampled pairs of arbitrary and conjugate vertices
for the prime p = 1000003.

39/46



How often are conjugate j-invariants 2-isogenous?

Proportion of Conj Pairs that are 2-Isog

0.14 4
0.12 4

0.1
0.08
0.06
0.04

0.02

T T T T T Prime
20000 40000 60000 80000 100000

Figure 5.3: Proportion of 2-isogenous conjugate pairs in QE(LFT,] for p > 10000
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Modulo 12

p=1 (mod 12)

p=>5 (mod 12)

Total # of primes:

2079

2104

Mean:

0.043551

0.021969

Standard Deviation:

0.019815

0.010206

p=7 (mod 12)

p=11 (mod 12)

Total # of primes:

2101

2094

Mean:

0.043375

0.022244

Standard Deviation:

0.020140

0.010512

Table 1: Proportions of 2-isogenous conjugates, 10007 < p < 100193, sorted by p mod 12
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Diameter of G,(F))

Diameter
.
201 .
- g
g
o
10 4
51
T T T T T T T Prime
5e5 le6 1.5e6 2e6 2.5e6 3e6 3.5e6 4e6

54

Figure 6.1: Diameters of 2-isogeny graph over F,,, with y = logy(p/12) +log,(12) + 1 (red) and
y = 3loga(p/12) — 1 (blue).

Isogeny graphs behave more like random Ramanujan graphs than LPS
(Lubotzky-Phillips-Sarnak) graphs.
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Trends Modulo 12

For p=1,7 (mod 12):

@ smaller 2-isogeny graph diameters

@ larger number of spine components

@ larger proportion of 2-isogenous conjugate j-invariants
For p=5,11 (mod 12):

@ larger 2-isogeny graph diameters

@ smaller number of spine components

@ smaller proportion of 2-isogenous conjugate j-invariants
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Summary

e We understand completely how to pass from G»(F}) into Go(Fp).

@ Mirror involution gives a new perspective on supersingular isogeny
graph structure.

@ In terms of diameter, isogeny graphs behave more like random
Ramanujan graphs than LPS (Lubotzky-Pizer-Sarnak) graphs.
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Thank you.

)
\‘\“"
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