Adventures in Supersingularland: An Exploration of Supersingular Elliptic Curve Isogeny Graphs

Sarah Arpin University of Colorado Boulder

Slow Pitch - CU Boulder

October 9th, 2019

This is joint work with Catalina Camacho-Navarro, Kristin Lauter, Joelle Lim, Kristina Nelson, Travis Scholl, Jana Sotáková. [ACL⁺19]

Alice Silverberg

https://sites.google.com/site/numberlandadventures/

Overview

Introduction

- 2 Meet the Graphs
- 3 From \mathbb{F}_p to the Spine
- Through the Looking Glass: Mirror Involution
- 5 Diameter

Elliptic Curves

Definition

An **elliptic curve** is a smooth, projective, algebraic curve of genus 1 with a fixed point, usually denoted \mathcal{O}_E .

j-Invariant

Definition

The *j*-invariant is a number which identifies an elliptic curve defined over a field K up to isomorphism over \overline{K} .

Definition ([Sil09])

Let *E* be an elliptic curve defined over a field *K* of characteristic $p < \infty$. *E* is **supersingular** iff one of the following equivalent conditions hold:

- the multiplication-by-p map $[p]: E \to E$ is purely in separable and $j(E) \in \mathbb{F}_{p^2}$,
- $\operatorname{End}_{\overline{K}}(E)$ is a maximal order in a quaternion algebra.

Theorem ([DG16])

For a supersingular elliptic curve E defined over \mathbb{F}_p , $End_{\mathbb{F}_p}(E)$ is an order in $\mathbb{Q}(\sqrt{-p})$ which contains $\mathbb{Z}[\sqrt{-p}]$.

$$\mathcal{O}_{\mathbb{Q}(\sqrt{-p})}$$
 $|$
 $\mathbb{Z}[\sqrt{-p}]$

and
$$\mathcal{O}_{\mathbb{Q}(\sqrt{-p})} \cong \begin{cases} \mathbb{Z}[\sqrt{-p}] & \text{if } p \equiv 1 \pmod{4} \\ \mathbb{Z}\left[\frac{1+\sqrt{-p}}{2}\right] & \text{if } p \equiv 3 \pmod{4} \end{cases}$$

Definition

An **isogeny** $\phi : E_1 \to E_2$ is a morphism between elliptic curves such that $\phi(\mathcal{O}_{E_1}) = \mathcal{O}_{E_2}$.

Theorem (Corollary III.4.9 [Sil09])

The kernel of a nonzero isogeny is a finite group.

Theorem (Theorem III.4.10(c) [Sil09])

The degree of an isogeny is equal to the size of the kernel.

Theorem (Proposition III.4.12 [Sil09])

If E is an elliptic curve and Φ is a finite subgroup of E, then there are a unique elliptic curve E' and a separable isogeny ϕ such that

 $\phi: E \to E'$, ker $\phi = \Phi$.

Theorem (Proposition III.4.12 [Sil09])

If E is an elliptic curve and Φ is a finite subgroup of E, then there are a unique elliptic curve E' and a separable isogeny ϕ such that

 $\phi: E \to E'$, ker $\phi = \Phi$.

Let's do a quick example.

Cryptographic Motivation

WANT:

- Public Key: graph vertex; Private Key: *l*-isogenous graph vertex.
- A graph that's easy to navigate,
- ...but too tangled to re-trace steps.

Cryptographic Motivation

WANT:

- Public Key: graph vertex; Private Key: *l*-isogenous graph vertex.
- A graph that's easy to navigate,
- ...but too tangled to re-trace steps.

Supersingular Isogeny Graphs have

- Vertices: $\overline{\mathbb{F}_p}$ -isomorhism classes of supersingular elliptic curves
- Edges: degree- ℓ isogenies (\Leftrightarrow subgroups of $E(\overline{\mathbb{F}_p})$ of size ℓ)
- *With a little extra information, isogenies commute!

Cryptographic Motivation

WANT:

- Public Key: graph vertex; Private Key: *l*-isogenous graph vertex.
- A graph that's easy to navigate,
- ...but too tangled to re-trace steps.

Supersingular Isogeny Graphs have

- Vertices: $\overline{\mathbb{F}_p}$ -isomorhism classes of supersingular elliptic curves
- Edges: degree- ℓ isogenies (\Leftrightarrow subgroups of $E(\overline{\mathbb{F}_p})$ of size ℓ)
- *With a little extra information, isogenies commute!

Quick-and-Dirty Supersingular Isogeny Diffie-Hellman (SIKE)

Quick-and-Dirty Supersingular Isogeny Diffie-Hellman (SIKE)

Hard Problems

- Given E_1 , E_2 , find an ℓ^n -isogeny between them.
- **2** Given *E*, $\varphi_A(E)$, and $\varphi_B(E)$, find $\varphi_A(\varphi_B(E)) \cong \varphi_B(\varphi_A(E))$.

Hard Problems

• Given E_1 , E_2 , find an ℓ^n -isogeny between them.

2 Given *E*, $\varphi_A(E)$, and $\varphi_B(E)$, find $\varphi_A(\varphi_B(E)) \cong \varphi_B(\varphi_A(E))$.

Hard Problems

- Given E_1 , E_2 , find an ℓ^n -isogeny between them.
- **2** Given *E*, $\varphi_A(E)$, and $\varphi_B(E)$, find $\varphi_A(\varphi_B(E)) \cong \varphi_B(\varphi_A(E))$.

Three Graphs

I: $\mathcal{G}_{\ell}(\overline{\mathbb{F}_{p}})$: The full supersingular ℓ -isogeny graph

p: a fixed prime (BIG); ℓ : a fixed prime (small)

$$p = 83, \ell = 2; z_1 = 17i + 38, \overline{z}_1 = 66i + 38$$

II: The Spine S: Subgraph of \mathbb{F}_p -vertices in $\mathcal{G}_{\ell}(\overline{\mathbb{F}_p})$

$$p = 83, \ell = 2$$

III: $\mathcal{G}_{\ell}(\mathbb{F}_p)$: The supersingular ℓ -isogeny graph, over \mathbb{F}_p

 $p = 83, \ell = 2$

$\mathcal{G}_{\ell}(\mathbb{F}_p) \not\subseteq \mathcal{S}!$

- Vertices: Twists are separated and identified
- Edges: Field of definition of isogenies changes

The structure of $\mathcal{G}_{\ell}(\mathbb{F}_p)$ is well understood:

Volcanoes

p: a prime; E: supersingular elliptic curve over $\overline{\mathbb{F}_p}$

$$\mathsf{End}_{\mathbb{F}_p}(E) \cong egin{cases} \mathbb{Z}[\sqrt{-p}] \ \mathbb{Z}\left[rac{1+\sqrt{-p}}{2}
ight] \end{cases}$$

If $p \equiv 1 \pmod{4}$, $\operatorname{End}_{\mathbb{F}_p}(E) \cong \mathbb{Z}[\sqrt{-p}]$.

Definition

If $\operatorname{End}_{\mathbb{F}_p}(E) \cong \mathbb{Z}\left[\frac{1+\sqrt{-p}}{2}\right]$, then *E* lies on the surface of the volcano.. If $\operatorname{End}_{\mathbb{F}_p}(E) \cong \mathbb{Z}\left[\sqrt{-p}\right]$, then *E* lies on the floor of the volcano.

Structure of $\mathcal{G}_2(\mathbb{F}_p)$

Well-studied by Delfs and Galbraith [DG16]. For $\ell = 2$:

Theorem (Theorem 2.7 [DG16])

- $p \equiv 1 \pmod{4}$: Vertices paired together in isolated edges,
- p ≡ 3 (mod 8): Vertices form a volcano; surface is one vertex, connected to three vertices on the floor,
- p ≡ 7 (mod 8): Vertices form a volcano; each surface vertex is connected 1:1 with the floor.

Structure of $\mathcal{G}_{\ell}(\mathbb{F}_p)$

For $\ell > 2$:

Theorem (Theorem 2.7 [DG16])

•
$$\left(rac{-p}{\ell}
ight)=1$$
: two horizontal ℓ -isogenies

• $\left(\frac{-p}{\ell}\right) = -1$: no ℓ -isogenies

 $p = 103, \ell = 3$:

How does $\mathcal{G}_{\ell}(\mathbb{F}_p)$ change when we pass to $\overline{\mathbb{F}_p}$?

"I knew who I was this morning, but I've changed a few times since then."

~Alice in Wonderland

How does $\mathcal{G}_{\ell}(\mathbb{F}_p)$ change when we pass to $\overline{\mathbb{F}_p}$?

Observations:

 (Corollary 3.9 [ACL⁺19]) Twists are either both on the surface or both on the floor, except for j = 1728.

• For $j \neq 1728$, $\operatorname{End}_{\mathbb{F}_p}(E) \cong \operatorname{End}_{\mathbb{F}_p}(E^t)$

- When j = 1728 is supersingular, one twist is on the surface, the other on the floor. They are 2-isogenous.
- (Lemma 3.11 [ACL+19]) Edges don't collapse.
- (Corollary 3.12 [ACL+19]) Twists have the same neighbor sets.

How does $\mathcal{G}_{\ell}(\mathbb{F}_p)$ change when we pass to $\overline{\mathbb{F}_p}$?

Definition (3.13 [ACL+19])

- If two distinct components of G_ℓ(F_p) have exactly the same set of vertices up to *j*-invariant, then they will stack over F_p.
- A component of G_l(F_p) will fold if it contains both vertices corresponding to each *j*-invariant in its vertex set.
- Two distinct components of $\mathcal{G}_{\ell}(\mathbb{F}_p)$ will attach with a new edge.
- Two distinct components of G_ℓ(F_p) will attach along a *j*-invariant if one vertex of each share a *j*-invariant (only possible for ℓ > 2).

What actually happens for $\ell > 2$?

Theorem (Proposition 3.9 [ACL+19])

While passing from $\mathcal{G}_{\ell}(\mathbb{F}_p)$ to S, the only possible events are stacking, folding and n attachments by a new edge and m attachments along a *j*-invariant with $m + 2n \leq 2\ell(2\ell - 1)$.

$p = 83, \ell = 3$

33 / 46

What actually happens for $\ell = 2$?

Theorem (Theorem 3.26 of [ACL+19])

Only stacking, folding or at most one attachment by a new edge are possible. In particular, no attachments by a *j*-invariant are possible.

Through the Looking Glass: Mirror Involution

Frobenius

p-power Frobenius π on \mathbb{F}_{p^2} :

$$\pi(a) = a^p$$

If $a \in \mathbb{F}_p$, then $a^p = a$.

Frobenius

p-power Frobenius π on \mathbb{F}_{p^2} :

$$\pi(a) = a^p$$

If $a \in \mathbb{F}_p$, then $a^p = a$. On elliptic curves:

$$\pi : E : Y^2 Z = X^3 + aXZ^2 + bZ^3 \rightarrow E^{(p)} : Y^2 Z = X^3 + a^p XZ^2 + b^p Z^3$$
$$[X : Y : Z] \mapsto [X^p : Y^p : Z^p]$$
$$F(E^{(p)}) = j(E)^p$$
The Frobenius will also apply to **paths** in $\mathcal{G}_{\ell}(\overline{\mathbb{F}_p})$:

$$\cdots \rightarrow j_1 \rightarrow j_2 \rightarrow j_3 \rightarrow \cdots$$

Apply π to the vertices and get:

$$\cdots \rightarrow j_1^p \rightarrow j_2^p \rightarrow j_3^p \rightarrow \cdots$$

We call j^p the **conjugate** of j.

Definition

If j is a supersingular j-invariant, so is its \mathbb{F}_{p^2} -conjugate j^p . If there is an ℓ -isogeny $\phi : E(j_1) \to E(j_2)$ then there exists an ℓ -isogeny $\phi' : E(j_1)^p \to E(j_2)^p$. The p-power Frobenius map on \mathbb{F}_{p^2} gives the **mirror involution** on $\mathcal{G}_{\ell}(\overline{\mathbb{F}_p})$.

$$j_0 \to j_1 \to \dots \to j_n \to \mathbf{j} \to j_n^p \to \dots \to j_1^p \to j_0^p$$
$$j_0 \to j_1 \to \dots \to j_n \to j_n^p \to \dots \to j_1^p \to j_0^p$$

How often are paths of the first type? Second type?

How far are conjugate *j*-invariants in $\mathcal{G}_2(\overline{\mathbb{F}_p})$?

Figure 4.1: Distances measured between conjugate pairs and arbitrary pairs of vertices not in \mathbb{F}_p for the prime p = 19489.

Figure 4.2: Distances between 1000 randomly sampled pairs of arbitrary and conjugate vertices for the prime p = 1000003.

How often are conjugate *j*-invariants 2-isogenous?

Proportion of Conj Pairs that are 2-Isog

Figure 5.3: Proportion of 2-isogenous conjugate pairs in $G_2(\overline{\mathbb{F}_p})$ for p > 10000

	$p \equiv 1 \pmod{12}$	$p \equiv 5 \pmod{12}$
Total $\#$ of primes:	2079	2104
Mean:	0.043551	0.021969
Standard Deviation:	0.019815	0.010206
	$p \equiv 7 \pmod{12}$	$p \equiv 11 \pmod{12}$
Total $\#$ of primes:	2101	2094
Mean:	0.043375	0.022244
Standard Deviation:	0.020140	0.010512

Table 1: Proportions of 2-isogenous conjugates, $10007 \le p \le 100193$, sorted by p mod 12

Diameter of $\mathcal{G}_2(\overline{\mathbb{F}_p})$

Figure 6.1: Diameters of 2-isogeny graph over $\overline{\mathbb{F}}_p$, with $y = \log_2(p/12) + \log_2(12) + 1$ (red) and $y = \frac{4}{3} \log_2(p/12) - 1$ (blue).

Isogeny graphs behave more like random Ramanujan graphs than LPS (Lubotzky-Phillips-Sarnak) graphs.

For $p \equiv 1,7 \pmod{12}$:

- smaller 2-isogeny graph diameters
- larger number of spine components
- larger proportion of 2-isogenous conjugate *j*-invariants

For $p \equiv 5, 11 \pmod{12}$:

- larger 2-isogeny graph diameters
- smaller number of spine components
- smaller proportion of 2-isogenous conjugate j-invariants

- We understand completely how to pass from $\mathcal{G}_2(\mathbb{F}_p)$ into $\mathcal{G}_2(\overline{\mathbb{F}_p})$.
- Mirror involution gives a new perspective on supersingular isogeny graph structure.
- In terms of diameter, isogeny graphs behave more like random Ramanujan graphs than LPS (Lubotzky-Pizer-Sarnak) graphs.

Thank you.

 Sarah Arpin, Catalina Camacho-Navarro, Kristin Lauter, Joelle Lim, Kristina Nelson, Travis Scholl, and Jana Sotáková.
 Adventures in Supersingularland. submitted, 2019. https://arxiv.org/abs/1909.07779.

C. Delfs and S. D. Galbraith.

Computing isogenies between supersingular elliptic curves over \mathbb{F}_p . Des. Codes Cryptography, 78(2):425-440, 2016. https://arxiv.org/pdf/1310.7789.pdf.

Christos Nasikas.

ccountable and privacy preserving data processing via distributed ledgers.

PhD thesis, 05 2018.

Joseph H. Silverman. *The Arithmetic of Elliptic Curves, 2nd Edition.* Springer-Verlag, New York, N.Y., 2009.