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Elliptic Curves

Definition

An elliptic curve is a smooth, projective, algebraic curve of genus 1 with
a fixed point, usually denoted OE .

E : ZY 2 = X 3 + aXZ 2 + bZ 3

E : y2 = x3 + Ax + B

[Nas18]
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j-Invariant

Definition

The j-invariant is a number which identifies an elliptic curve defined over
a field K up to isomorphism over K .
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Supersingular Elliptic Curves

Definition ([Sil09])

Let E be an elliptic curve defined over a field K of characteristic p <∞.
E is supersingular iff one of the following equivalent conditions hold:

the multiplication-by-p map [p] : E → E is purely in separable and
j(E ) ∈ Fp2 ,

EndK (E ) is a maximal order in a quaternion algebra.
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Fp-Endomorphism Ring

Theorem ([DG16])

For a supersingular elliptic curve E defined over Fp, EndFp(E ) is an order
in Q(

√
−p) which contains Z[

√
−p].

OQ(
√
−p)

Z[
√
−p]

and OQ(
√
−p)
∼=

{
Z[
√
−p] if p ≡ 1 (mod 4)

Z
[
1+
√
−p

2

]
if p ≡ 3 (mod 4)
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Isogenies

Definition

An isogeny φ : E1 → E2 is a morphism between elliptic curves such that
φ(OE1) = OE2 .

Theorem (Corollary III.4.9 [Sil09])

The kernel of a nonzero isogeny is a finite group.

Theorem (Theorem III.4.10(c) [Sil09])

The degree of an isogeny is equal to the size of the kernel.
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Isogenies, II

Theorem (Proposition III.4.12 [Sil09])

If E is an elliptic curve and Φ is a finite subgroup of E , then there are a
unique elliptic curve E ′ and a separable isogeny φ such that

φ : E → E ′, ker φ = Φ.

Let’s do a quick example.
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E (F11) : y2 = x3 + x

[0 : 0 : 1]

OE = [0 : 1 : 0]

[5 : 3 : 1]

[9 : 10 : 1]

[5 : 8 : 1]

[9 : 1 : 1]

[7 : 3 : 1]

[8 : 6 : 1]

[7 : 8 : 1]

[8 : 5 : 1]

[10 : 3 : 1]

[10 : 8 : 1]

E ′(F11) : y2 = x3 − 4x

[0 : 0 : 1]

[0 : 1 : 0] = OE ′

[2 : 0 : 1]

[3 : 2 : 1]

[3 : 9 : 1]

[4 : 2 : 1]

[4 : 9 : 1]

[6 : 4 : 1]

[6 : 7 : 1]

[9 : 0 : 1]

[10 : 5 : 1]

[10 : 6 : 1]

φ
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Cryptographic Motivation

WANT:

Public Key: graph vertex; Private Key: `-isogenous graph vertex.
A graph that’s easy to navigate,
...but too tangled to re-trace steps.

Supersingular Isogeny Graphs have

Vertices: Fp-isomorhism classes of supersingular elliptic curves
Edges: degree-` isogenies (⇔ subgroups of E (Fp) of size `)
*With a little extra information, isogenies commute!

p = 1409

13 / 46



Cryptographic Motivation

WANT:

Public Key: graph vertex; Private Key: `-isogenous graph vertex.
A graph that’s easy to navigate,
...but too tangled to re-trace steps.

Supersingular Isogeny Graphs have

Vertices: Fp-isomorhism classes of supersingular elliptic curves
Edges: degree-` isogenies (⇔ subgroups of E (Fp) of size `)
*With a little extra information, isogenies commute!

p = 1409

14 / 46



Cryptographic Motivation

WANT:

Public Key: graph vertex; Private Key: `-isogenous graph vertex.
A graph that’s easy to navigate,
...but too tangled to re-trace steps.

Supersingular Isogeny Graphs have

Vertices: Fp-isomorhism classes of supersingular elliptic curves
Edges: degree-` isogenies (⇔ subgroups of E (Fp) of size `)
*With a little extra information, isogenies commute!

p = 1409
15 / 46



Quick-and-Dirty Supersingular Isogeny Diffie-Hellman
(SIKE)

PublicAlice Babette

E

EA EB

EA

+

ϕA(P), ϕA(Q)

EB

+

ϕB(P), ϕB(Q)

ϕA(EB) ∼= E2 ϕB(EA) ∼= E2

ϕA ϕB
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Hard Problems

1 Given E1, E2, find an `n-isogeny between them.
2 Given E , ϕA(E ), and ϕB(E ), find ϕA(ϕB(E )) ∼= ϕB(ϕA(E )).
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Three Graphs
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I: G`(Fp): The full supersingular `-isogeny graph

p: a fixed prime (BIG); `: a fixed prime (small)

1728

67

z1 z1

17

50

28 0

p = 83, ` = 2; z1 = 17i + 38, z1 = 66i + 38 22 / 46



II: The Spine S: Subgraph of Fp-vertices in G`(Fp)

1728

67

17

50

28 0

p = 83, ` = 2
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III: G`(Fp): The supersingular `-isogeny graph, over Fp

17

50

028

17

50

028

1728

1728

6767

p = 83, ` = 2
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G`(Fp) 6⊆ S!

Vertices: Twists are separated and identified

Edges: Field of definition of isogenies changes

The structure of G`(Fp) is well understood:
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Volcanoes

p: a prime; E : supersingular elliptic curve over Fp

EndFp(E ) ∼=

{
Z[
√
−p]

Z
[
1+
√
−p

2

]
If p ≡ 1 (mod 4), EndFp(E ) ∼= Z[

√
−p].

Definition

If EndFp(E ) ∼= Z
[
1+
√
−p

2

]
, then E lies on the surface of the volcano..

If EndFp(E ) ∼= Z [
√
−p], then E lies on the floor of the volcano.

17

50

028

17

50

028

1728

1728

6767
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Structure of G2(Fp)

Well-studied by Delfs and Galbraith [DG16]. For ` = 2:

Theorem (Theorem 2.7 [DG16])

p ≡ 1 (mod 4): Vertices paired together in isolated edges,

p ≡ 3 (mod 8): Vertices form a volcano; surface is one vertex,
connected to three vertices on the floor,

p ≡ 7 (mod 8): Vertices form a volcano; each surface vertex is
connected 1:1 with the floor.

25

25

0

2

0

2

p = 29 ≡ 1 (mod 4)

41

8

418

p = 43 ≡ 3 (mod 8)

3

3

1919

00

p = 23 ≡ 7 (mod 8)

27 / 46



Structure of G`(Fp)

For ` > 2:

Theorem (Theorem 2.7 [DG16])(−p
`

)
= 1: two horizontal `-isogenies(−p

`

)
= −1: no `-isogenies

p = 103, ` = 3:
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How does G`(Fp) change when we pass to Fp?
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How does G`(Fp) change when we pass to Fp?

Observations:

(Corollary 3.9 [ACL+19]) Twists are either both on the surface or
both on the floor, except for j = 1728.

For j 6= 1728, EndFp (E ) ∼= EndFp (E t)

When j = 1728 is supersingular, one twist is on the surface, the other
on the floor. They are 2-isogenous.

(Lemma 3.11 [ACL+19]) Edges don’t collapse.

(Corollary 3.12 [ACL+19]) Twists have the same neighbor sets.

17

50

028

17

50

028

1728

1728

6767

30 / 46



How does G`(Fp) change when we pass to Fp?

Definition (3.13 [ACL+19])

If two distinct components of G`(Fp) have exactly the same set of
vertices up to j-invariant, then they will stack over Fp.

A component of G`(Fp) will fold if it contains both vertices
corresponding to each j-invariant in its vertex set.

Two distinct components of G`(Fp) will attach with a new edge.

Two distinct components of G`(Fp) will attach along a j-invariant if
one vertex of each share a j-invariant (only possible for ` > 2).
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What actually happens for ` > 2?

Theorem (Proposition 3.9 [ACL+19])

While passing from G`(Fp) to S, the only possible events are stacking,
folding and n attachments by a new edge and m attachments along a
j-invariant with m + 2n ≤ 2`(2`− 1).

G5(F31):

1728

2 2

1728

4 4

S:

1728

4 2
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p = 83, ` = 3

G3(F83):

S:
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What actually happens for ` = 2?

Theorem (Theorem 3.26 of [ACL+19])

Only stacking, folding or at most one attachment by a new edge are
possible. In particular, no attachments by a j-invariant are possible.

G2(F101):

3

59

3

59

64

57

64

57

0

66

0

66

21

21

S:

66

0

21 59 3 64 57
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Through the Looking Glass: Mirror Involution
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Frobenius

p-power Frobenius π on Fp2 :

π(a) = ap

If a ∈ Fp, then ap = a.

On elliptic curves:

π : E : Y 2Z = X 3 + aXZ 2 + bZ 3 → E (p) : Y 2Z = X 3 + apXZ 2 + bpZ 3

[X : Y : Z ] 7→ [X p : Y p : Zp]

j(E (p)) = j(E )p

The Frobenius will also apply to paths in G`(Fp):

· · · → j1 → j2 → j3 → · · ·

Apply π to the vertices and get:

· · · → jp1 → jp2 → jp3 → · · ·

We call jp the conjugate of j .
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Mirror Involution

Definition

If j is a supersingular j-invariant, so is its Fp2-conjugate jp. If there is an
`-isogeny φ : E (j1)→ E (j2) then there exists an `-isogeny
φ′ : E (j1)p → E (j2)p.
The p-power Frobenius map on Fp2 gives the mirror involution on G`(Fp).

j0 → j1 → · · · → jn → j→ jpn → · · · → jp1 → jp0

j0 → j1 → · · · → jn → jpn → · · · → jp1 → jp0

How often are paths of the first type? Second type?
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How far are conjugate j-invariants in G2(Fp)?
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How often are conjugate j-invariants 2-isogenous?
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Modulo 12
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Diameter of G2(Fp)

Isogeny graphs behave more like random Ramanujan graphs than LPS
(Lubotzky-Phillips-Sarnak) graphs.
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Trends Modulo 12

For p ≡ 1, 7 (mod 12):

smaller 2-isogeny graph diameters

larger number of spine components

larger proportion of 2-isogenous conjugate j-invariants

For p ≡ 5, 11 (mod 12):

larger 2-isogeny graph diameters

smaller number of spine components

smaller proportion of 2-isogenous conjugate j-invariants
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Summary

We understand completely how to pass from G2(Fp) into G2(Fp).

Mirror involution gives a new perspective on supersingular isogeny
graph structure.

In terms of diameter, isogeny graphs behave more like random
Ramanujan graphs than LPS (Lubotzky-Pizer-Sarnak) graphs.

44 / 46



Thank you.
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