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Problem 1

If (X,Σ, µ) is a measure space and if f is µ integrable, show that for every ε > 0 there is E ∈ Σ such that
µ(E) <∞ and

∫
X\E |f |dµ < ε.

Solution 1:
Fix ε > 0. Since f is integrable, the nonnegative function |f | is integrable over E.
By definition of the integral of a nonnegative function, there is a bounded measurable function g on E which
vanishes outside a subset E0 of E with finite measure, and for which 0 ≤ g ≤ |f | and

∫
E

(|f | − g) < ε. Then:∫
E\E0

|f | =
∫
E\E0

[|f | − g] ≤
∫
E

[|f | − g] < ε

�

Solution 2: Define the measurable sets An for n = 1, 2, 3, ...:

An = {x ∈ X : 1/n ≤ |f(x)| < n}

A0 = {x ∈ X : f(x) = 0} and A∞ = {x ∈ X : f(x) =∞}

Each Ai is measurable, because it is the pre-image under f of a measurable subset of R, and f is measurable
so the preimages of measurable sets are measurable.
Define A:

A =

∞⋃
n=1

An

X is the union:
X = A0 ∪A ∪A∞

Since f is integrable, we know
∫
X
|f |dµ <∞. Using the An’s:∫

X

|f |dµ =

∫
A0

|f |dµ+

∫
A

|f |dµ+

∫
A∞

|f |dµ <∞

Since f(x) = 0 for all x ∈ A0, we know
∫
A0
|f |dµ = 0.

Also, f is integrable, so the set on which f(x) =∞ must have measure zero: µ(A∞) = 0, so
∫
A∞
|f |dµ = 0.

Then: ∫
X

|f |dµ =

∫
A

|f |dµ = lim
n→∞

∫
An

|f |dµ <∞

For any fixed ε > 0, there necessarily exists AN such that∫
X\AN

|f |dµ < ε

Since we have shown that the AN are measurable, it remains only to show that the measure of AN is finite:

µ(AN ) ≤ N
∫
AN

|f |dµ ≤ N
∫
X

|f |dµ <∞

�
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Problem 2

Let {fn} be a sequence of measurable functions on [0, 1], and suppose that for every a > 0 the infinite series

∞∑
n=1

µ({x ∈ [0, 1] : |fn(x)| > a})

converges, where µ is the Lebesgue measure. Prove that

lim
n→∞

fn(x) = 0

Solution:

Fix an arbitrary x ∈ [0, 1], and ε > 0. We need to show that there exists N ∈ N such that for all n ≥ N :

|fn(x)| < ε

We know that, for any fixed a > 0:

∞∑
n=1

µ({x ∈ [0, 1] : |fn(x)| > a}) <∞

Let a = ε/2.The Borel-Cantelli Lemma tells us that almost all x ∈ R belong to at most finitely many of
the sets {x ∈ [0, 1] : |fn(x)| > a}. Suppose E0 is the subset of R of measure zero where x ∈ E0 belong to
infinitely many of the sets {x ∈ [0, 1] : |fn(x)| > a}, and consider x ∈ R \ E0.
x belongs to at most finitely many of the sets {x ∈ [0, 1] : |fn(x)| > a}, so there exists N ∈ N such that
x 6∈ {x ∈ [0, 1] : |fn(x)| > a} for any n ≥ N .
This means |fn(x)| ≤ a = ε/2 < ε for all n ≥ N .
We can find such an N for all x ∈ R \ E0, and E0 has measure zero, so fn(x)→ 0 on R \ E0, which means

lim
n→∞

fn(x) = 0

as desired.

�

Problem 3

Let f : [a, b]→ R be a continuous function.

(a) Let h > 0. Show that the function

gh(x) = sup
0<t<h

f(x+ t)− f(x)

t

ismeasurable

(b) Show that g(x) = lim sup
t→0+

f(x+t)−f(x)
t is measurable

(c) Prove that the set of points where f is differentiable is measurable.

Solution:

(a) Since f(x) is measurable, f(x + t) − f(x) is measurable for every t. Then, 1/t is measurable, as it is a

constant function, so f(x+t)−f(x)
t is measurable for all t.

The supremum of measurable functions is measurable as well, so gh(x) is measurable for every h.
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(b) The limit of measurable functions is measurable, so g(x) is measurable.

(c) As defined above, g(x) is the upper derivative of f , say D(f) = g.
By a symmetric argument, we can show that the lower derivative D(f) is also measurable.
f is differentiable at x iff Df(x) = Df(x) <∞.
Equivalently, f is differentiable at x iff D(f)(x) − D(f)(x) = 0. Since both of these are measurable
functions, their difference is also a measurable function. The inverse image of {0} under this measurable
function must be measurable in the domain, so the set of points where f is differentiable is measurable.

�

Problem 4

Let f be integrable on the real line with respect to the Lebesgue measure. Evaluate

lim
n→∞

∫ ∞
−∞

f(x− n)

(
x

1 + |x|

)
dx

Justify all steps.
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Solution:
First, use the substitution of variables y = x− n:∫ ∞

−∞
f(x− n)

(
x

1 + |x|

)
dx =

∫ ∞
−∞

f(y)

(
y + n

1 + |y + n|

)
dy

Next, split up the integral based on where y + n > 0 and where y + n ≤ 0:∫ ∞
−∞

f(y)

(
y + n

1 + |y + n|

)
dy =

∫ −n
−∞

f(y)

(
y + n

1− (y + n)

)
dy +

∫ ∞
−n

f(y)

(
y + n

1 + y + n

)
dy

Now we can investigate the limit as n→∞ as it applies to each of these two integrals individually:
First Integral on the right:
Define the sequence of functions:

hn(y) = f(y)
y + n

1− (y + n)
χ(−∞,−n]

Note that lim
n→∞

hn(y) = 0.

For all n, and for y ≤ −n: |y+n|
|1−(y+n)| < 1. It follows that

f(y)
|y + n|

|1− (y + n)|
< f(y)

f is integrable, so the Lebesgue dominated convergence theorem applies and we can justify passing the limit
through the integral:

lim
n→∞

∫ −n
−∞

f(y)

(
y + n

1− (y + n)

)
dy = lim

n→∞

∫ ∞
−∞

hn(y)dy =

∫ ∞
−∞

0dy = 0

Second Integral on the right:
Define the sequence of functions for y ∈ [−n,∞):

gn(y) = f(y)
y + n

1 + y + n
χ[−n,∞)]
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Note that gn(y)→ f(y) as n→∞ .
Also, this sequence is bounded above by f(y), which is integrable, so the Lebesgue dominated convergence
theorem applies and we can pass the limit through the integral here as well:

lim
n→∞

∫ ∞
−n

f(y)

(
y + n

1 + y + n

)
dy = lim

n→∞

∫ ∞
−∞

gn(y)dy =

∫ ∞
−∞

f(y)dy

Putting both integrals together, we can return to the original question:

lim
n→∞

∫ ∞
−∞

f(x− n)

(
x

1 + |x|

)
dx =

∫ ∞
−∞

f(y)dy

�

Problem 5

Let f be a nonnegative measurable function on (−∞,∞) such that f(x) <∞ µ-almost everywhere; here µ
is the Lebesgue measure. Prove or give a counterexample to each of the following:

(a) For every N ∈ N there exists a compact K such that µ(K) > N and f is integrable over K.

(b) There exist a < b such that f is integrable over [a, b].

Solution:

(a) This is Lusin’s Theorem.
Fix N ∈ N.
Since f is measurable on (−∞,∞), f is measurable on [N,N ]. Pick ε > 0 such that ε < N . By Lusin’s
Theorem, there exists a compact set K ⊂ [−N,N ] such that m([−N,N ] \K) < ε and f is continuous
on K.
Since m([−N,N ] \K) = 2N − µ(K) < ε < N , it follows that µ(K) > N .

(b) This follows from the fact that µ(K) > 0. Since K is compact, it cannot have nonempty interior, so it
follows that K contains some closed interval [a, b].

�

Problem 6

A C∞ function f : R→ R satisfies the condition for each x ∈ R there exists nx ∈ N such that f (nx)(x) = 0.
Prove that f is a polynomial.

Solution:
Suppose f is not a polynomial everywhere on R.
Define the following closed sets:

Sn = {x : f (n)(x) = 0}
The sets are closed because any Cauchy sequence in any Sn must converge to another element of Sn.
Also, define the set X:

X = {x : ∀(a, b) containing x, f |(a,b) is not a polynomial}

X is nonempty, because we are assuming f is not a polynomial
X is also closed, and it contains no isolated points, because of how the intervals (a, b) are used to describe
the elements of X.
X is also complete, so by the Baire category theorem X is not the countable union of nowhere dense sets.

X =

∞⋃
n=0

(X ∩ Sn)

4



So there exists an interval (a, b) such that (a, b) ∩X ⊂ Sn for some n.
Every x ∈ (a, b) ∩X is in Sn, so f (n)(x) = 0 and f(x) is not expressible as a polynomial.
x ∈ (a, b) ∩ X, and there is an open interval around x (namely (a, b)) on which f (n) = 0. When taking
the next derivative at x, we can treat the function f (n) as the constant zero function around x, so clearly
f (n+1)(x) = 0. This works for all following derivatives, so x ∈ Sm for all m ≥ n and x ∈ (a, b) ∩X.
This means that the polynomial f can be approximated by an at most (n − 1)th degree polynomial on
(a, b) ∩X, because the nth derivative and all further derivatives are zero, so we can use a Taylor series to
approximate f on (a, b) ∩X.
We will show that we can also use a polynomial of degree < n to approximate f on the rest of (a, b). This
will give us a polynomial approximation on any open interval (a, b), and these approximations can be glued
together at their intersections to give us a polynomial expression of f on all of R.
Now, take a maximal open interval (c, e) ⊂ ((a, b) \X). (a, b) is bounded and X is closed, so we know such
an interval exists. f has a polynomial expression on (c, e) of some degree, say d. Then f (d) = some constant
6= 0 on (c, e). Since the value of the derivative is defined via limiting process, we know f (d) 6= 0 on [c, e].
Thus, d < n, because f (n)(c) = f (n)(e) = 0 and all derivatives greater than n are zero at c and e, since
c, e ∈ X.
This means we can express f as a polynomial of fixed degree everywhere on (a, b), and by the discussion
above f is a polynomial everywhere on R.

�
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