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Problem 1

If (X,%, 1) is a measure space and if f is p integrable, show that for every e > 0 there is F € ¥ such that
u(E) < oo and fX\E |fldp < e.

Solution 1:

Fix € > 0. Since f is integrable, the nonnegative function |f| is integrable over E.

By definition of the integral of a nonnegative function, there is a bounded measurable function g on E which
vanishes outside a subset Ey of E with finite measure, and for which 0 < g < |f| and [,(|f| —g) < €. Then:

L= [ us=a< fis-a<e

Solution 2: Define the measurable sets A,, forn =1,2,3,...:
Ap={ze X :1/n<|f(x)] <n}
Ag={z e X : f(x) =0} and A ={z € X : f(x) = 0}

Each A; is measurable, because it is the pre-image under f of a measurable subset of R, and f is measurable
so the preimages of measurable sets are measurable.

Define A: -
A= 4.

n=1

X 1is the union:
X=AUAUA,

Since f is integrable, we know [ |f|dp < oo. Using the A,’s:

/X|f|d/~L=/AO|f|d/~L+/A|fdu+/A Sl < o0

oo

Since f(xz) = 0 for all # € Ao, we know [, |f|du = 0.
Also, f is integrable, so the set on which f( = oo must have measure zero: pu(As) =0, so ono |f|du = 0.

Then:
J \ftdn= [ 17idn = tim / fldu < o

For any fixed € > 0, there necessarily exists Ay such that

| ridn<e

Since we have shown that the Ay are measurable, it remains only to show that the measure of Ay is finite:

p(An) <N [ 1< N [ 1fldn < o0



Problem 2

Let {f.} be a sequence of measurable functions on [0, 1], and suppose that for every a > 0 the infinite series

Y u({z € [0,1] : [ ful@)| > a})
n=1

converges, where p is the Lebesgue measure. Prove that
lim f,(x)=0

Solution:

Fix an arbitrary « € [0, 1], and € > 0. We need to show that there exists N € N such that for all n > N:

[fn(z)| <€

We know that, for any fixed a > 0:
Z,u({x €10,1] : | fu(z)| > a}) < 00
n=1

Let a = ¢/2.The Borel-Cantelli Lemma tells us that almost all £ € R belong to at most finitely many of
the sets {z € [0,1] : |fn(x)] > a}. Suppose Ejy is the subset of R of measure zero where x € Ey belong to
infinitely many of the sets { € [0,1] : |fn(x)| > a}, and consider z € R\ Ej.

x belongs to at most finitely many of the sets {x € [0,1] : |f,(x)| > a}, so there exists N € N such that
z & {xe€l0,1]:|fu(x)] > a} for any n > N.

This means |f, ()] <a=¢/2 <eforalln> N.

We can find such an N for all x € R\ Ey, and Ej has measure zero, so f,(x) — 0 on R\ Ey, which means

33, Fnl@) =0
as desired.
O
Problem 3
Let f : [a,b] — R be a continuous function.
(a) Let h > 0. Show that the function
T+t)—
o) = s LD = F@)
0<t<h t

ismeasurable

(b) Show that g(x) = limsup M is measurable

t—0+

(c) Prove that the set of points where f is differentiable is measurable.

Solution:

(a) Since f(x) is measurable, f(z +t) — f(x) is measurable for every ¢. Then, 1/t is measurable, as it is a
constant function, so M is measurable for all .

The supremum of measurable functions is measurable as well, so g5 (x) is measurable for every h.



(b) The limit of measurable functions is measurable, so g(z) is measurable.

(c) As defined above, g(z) is the upper derivative of f, say D(f) = g.
By a symmetric argument, we can show that the lower derivative D(f) is also measurable.
f is differentiable at x iff Df(x) = Df(z) < co.
Equivalently, f is differentiable at x iff D(f)(x) — D(f)(z) = 0. Since both of these are measurable
functions, their difference is also a measurable function. The inverse image of {0} under this measurable
function must be measurable in the domain, so the set of points where f is differentiable is measurable.

O

Problem 4

Let f be integrable on the real line with respect to the Lebesgue measure. Evaluate

R A )<1+|x|>d”3

Justify all steps.
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Solution:
First, use the substitution of variables y = x — n:

[t () = [ ()@

Next, split up the integral based on where y +n > 0 and where y +n < 0:

[ (i) o= s () e [ o ()

Now we can investigate the limit as n — oo as it applies to each of these two integrals individually:
First Integral on the right:
Define the sequence of functions:

Yy+n
I = T /. NX(—o0o,—n
() = fly); — ) X
Note that lim h,(y) =0.
n—oo
For all n, and for y < —n: % < 1. Tt follows that
ly+nl
TW e < fly
Wity <Y

f is integrable, so the Lebesgue dominated convergence theorem applies and we can justify passing the limit
through the integral:

im [ f(y) (y+”)> dy = lim | ho(y)dy :/ 0dy = 0

n—oo J_ 1— (y +n n—oo o —00

Second Integral on the right:
Define the sequence of functions for y € [—n, 00):

y+n

gn(y) = f(y)m

X[=n,00)]



Note that g,(y) — f(y) asn — oo .
Also, this sequence is bounded above by f(y), which is integrable, so the Lebesgue dominated convergence
theorem applies and we can pass the limit through the integral here as well:

lim f(y) (W> dy = lim ) gn(y)dyz/_ f(y)dy

n—oo J_ 1+y+n n—00

Putting both integrals together, we can return to the original question:

i [ o) (o= [ s

Ny [+ 1]

Problem 5

Let f be a nonnegative measurable function on (—oo, 00) such that f(z) < oo u-almost everywhere; here
is the Lebesgue measure. Prove or give a counterexample to each of the following:

(a) For every N € N there exists a compact K such that u(K) > N and f is integrable over K.

(b) There exist a < b such that f is integrable over [a, b].

Solution:

(a) This is Lusin’s Theorem.
Fix N e N.
Since f is measurable on (—o00,00), f is measurable on [N, N]. Pick € > 0 such that ¢ < N. By Lusin’s
Theorem, there exists a compact set K C [-N, N] such that m([-N,N]\ K) < € and f is continuous
on K.
Since m([—-N,N]\ K) = 2N — u(K) < e < N, it follows that pu(K) > N.

(b) This follows from the fact that p(K) > 0. Since K is compact, it cannot have nonempty interior, so it
follows that K contains some closed interval [a, b].

O

Problem 6

A C* function f : R — R satisfies the condition for each = € R there exists n, € N such that f("+)(z) = 0.
Prove that f is a polynomial.

Solution:
Suppose f is not a polynomial everywhere on R.
Define the following closed sets:
Sp = {a: f(z) = 0}
The sets are closed because any Cauchy sequence in any S,, must converge to another element of .S,.
Also, define the set X:

X = {x:V¥(a,b) containing x, f|(,p is not a polynomial}

X is nonempty, because we are assuming f is not a polynomial

X is also closed, and it contains no isolated points, because of how the intervals (a,b) are used to describe
the elements of X.

X is also complete, so by the Baire category theorem X is not the countable union of nowhere dense sets.

x=Jxns,)

n=0



So there exists an interval (a,b) such that (a,b) N X C S, for some n.

Every = € (a,b) N X is in Sy, so £ (z) = 0 and f(z) is not expressible as a polynomial.

z € (a,b) N X, and there is an open interval around z (namely (a,b)) on which f(® = 0. When taking
the next derivative at z, we can treat the function f(™) as the constant zero function around z, so clearly
fO*Y (z) = 0. This works for all following derivatives, so € S, for all m >n and z € (a,b) N X.

This means that the polynomial f can be approximated by an at most (n — 1)th degree polynomial on
(a,b) N X, because the nth derivative and all further derivatives are zero, so we can use a Taylor series to
approximate f on (a,b) N X.

We will show that we can also use a polynomial of degree < n to approximate f on the rest of (a,b). This
will give us a polynomial approximation on any open interval (a,b), and these approximations can be glued
together at their intersections to give us a polynomial expression of f on all of R.

Now, take a maximal open interval (¢,e) C ((a,b) \ X). (a,b) is bounded and X is closed, so we know such
an interval exists. f has a polynomial expression on (¢, e) of some degree, say d. Then f (d) = some constant
# 0 on (c,e). Since the value of the derivative is defined via limiting process, we know f(@ = 0 on [c, e].
Thus, d < n, because f(™(c) = f(")(e) = 0 and all derivatives greater than n are zero at ¢ and e, since
c,ee X.

This means we can express f as a polynomial of fixed degree everywhere on (a,b), and by the discussion
above f is a polynomial everywhere on R.

O



