Analysis Prelim August 2016

Sarah Arpin University of Colorado Boulder Mathematics Department Sarah.Arpin@colorado.edu

Problem 1

Let m be Lebesgue measure on \mathbb{R} , and let $E \subset \mathbb{R}$ have finite Lebesgue measure. If $E_r := \{x \in E : |x| > r\}$, prove that $m(E_r) \to 0$ as $r \to \infty$.

Solution:

If $\{r_n\}_{n=1}^{\infty}$ is an increasing sequence such that $r_n \to \infty$ as $n \to \infty$, then $E_{r_n} \supseteq E_{r_{n+1}}$ for all $n=1,2,\ldots$ So $\{E_{r_n}\}$ is a decreasing sequence of sets, and we know $\lim_{n \to \infty} m(E_{r_n})$ must exist and be finite, since $m(E) < \infty$.

Also $\bigcap_{n=1}^{\infty} E_{r_n} = \emptyset$, by construction.

Define the sets F_n :

$$F_n := E \setminus E_n$$

Notice that $F_1 \subset F_2 \subset \cdots$, so $F_n \nearrow E$.

By continuity of measure, $m(F_n) \nearrow m(E)$.

By the excision property, $m(F_n) = m(E) - m(E_n)$.

Taking the limit as $n \to \infty$:

$$\lim_{n \to \infty} m(F_n) = m(E) - \lim_{n \to \infty} m(E_{r_n}) = m(E)$$

So we conclude that $\lim_{n\to\infty} m(E_{r_n}) = 0$

Problem 2

Let $f_n:[0,1]\to\mathbb{R}$ be a sequence of measurable functions. Suppose that

- (i) $\int_0^1 |f_n|^2 \le 1$ for n = 1, 2, ..., and
- (ii) $f_n \to 0$ almost everywhere.

Show that

$$\lim_{n \to \infty} \int_0^1 f_n = 0$$

Solution:

Fix a number M > 0 and split up the desired integral:

$$\int_{0}^{1} f_{n} = \underbrace{\int_{0}^{1} f_{n} \chi_{\{x:f(x)>M\}}}_{I} + \underbrace{\int_{0}^{1} f_{n} \chi_{\{x:f(x)\leq M\}}}_{II}$$
(1)

Looking at these two integrals separately: Integral I:

$$\int_{0}^{1} f_{n}\chi_{\{x:f(x)>M\}} \leq \int_{0}^{1} f_{n} \cdot f_{n} \cdot \frac{1}{M}$$

$$= \frac{1}{M} \int_{0}^{1} (f_{n})^{2} \chi_{\{x:f(x)>M\}}$$
And since $(f_{n})^{2}$ is nonnegative and $\chi_{\{x:f(x)>M\}} \leq 1$ on $[0,1]$:
$$\leq \frac{1}{M} \int_{0}^{1} (f_{n})^{2}$$
And using hypothesis (i):
$$\leq \frac{1}{M}$$

Integral II:

The function $f_n\chi_{\{x:f(x)\leq M\}}$ is dominated by the integrable function M on [0,1], so we can apply the Lebesgue dominated convergence theorem:

$$\lim_{n \to \infty} \int_0^1 f_n \chi_{\{x: f(x) \le M\}} = \int_0^1 \lim_{n \to \infty} f_n \chi_{\{x: f(x) \le M\}}$$

$$= 0$$
(3)

Plugging the information from (2) and (3) into (1):

$$\lim_{n \to \infty} \int_0^1 f_n = \lim_{n \to \infty} \int_0^1 f_n \chi_{\{x: f(x) > M\}} + \lim_{n \to \infty} \int_0^1 f_n \chi_{\{x: f(x) \le M\}}$$
$$= \frac{1}{M}$$

And 1/M can be made arbitrarily small by choosing a large enough M, so the desired result holds.

Problem 3

Let f and g be real-valued integrable functions on a measure space (X, \mathcal{B}, μ) , and define

$$F_t = \{x \in X : f(x) > t\}, G_t = \{x \in X : g(x) > t\}$$

Prove that

$$\int |f - g| d\mu = \int_{-\infty}^{\infty} \mu((F_t \setminus G_t) \cup (G_t \setminus F_t)) dt$$

Hint: Rewrite the right-hand side as a double integral.

Solution:

Starting with the suggested hint:

$$\int_{-\infty}^{\infty} \mu((F_t \setminus G_t) \cup (G_t \setminus F_t)) dt = \int_{-\infty}^{\infty} \int_{(F_t \setminus G_t) \cup (G_t \setminus F_t)} 1 dx dt$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \chi_{(F_t \setminus G_t) \cup (G_t \setminus F_t)}(x) dx dt$$

Since the sets $F_t \setminus G_t$ and $G_t \setminus F_t$ are disjoint:

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (\chi_{(F_t \setminus G_t)}(x) + \chi_{(G_t \setminus F_t)}(x)) dx dt$$

We will justify switching the order of the integrals by Fubini-Tonelli Theorem:

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \chi_{(F_t \setminus G_t)}(x) dt dx + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \chi_{(G_t \setminus F_t)}(x) dt dx$$
(4)

Considering the inner integral $\int_{-\infty}^{\infty} \chi_{(F_t \setminus G_t)}(x) dt$, note that the x value is fixed since we switched the order of integration. We are integrating over all values of t such that $g(t) \leq t < f(t)$, so we are really looking at the size of the image set where f(x) > g(x). This set is size f(x) - g(x), for each x where f(x) > g(x). This gives us a valuation for the integral:

$$\int_{-\infty}^{\infty} \chi_{(F_t \setminus G_t)}(x) dt = (f(x) - g(x)) \chi_{\{x: f(x) > g(x)\}}$$

We likewise get a definition for the inner integral in the second term:

$$\int_{-\infty}^{\infty} \chi_{(G_t \setminus F_t)}(x) dt = (g(x) - f(x)) \chi_{\{x: f(x) < g(x)\}}$$

Putting this information back into (4):

$$\int_{-\infty}^{\infty} \mu((F_t \setminus G_t) \cup (G_t \setminus F_t))dt = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \chi_{(F_t \setminus G_t)}(x)dtdx + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \chi_{(G_t \setminus F_t)}(x)dtdx$$

$$= \int_{-\infty}^{\infty} ((f(x) - g(x))\chi_{\{x:f(x) < g(x)\}} + (g(x) - f(x))\chi_{\{x:f(x) < g(x)\}})dx$$
If $f(x) = g(x)$, then $f(x) - g(x) = 0$, so we can add this zero term:
$$= \int_{-\infty}^{\infty} ((f(x) - g(x))\chi_{\{x:f(x) < g(x)\}} + (g(x) - f(x))\chi_{\{x:f(x) < g(x)\}} + (f(x) - g(x))\chi_{\{x:f(x) = g(x)\}})dx$$

$$= \int_{-\infty}^{\infty} |f(x) - g(x)|dx$$

Problem 4

Let $f \in L^1(\mathbb{R})$ be a function satisfying $\int_{\mathbb{R}} |f(x)| dx = 1$.

(a) Prove that

$$\lim_{|t| \to \infty} \int_{\mathbb{R}} f(x) \cos(tx) dx = 0$$

Justify your reasoning.

(b) Compute

$$\lim_{t \to +\infty} \int_{\mathbb{R}} |f(x)\sin^2(tx)| dx$$

Solution:

(a) Simple functions are dense in $L^1(\mathbb{R})$ with respect to the L^1 -norm. Suppose first that f(x) is a simple function:

$$f(x) := \sum_{i=1}^{N} c_i \chi_{(a_i,b_i)}$$

Consider the integral in question:

$$\left| \int_{\mathbb{R}} f(x) \cos(tx) dx \right| = \left| \sum_{i=1}^{N} \int_{a_i}^{b_i} c_i \cos(tx) dx \right|$$

$$\leq \sum_{i=1}^{N} \frac{|c_i|}{|t|} |\sin(tb_i) - \sin(ta_i)|$$

$$\leq \sum_{i=1}^{N} \frac{2|c_i|}{|t|}$$

Taking the limit:

$$\lim_{|t| \to \infty} \left| \int_{\mathbb{R}} f(x) \cos(tx) dx \right| \le \lim_{|t| \to \infty} \sum_{i=1}^{N} \frac{2|c_i|}{|t|}$$

$$= 0$$

*This is a special version of the Riemann Lebesgue Lemma.

(b)

$$\lim_{t \to +\infty} \int_{\mathbb{R}} |f(x)\sin^2(tx)| dx = \lim_{t \to +\infty} \int_{\mathbb{R}} |f(x)|\sin^2(tx) dx$$

$$= \lim_{\frac{1}{2}t \to +\infty} \int_{\mathbb{R}} |f(x)\sin^2(\frac{1}{2}tx)| dx$$
Using the double angle cosine trig identity:
$$= \lim_{\frac{1}{2}t \to +\infty} \int_{\mathbb{R}} |f(x)| \frac{1 - \cos(xt)}{2} dx$$

$$= \lim_{t \to +\infty} \int_{\mathbb{R}} |f(x)| \frac{1 - \cos(xt)}{2} dx$$

$$= \lim_{t \to +\infty} \frac{1}{2} \int_{\mathbb{R}} |f(x)| dx - \lim_{t \to +\infty} \frac{1}{2} \int_{\mathbb{R}} |f(x)| \cos(tx) dx$$
1

Problem 5

- (a) Let $f:[0,1] \to \mathbb{R} \cup \{\pm \infty\}$ be in $L^s([0,1])$, where $s \in (1,\infty)$. Suppose that $r \in [1,\infty)$ and r < s. Prove that $f \in L^r([0,1])$.
- (b) Prove that $L^6(\mathbb{R}) \cap L^3(\mathbb{R}) \subset L^4(\mathbb{R})$, and moreover show that this containment is proper. Explain your reasoning.

Solution:

(a) There exists $t \in (0,1)$ such that r = ts.

Note that the function $x \mapsto a^x$ is a convex function, so by Jensen'sinequality:

$$|f|^r = |f|^{0(1-t)}|f|^{ts} \le (1-t)|f|^0 + t|f|^s$$

So $|f|^r \leq (1-t) \cdot 1 + t|f|^s$. Integrating, by monotonicity of integration:

$$\int_0^1 |f|^r \le (1-t) \int_0^1 1 d\mu + t \int_0^1 |f|^s d\mu$$
$$= \mu([0,1])(1-t) + t \|f\|_s^s$$

Since $\mu([0,1]) = 1 < \infty$ and $f \in L^s([0,1])$, the righthand side is finite. Thus, $f \in L^r([0,1])$.

(b) There exists $t \in (0,1)$ such that:

$$4 = 6t + (1 - t)3$$

In particular, t = 1/3.

Suppose $f \in L^6([0,1]) \cap L^3([0,1])$.

Note that the function $x \mapsto a^x$ is a convex function, so by Jensen's inequality:

$$|f|^4 = |f|^{6t + (1-t)3} \le t|f|^6 + (1-t)|f|^3$$

By the monotonicity of integration:

$$\int_0^1 |f|^4 \le t \int_0^1 |f|^6 + (1-t) \int_0^1 |f|^3$$

The righthand side is less than infinity because $t \in (0,1)$ and $f \in L^6([0,1]) \cap L^3([0,1])$. Thus, $\int_0^1 |f|^4 < \infty$, so $f \in L^4([0,1])$.

This can be generalized: For any $1 \le p < q < r < \infty$, if $f \in L^p \cap L^r$, then $f \in L^q$:

There exists $t \in (0,1)$ such that q = tp + (1-t)r.

 $x\mapsto a^x$ is a convex function, so we can apply Jensen's inequality:

$$|f|^q = |f|^{tp+(1-t)r} \le t|f|^p + (1-t)|f|^r$$

And integrate to get the desired result.

Problem 6

Let C([0,1]) be the Banach space of all complex-valued continuous functions on [0,1] with norm

$$||f|| = \sup_{x \in [0,1]} |f(x)|$$

(a) If we define \mathbf{B} by

$$\mathbf{B} = \{ f \in C([0,1]) : ||f|| \le 1 \}$$

show that **B** is a closed subset of C([0,1]) that is not compact.

(b) Let $H:[0,1]\times[0,1]\to\mathbb{C}$ be a continuous function, and for $f\in C([0,1])$ define

$$S(f)(x) = \int_0^1 H(x, y) f(y) dy$$

Prove that if $f \in C([0,1])$ then $S(f) \in C([0,1])$, and also prove that the closure of $\{S(f) : f \in \mathbf{B}\}$ is compact in C([0,1]).

Solution:

(a) In compact metric spaces, the Bolzano-Weierstrass property holds: Every sequence has a convergent subsequence.

We will show that ${\bf B}$ is closed, but that the Bolzano-Weierstrass property does not hold, so ${\bf B}$ is not compact.

Closed:

Let $\{f_n\}$ be a Cauchy sequence of functions in **B**. Since C([0,1]) is complete, it must converge (in norm) to a function $f \in C([0,1])$:

$$\lim_{n\to\infty} ||f_n|| = ||f||$$

Since $\{f_n\} \subset \mathbf{B}$, $||f_n|| \le 1$ for all n. The norm is a continuous function, so it follows that $||f|| \le 1$ as well. Thus, $f \in \mathbf{B}$, so \mathbf{B} is closed.

To show that \mathbf{B} is not compact, we will show that not every sequence has a convergent subsequence.

Pointwise limit of continuous functions is not necessarily continuous: Consider the continuous functions $\{f_n(x) := x^n\} \subset \mathbf{B}$. The pointwise limit of this sequence is:

$$f := \begin{cases} 0 & \text{if } 0 \le x < 1\\ 1 & \text{if } x = 1 \end{cases}$$

Which is not a continuous function, so it cannot be in $\bf B$. Thus, the Bolzano-Weierstrass property does not hold, so $\bf B$ is not compact.

(b) Define:

$$\mathbf{A} := \overline{\{S(f) : f \in \mathbf{B}\}}$$

First, we must show $S(f) \in C([0,1])$. Fix $\epsilon > 0$.

Notice that H is continuous on a compact set, so H is uniformly continuous. In particular, H is uniformly continuous in the first variable: There exists $\delta > 0$ such that if $|x_1 - x_2| < \delta$ then $|H(x_1, y) - H(x_2, y)| < \epsilon$, for all $y \in [0, 1]$.

Choose x_1, x_2 to satisfy this condition:

$$|S(f)(x_1) - S(f)(x_2)| = \left| \int_0^1 f(y)(H(x_1, y) - H(x_2, y)) \right|$$

$$\leq ||f|| \int_0^1 |H(x_1, y) - H(x_2, y)| dy$$

By continuity of H and the fact that ||f|| < 1:

$$< \int_0^1 \epsilon dy$$
$$= \epsilon$$

So $S(f) \in C([0,1])$.

By Arzela-Ascoli, \mathbf{A} is compact if and only if it is closed, bounded and equicontinuous.

By definition of closure, **A** is closed.

The elements of \mathbf{B} are bounded and norm is continuous, so \mathbf{A} is bounded as well.

It remains to show that **A** is equicontinuous. This follows from the work above, as the continuity of S(f) did not depend on the choice of f.