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Problem 1

Let m be Lebesgue measure on R, and let E ⊂ R have finite Lebesgue measure. If Er := {x ∈ E : |x| > r},
prove that m(Er)→ 0 as r →∞.

Solution:
If {rn}∞n=1 is an increasing sequence such that rn →∞ as n→∞, then Ern ⊇ Ern+1 for all n = 1, 2, .... So
{Ern} is a decreasing sequence of sets, and we know lim

n→∞
m(Ern) must exist and be finite, since m(E) <∞.

Also
∞⋂

n=1
Ern = ∅, by construction.

Define the sets Fn:
Fn := E \ En

Notice that F1 ⊂ F2 ⊂ · · · , so Fn ↗ E.
By continuity of measure, m(Fn)↗ m(E).
By the excision property, m(Fn) = m(E)−m(En).
Taking the limit as n→∞:

lim
n→∞

m(Fn) = m(E)− lim
n→∞

m(Ern) = m(E)

So we conclude that lim
n→∞

m(Ern) = 0

�

Problem 2

Let fn : [0, 1]→ R be a sequence of measurable functions. Suppose that

(i)
∫ 1

0
|fn|2 ≤ 1 for n = 1, 2, ..., and

(ii) fn → 0 almost everywhere.

Show that

lim
n→∞

∫ 1

0

fn = 0

Solution:

Fix a number M > 0 and split up the desired integral:∫ 1

0

fn =

∫ 1

0

fnχ{x:f(x)>M}︸ ︷︷ ︸
I

+

∫ 1

0

fnχ{x:f(x)≤M}︸ ︷︷ ︸
II

(1)
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Looking at these two integrals separately:
Integral I: ∫ 1

0

fnχ{x:f(x)>M} ≤
∫ 1

0

fn · fn ·
1

M

=
1

M

∫ 1

0

(fn)2χ{x:f(x)>M}

And since (fn)2 is nonnegative and χ{x:f(x)>M} ≤ 1 on [0, 1]:

≤ 1

M

∫ 1

0

(fn)2

And using hypothesis (i):

≤ 1

M

(2)

Integral II:
The function fnχ{x:f(x)≤M} is dominated by the integrable function M on [0, 1], so we can apply the Lebesgue
dominated convergence theorem:

lim
n→∞

∫ 1

0

fnχ{x:f(x)≤M} =

∫ 1

0

lim
n→∞

fnχ{x:f(x)≤M}

= 0

(3)

Plugging the information from (2) and (3) into (1):

lim
n→∞

∫ 1

0

fn = lim
n→∞

∫ 1

0

fnχ{x:f(x)>M} + lim
n→∞

∫ 1

0

fnχ{x:f(x)≤M}

=
1

M

And 1/M can be made arbitrarily small by choosing a large enough M , so the desired result holds.

�

Problem 3

Let f and g be real-valued integrable functions on a measure space (X,B, µ), and define

Ft = {x ∈ X : f(x) > t}, Gt = {x ∈ X : g(x) > t}

Prove that ∫
|f − g|dµ =

∫ ∞
−∞

µ((Ft \Gt) ∪ (Gt \ Ft))dt

Hint: Rewrite the right-hand side as a double integral.

Solution:
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Starting with the suggested hint:∫ ∞
−∞

µ((Ft \Gt) ∪ (Gt \ Ft))dt =

∫ ∞
−∞

∫
(Ft\Gt)∪(Gt\Ft)

1dxdt

=

∫ ∞
−∞

∫ ∞
−∞

χ(Ft\Gt)∪(Gt\Ft)(x)dxdt

Since the sets Ft \Gt and Gt \ Ft are disjoint:

=

∫ ∞
−∞

∫ ∞
−∞

(χ(Ft\Gt)(x) + χ(Gt\Ft)(x))dxdt

We will justify switching the order of the integrals by Fubini-Tonelli Theorem:

=

∫ ∞
−∞

∫ ∞
−∞

χ(Ft\Gt)(x)dtdx+

∫ ∞
−∞

∫ ∞
−∞

χ(Gt\Ft)(x)dtdx

(4)

Considering the inner integral
∫∞
−∞ χ(Ft\Gt)(x)dt, note that the x value is fixed since we switched the order

of integration. We are integrating over all values of t such that g(t) ≤ t < f(t), so we are really looking at
the size of the image set where f(x) > g(x). This set is size f(x)− g(x), for each x where f(x) > g(x). This
gives us a valuation for the integral:∫ ∞

−∞
χ(Ft\Gt)(x)dt = (f(x)− g(x))χ{x:f(x)>g(x)}

We likewise get a definition for the inner integral in the second term:∫ ∞
−∞

χ(Gt\Ft)(x)dt = (g(x)− f(x))χ{x:f(x)<g(x)}

Putting this information back into (4):∫ ∞
−∞

µ((Ft \Gt) ∪ (Gt \ Ft))dt =

∫ ∞
−∞

∫ ∞
−∞

χ(Ft\Gt)(x)dtdx+

∫ ∞
−∞

∫ ∞
−∞

χ(Gt\Ft)(x)dtdx

=

∫ ∞
−∞

((f(x)− g(x))χ{x:f(x)<g(x)} + (g(x)− f(x))χ{x:f(x)<g(x)})dx

If f(x) = g(x), then f(x)− g(x) = 0, so we can add this zero term:

=

∫ ∞
−∞

((f(x)− g(x))χ{x:f(x)<g(x)} + (g(x)− f(x))χ{x:f(x)<g(x)} + (f(x)− g(x))χ{x:f(x)=g(x)})dx

=

∫ ∞
−∞
|f(x)− g(x)|dx

�

Problem 4

Let f ∈ L1(R) be a function satisfying
∫
R |f(x)|dx = 1.

(a) Prove that

lim
|t|→∞

∫
R
f(x) cos(tx)dx = 0

Justify your reasoning.

(b) Compute

lim
t→+∞

∫
R
|f(x) sin2(tx)|dx
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Solution:

(a) Simple functions are dense in L1(R) with respect to the L1-norm.
Suppose first that f(x) is a simple function:

f(x) :=

N∑
i=1

ciχ(ai,bi)

Consider the integral in question:∣∣∣∣∫
R
f(x) cos(tx)dx

∣∣∣∣ =

∣∣∣∣∣
N∑
i=1

∫ bi

ai

ci cos(tx)dx

∣∣∣∣∣
≤

N∑
i=1

|ci|
|t|
| sin(tbi)− sin(tai)|

≤
N∑
i=1

2|ci|
|t|

Taking the limit:

lim
|t|→∞

∣∣∣∣∫
R
f(x) cos(tx)dx

∣∣∣∣ ≤ lim
|t|→∞

N∑
i=1

2|ci|
|t|

= 0

*This is a special version of the Riemann Lebesgue Lemma.

(b)

lim
t→+∞

∫
R
|f(x) sin2(tx)|dx = lim

t→+∞

∫
R
|f(x)| sin2(tx)dx

= lim
1
2 t→+∞

∫
R
|f(x) sin2(

1

2
tx)|dx

Using the double angle cosine trig identity:

= lim
1
2 t→+∞

∫
R
|f(x)|1− cos(xt)

2
dx

= lim
t→+∞

∫
R
|f(x)|1− cos(xt)

2
dx

= lim
t→+∞

1

2

∫
R
|f(x)|dx− lim

t→+∞

1

2

∫
R
|f(x)| cos(tx)dx

=
1

2

�

Problem 5

(a) Let f : [0, 1]→ R ∪ {±∞} be in Ls([0, 1]), where s ∈ (1,∞). Suppose that r ∈ [1,∞) and r < s. Prove
that f ∈ Lr([0, 1]).

(b) Prove that L6(R) ∩ L3(R) ⊂ L4(R), and moreover show that this containment is proper. Explain your
reasoning.

Solution:
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(a) There exists t ∈ (0, 1) such that r = ts.
Note that the function x 7→ ax is a convex function, so by Jensen′sinequality:

|f |r = |f |0(1−t)|f |ts ≤ (1− t)|f |0 + t|f |s

So |f |r ≤ (1− t) · 1 + t|f |s. Integrating, by monotonicity of integration:∫ 1

0

|f |r ≤ (1− t)
∫ 1

0

1dµ+ t

∫ 1

0

|f |sdµ

= µ([0, 1])(1− t) + t ‖f‖ss

Since µ([0, 1]) = 1 <∞ and f ∈ Ls([0, 1]), the righthand side is finite. Thus, f ∈ Lr([0, 1]).

(b) There exists t ∈ (0, 1) such that:
4 = 6t+ (1− t)3

In particular, t = 1/3.
Suppose f ∈ L6([0, 1]) ∩ L3([0, 1]).
Note that the function x 7→ ax is a convex function, so by Jensen’s inequality:

|f |4 = |f |6t+(1−t)3 ≤ t|f |6 + (1− t)|f |3

By the monotonicity of integration:∫ 1

0

|f |4 ≤ t
∫ 1

0

|f |6 + (1− t)
∫ 1

0

|f |3

The righthand side is less than infinity because t ∈ (0, 1) and f ∈ L6([0, 1]) ∩ L3([0, 1]).

Thus,
∫ 1

0
|f |4 <∞, so f ∈ L4([0, 1]).

This can be generalized: For any 1 ≤ p < q < r <∞, if f ∈ Lp ∩ Lr, then f ∈ Lq:
There exists t ∈ (0, 1) such that q = tp+ (1− t)r.
x 7→ ax is a convex function, so we can apply Jensen’s inequality:

|f |q = |f |tp+(1−t)r ≤ t|f |p + (1− t)|f |r

And integrate to get the desired result.

�

Problem 6

Let C([0, 1]) be the Banach space of all complex-valued continuous functions on [0, 1] with norm

‖f‖ = sup
x∈[0,1]

|f(x)|

(a) If we define B by
B = {f ∈ C([0, 1]) : ‖f‖ ≤ 1}

show that B is a closed subset of C([0, 1]) that is not compact.

(b) Let H : [0, 1]× [0, 1]→ C be a continuous function, and for f ∈ C([0, 1]) define

S(f)(x) =

∫ 1

0

H(x, y)f(y)dy

Prove that if f ∈ C([0, 1]) then S(f) ∈ C([0, 1]), and also prove that the closure of {S(f) : f ∈ B} is
compact in C([0, 1]).
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Solution:

(a) In compact metric spaces, the Bolzano-Weierstrass property holds: Every sequence has a convergent
subsequence.
We will show that B is closed, but that the Bolzano-Weierstrass property does not hold, so B is not
compact.
Closed:
Let {fn} be a Cauchy sequence of functions in B. Since C([0, 1]) is complete, it must converge (in norm)
to a function f ∈ C([0, 1]):

lim
n→∞

‖fn‖ = ‖f‖

Since {fn} ⊂ B, ‖fn‖ ≤ 1 for all n. The norm is a continuous function, so it follows that ‖f‖ ≤ 1 as
well. Thus, f ∈ B, so B is closed.
To show that B is not compact, we will show that not every sequence has a convergent subsequence.
Pointwise limit of continuous functions is not necessarily continuous: Consider the continuous
functions {fn(x) := xn} ⊂ B. The pointwise limit of this sequence is:

f :=

{
0 if 0 ≤ x < 1

1 if x = 1

Which is not a continuous function, so it cannot be in B. Thus, the Bolzano-Weierstrass property does
not hold, so B is not compact.

(b) Define:
A := {S(f) : f ∈ B}

First, we must show S(f) ∈ C([0, 1]). Fix ε > 0.
Notice that H is continuous on a compact set, so H is uniformly continuous. In particular, H is uniformly
continuous in the first variable: There exists δ > 0 such that if |x1−x2| < δ then |H(x1, y)−H(x2, y)| < ε,
for all y ∈ [0, 1].
Choose x1, x2 to satisfy this condition:

|S(f)(x1)− S(f)(x2)| =
∣∣∣∣∫ 1

0

f(y)(H(x1, y)−H(x2, y))

∣∣∣∣
≤ ‖f‖

∫ 1

0

|H(x1, y)−H(x2, y)|dy

By continuity of H and the fact that ‖f‖ ≤ 1:

<

∫ 1

0

εdy

= ε

So S(f) ∈ C([0, 1]).
By Arzela-Ascoli, A is compact if and only if it is closed, bounded and equicontinuous.
By definition of closure, A is closed.
The elements of B are bounded and norm is continuous, so A is bounded as well.
It remains to show that A is equicontinuous. This follows from the work above, as the continuity of
S(f) did not depend on the choice of f .

�
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