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Problem 1

If g : [0,∞) → R is a monotone non-increasing (thus measurable) function satisfying lim
x→∞

g(x) = c > 0,

prove that there exists a rational-valued function h : [0,∞) → Q such that the function f : [0,∞) → R
defined by f = g · h is improperly Riemann integrable on [0,∞), but not Lebesgue integrable there.

Solution:
The function g(x) := 1

x + 1 satisfies lim
x→∞

g(x) = 1 > 0, and g(x) is nonincreasing.

Define the function h : [0,∞)→ Q:

h(x) :=

{
0 for x ∈ [0, 1)
(−1)n
n for x ∈ [n, n+ 1), for n = 1, 2, 3, ...

Then, the function f = g · h is given:

f(x) :=

{
0 for x ∈ [0, 1)
(−1)n
n

(
1
x + 1

)
for x ∈ [n, n+ 1), for n = 1, 2, 3, ...

Looking at the improper Riemann integral:∫ ∞
0

f(x)dx =

∞∑
n=1

(∫ n+1

n

(−1)n

n

(
1

x
+ 1

)
dx

)

≤
∞∑
n=1

(∫ n+1

n

(−1)n

n

(
1

n
+ 1

)
dx

)

=

∞∑
n=1

(−1)n

n

(
1

n
+ 1

)

=

∞∑
n=1

(−1)n

n2
+

∞∑
n=1

(−1)n

n

<∞, bc both series are convergent by the alternating series test.

So f is Riemann integrable on [0,∞).
To be Lebesgue integrable on [0,∞), we need to show∫ ∞

0

|f(x)|dx <∞

Which does not hold: ∫ ∞
0

|f(x)|dx =

∞∑
n=1

∫ n+1

n

1

n

(
1

x
+ 1

)
dx

≥
∞∑
n=1

∫ n+1

n

1

n

(
1

n+ 1
+ 1

)
dx

=

∞∑
n=1

1

n(n+ 1)
+

∞∑
n=1

1

n

→∞, because the harmonic series diverges.
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So f is not Lebesgue integrable on [0,∞).

�

Problem 2

Assume that f : [1, 2]→ R is absolutely continuous, with f(2) = 0. Prove that∣∣∣∣∫ 2

1

f ′(x) log(x)dx

∣∣∣∣ ≤ ∫ 2

1

|f(x)|dx

Solution:
Consider the left-hand side, using integration by parts:∣∣∣∣∫ 2

1

f ′(x) log(x)dx

∣∣∣∣ =

∣∣∣∣log(x)f(x)
∣∣2
1
−
∫ 2

1

f(x)

x
dx

∣∣∣∣
=

∣∣∣∣log(2)f(2)− log(1)f(1)−
∫ 2

1

f(x)

x
dx

∣∣∣∣
=

∣∣∣∣∫ 2

1

f(x)

x
dx

∣∣∣∣
≤
∫ 2

1

∣∣∣∣f(x)

x

∣∣∣∣ dx
And on [1, 2],

∣∣∣∣f(x)

x

∣∣∣∣ ≤ |f(x)|, so:

≤
∫ 2

1

|f(x)|dx

�

Problem 3

Let f : [a, b]→ R be a C1 function.
For ε > 0, let Cε := {x ∈ (a, b) : |f ′(x)| < ε}, and let A := {f(x) : x ∈ (a, b), f ′(x) = 0}.

(i) Prove that Cε is open and that m(f(Cε)) < ε · (b− a).

(ii) Prove that A has Lebesgue measure zero.

Solution:

(i) Since f is C1, we know that f ′ is a continuous function. Since Cε is the pre-image of an open set in R
under the continuous function f ′, Cε is open.
Since Cε is open, it can be written as a disjoint union of open intervals:

Cε =

∞⋃
k=1

(ak, bk)

For any k and any x ∈ (ak, bk), we have |f ′(x)| < ε. This gives us a bound on the value of f((ak, bk)).
For x ∈ (ak, bk):

|f(ak)| − (bk − ak)ε < |f(x)| < |f(ak)|+ (bk − ak)ε

For each k, f((ak, bk)) ⊆ (|f(ak)| − (bk − ak)ε, |f(ak)|+ (bk − ak)ε).
We can do better than that though!
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Let mk := min{f(x) : x ∈ [ak, bk]}. Then the maximum value of f(x) on (ak, bk) is less than mk +
(bk − ak)ε, so we can further refine this inclusion:

f((ak, bk)) ⊆ (mk,mk + (bk − ak)ε)

Looking at the integral definition of measure:

m(f(Cε)) =

∫
f(Cε)

1dm

≤
∞∑
k=1

∫
f((ak,bk))

1dm

≤
∞∑
k=1

∫ mk+(bk−ak)ε

mk

1dm

= ε
∑
k=1

(bk − ak)

≤ ε(b− a)

(ii) Sard’s Theorem?
We revisit the Cε, but for our purposes it is easier to define C1/n.
Note that C1 ⊇ C1/2 ⊇ C1/3 ⊇ · · · . So we have a descending chain of open sets.
By the property of measure, we have

m( lim
n→∞

C1/n) = lim
n→∞

m(C1/n)

Note that A = lim
n→∞

f(C1/n)

m(A) = m
(

lim
n→∞

f(C1/n)
)

= lim
n→∞

m(f(C1/n))

≤ lim
n→∞

ε · (b− a)

= 0

�

Problem 4

Let (X,B, µ) be a measure space, and suppose that p, q, r ∈ (1,∞) satisfy

1

p
+

1

q
+

1

r
= 1

If f ∈ Lp(X,µ), g ∈ Lq(X,µ), and h ∈ Lr(X,µ), prove that f · g · h ∈ L1(X,µ) and that

‖f · g · h‖1 ≤ ‖f‖p · ‖g‖q · ‖h‖r

Solution:

To prove this theorem, we will use the fact that:

a1/pb1/qc1/r ≤ 1

p
a+

1

q
b+

1

r
c
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for p, q, r satisfying the above identity and for any nonnegative real numbers a, b, c.
Assuming this, we can use this inequality with the substitutions:

a =

∣∣∣∣∣ f(x)

‖f‖p

∣∣∣∣∣
p

, b =

∣∣∣∣∣ g(x)

‖g‖q

∣∣∣∣∣
q

, and c =

∣∣∣∣h(x)

‖h‖r

∣∣∣∣r
Plugging these in: ∣∣∣∣∣ f(x)

‖f‖p

∣∣∣∣∣ ·
∣∣∣∣∣ g(x)

‖g‖q

∣∣∣∣∣ ·
∣∣∣∣h(x)

‖h‖r

∣∣∣∣ ≤ 1

p

∣∣∣∣∣ f(x)

‖f‖p

∣∣∣∣∣
p

+
1

q

∣∣∣∣∣ g(x)

‖g‖q

∣∣∣∣∣
q

+
1

r

∣∣∣∣h(x)

‖h‖r

∣∣∣∣r
Integrating both sides over X:

1

‖f‖p ‖g‖q ‖h‖r

∫
X

|f(x)g(x)h(x)|dx ≤ 1

p

‖f‖pp
‖f‖pp

+
1

q

‖g‖qq
‖g‖qq

+
1

r

‖h‖rr
‖h‖rr

1

‖f‖p ‖g‖q ‖h‖r

∫
X

|f(x)g(x)h(x)|dx ≤ 1∫
X

|f(x)g(x)h(x)|dx ≤ ‖f‖p · ‖g‖q · ‖h‖r

‖f · g · h‖1 ≤ ‖f‖p · ‖g‖q · ‖h‖r
As for the inequality that this result relies on, note that it follows from Jensen’s inequality. For any
λ1, λ2, ..., λn ∈ (0, 1) such that λ1 + λ2 + · · ·+ λn = 1 and any concave function ϕ:

n∑
k=1

λkϕ(xk) ≤ ϕ

(
n∑
k=1

λkxk

)
for all x1, x2, . . . , xn in the domain of ϕ

This can be proven by induction:
Base Case: Suppose λ1 + λ2 = 1. By the definition of concave function we have:

λ1ϕ(x1) + λ2ϕ(x2) ≤ ϕ(λ1x1 + λ2x2)

Inductive Step: Suppose the result holds for λ1, ..., λn such that λ1 + · · ·+ λn = 1. Show that it holds for
λ1, ..., λn, λn+1 such that λ1 + · · ·+ λn + λn+1 = 1.

ϕ(λ1x1 + · · ·+ λnxn + λn+1xn+1) = ϕ

(
λ1x1 + (1− λ1)

n+1∑
k=2

λkxk
(1− λ1)

)
Now we are looking at the base case, so we have:

≥ λ1ϕ(x1) + (1− λ1)ϕ

(
n+1∑
k=2

λkxk
(1− λ1)

)
Note that we are now in the case of the inductive hypothesis for the ϕ expression on the right:

λ1 + · · ·+ λn+1 = 1⇒
n+1∑
k=2

λk
1− λ1

= 1

So we can apply this inductive hypothesis to get:

ϕ(λ1x1 + · · ·+ λnxn + λn+1xn+1) ≥ λ1ϕ(x1) + (1− λ1)

n+1∑
k=2

λkϕ(xk)

1− λ1

ϕ(λ1x1 + · · ·+ λnxn + λn+1xn+1) ≥
∑
k=1

λkϕ(xk)

Which is the desired result.
Noting that log is a convex function and 1

p + 1
q + 1

r = 1, we can apply this result to our particular case:

1

p
log(a) +

1

q
log(b) +

1

r
log(c) ≤ log

(
1

p
a+

1

q
b+

1

r
c

)

4



Using the properties of logs:

log(a1/pb1/qc1/r) ≤ log

(
1

p
a+

1

q
b+

1

r
c

)
Since the exponential function is one-to-one and strictly increasing, we can apply it to both sides of the
inequality and it remains preserved, yielding the desired result:

a1/pb1/qc1/r ≤ 1

p
a+

1

q
b+

1

r
c

And this holds for any a, b, c in the domain of log, so any positive a, b, c work. This justifies the above work,
and yields the desired result.

�

Way Easier Solution to Problem 4:
First, by Hölder’s Inequality:

‖fgh‖1 ≤ ‖f‖p ‖gh‖p′ where
1

p
+

1

p′
= 1 for somep′ > 1 (1)

Now we will look at ‖gh‖p′ . First, set α = q
p′ and β = r

p′ . Then:

1

α
+

1

β
= p′

(
1

q
+

1

r

)
= p′(1− 1

p
) =

p′

p′
= 1

This allows us to use Hölder’s Inequality again.

‖gh‖p′ =

(∫
R
|g|p

′
|h|p

′
)1/p′

By Hölder’s Inequality:

≤
(∥∥∥|g|p′∥∥∥

α

∥∥∥|h|p′∥∥∥
β

)1/p′

=

[(∫
R
|g|q
)p′/q (∫

R
|h|r
)p′/r]1/p′

=

(∫
R
|g|q
)1/q (∫

R
|h|r
)1/r

= ‖g‖q · ‖h‖r

(2)

Combining (1) and (2):
‖fgh‖1 ≤ ‖f‖p ‖g‖q ‖h‖r

�

Problem 5

Let (X,B, µ) be a σ-finite measure space and suppose that f : X → [0,∞) is a nonnegative integrable
function. Prove that the function ψ : [0,∞) → [0,∞] defined by ψ(t) = µ({x ∈ X : f(x) ≥ t}) is Lebesgue
measurable and that ∫

X

fdµ =

∫ ∞
0

ψ(t)dt

Hint: you may find Tonelli’s Theorem useful.
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Solution:
Begin by looking at the integral on the right side:∫ ∞

0

ψ(t)dt =

∫ ∞
0

µ({x ∈ X : f(x) ≥ t})dt

By definition of measure:

=

∫ ∞
0

(∫
f≥t

1dx

)
dt

We can switch the order of integration by Tonelli’s Theorem (1 is clearly nonnegative)

Consider the effect this has on the bounds of the integrals:

0 ≤ t <∞ and f(x) ≥ t⇒ t ≤ f(x) and 0 ≤ f(x) <∞
The bound on f(x) is equivalent to x ∈ X, so:

=

∫
X

∫ f(x)

0

1dtdx

=

∫
X

f(x)dx

Which yields the desired result.

�

Problem 6

If {f1, f2, ...} is a complete orthonormal set in the Hilbert space L2([0, 1]), where [0, 1] is equipped with
the Lebesgue measure, and B is an arbitrary measurable subset of positive measure in [0, 1], use Parseval’s
identity applied to the characteristic function for B to prove that:

1 ≤
∫
B

∞∑
i=1

|fi(x)|2dx

Solution:
By Parseval’s Identity:

µ(B) = ‖χB‖2L2[0,1] =

∞∑
i=1

|〈χB , fi(x)〉|2 (By Parseval’s Identity)

=

∞∑
i=1

(∫ 1

0

χBfi

)2

=

∞∑
i=1

(∫ 1

0

χB · (χBfi)
)2

≤
∞∑
i=1

(
‖χb‖L2[0,1] ‖χBfi‖L2[0,1]

)2
=

∞∑
i=1

‖χb‖2L2[0,1] ‖χBfi‖
2
L2[0,1]

=
∞∑
i=1

µ(B) ‖χBfi‖2L2[0,1]

So this shows:

µ(B) ≤
∞∑
i=1

µ(B) ‖χBfi‖2L2[0,1]
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Moving forward from here, we can divide by µ(B):

µ(B) ≤
∞∑
i=1

µ(B) ‖χBfi‖2L2[0,1]

Dividing by µ(B) :

1 ≤
∞∑
i=1

‖χBfi‖2L2[0,1]

=

∞∑
i=1

∫
B

|fi|2

By Tonelli’s theorem, the integrand is positive so we can switch the sum and the integral:

=

∫
B

∞∑
i=1

|fi|2

�
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