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Problem 1

Suppose that f : [0, 1]→ R is continuous. Prove that

lim
n→∞

∫ 1

0

f(xn)dx

exists and evaluate the limit. Does the limit always exist if f is only assume to be Lebesgue integrable?

Solution:
Note that if x ∈ [0, 1], then xn ∈ [0, 1] for any n ∈ N.
By the Extreme Value Theorem, since f is continuous on the closed interval [0, 1], it must achieve a maximum
value on that interval: sup

x∈[0,1]

|f(x)| = ‖f‖∞ <∞.

For any n: ∫ 1

0

|f(xn)|dx ≤
∫ 1

0

‖f‖∞ dx = ‖f‖∞

Since the righthand side is finite and independent of n, taking the limit as n→∞ we still get a finite value
for the integral.
To find the value, we need to approximate f by polynomials, so first suppose p(x) is a polynomial:

p(x) =

m∑
i=0

aix
k where ai ∈ R

For any given n: ∫ 1

0

p(xn)dx =

∫ 1

0

m∑
i=0

aix
indx

By linearity of the integral:

=

m∑
i=0

ai

∫ 1

0

xindx

=

m∑
i=0

ai

(
xin+1

in+ 1

∣∣∣1
0

)

=

m∑
i=0

ai
in+ 1

Taking the limit as n→∞:

lim
n→∞

∫ 1

0

p(xn)dx = lim
n→∞

m∑
i=0

ai
in+ 1

= 0

By the Stone-Weierstrass theorem, since f ∈ C([0, 1]), we can find a sequence of polynomials with coefficients
in R such that {pi} → f uniformly on [0, 1].
For all n, if x ∈ [0, 1], then xn ∈ [0, 1], so the same sequence of polynomials can be used to approximate
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f(xn).
Fix ε > 0: ∣∣∣∣∫ 1

0

f(xn)dx−
∫ 1

0

pi(x
n)dx

∣∣∣∣ ≤ ∫ 1

0

|f(xn)− pi(xn)|dx

≤
∫ 1

0

‖f − pi‖∞ dx

= ‖f − pi‖∞

As i→∞, ‖f − pi‖∞ → 0, so there exists N ∈ N such that if i ≥ N , then ‖f − pi‖∞ < ε.
Taking i ≥ N : ∣∣∣∣∫ 1

0

f(xn)dx−
∫ 1

0

pi(x
n)dx

∣∣∣∣ ≤ ‖f − pi‖∞ < ε

This shows that the value of the integral of f(xn) is equal to the limit of the integral of the approximating
polynomials: ∫ 1

0

f(xn)dx = lim
i→∞

∫ 1

0

pi(x
n)dx = 0

If f is Lebesgue integrable, then f ∈ L1([0, 1]). The continuous functions C([0, 1]) are dense in L1, so we
can approximate this integral using a sequence of C([0, 1]) functions to approximate the integrand.
If f ∈ L1([0, 1]) is chosen arbitrarily, we can find a sequence {gi} ⊂ C([0, 1]) such that gi → f with respect
to the L1 norm on [0, 1]. ∫ 1

0

|f(x)− gi(x)|dx→ 0 as i→∞

Likeweise, xn ∈ [0, 1] for any n, so we can use this sequence to approximate f(xn) for any n.
As we have shown, for each of the gi functions

lim
n→∞

∫ 1

0

gi(x
n)dx

exists and is finite.
Now, we will show that the integral can be approximated for f ∈ L1([0, 1]). Fixing ε > 0:∣∣∣∣∫ 1

0

f(xn)dx−
∫ 1

0

gi(x
n)dx

∣∣∣∣ ≤ ∫ 1

0

|f(xn)− gi(xn)|dx

= ‖f(xn)− gi(xn)‖L1

Since ‖f(xn)− gi(xn)‖L1 → 0 as i→∞, we can find N ∈ N such that for all i ≥ N :

‖f(xn)− gi(xn)‖L1 < ε

which yields the desired approximation.

�
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Problem 2

Assume that a Lebesgue measurable set E is contained in the interval [a, b] for some 0 < a < b < ∞. Let
δ > 1. If the sets E and δE (the elements of E multiplied by δ) are disjoint, prove that the measure of E is
at most b

2 log(bδ/a).

Solution:
We will justify the following (in)equalities, which yields the desired result:

2

b
µ(E) =︸︷︷︸

1

1

b
µ(E)+

1

δb
µ(δE) ≤︸︷︷︸

2

∫
E

1

x
dx+

∫
δE

1

x
dx =︸︷︷︸

3

∫
E∪δE

1

x
dx ≤︸︷︷︸

4

∫ δb

a

1

x
dx = log(δb)−log(a) = log(δb/a)

1: For the first inequality, we need to show that µ(δE) = δµ(E). This comes from the definition of measure.
If we suppose that E is an open set, then it can be written as a union of disjoint open intervals ∪k(ak, bk)
and its Lebesgue measure is given:

µ(E) =
∑
k

(bk − ak)

Since the set δE contains the elements of E multiplied by δ, δE can be written as the union ∪k(δak, δbk),
so its Lebesgue measure is given:

µ(δE) =
∑
k

(δbk − δak) = δ
∑
k

(bk − ak) = δµ(E)

Likewise, if E is closed, we can pull out the δ from the definition of Lebesgue measure to conclude that
δµ(E) = µ(δE).

2: Since the function 1/x is strictly decreasing on (0∞), it is strictly decreasing on [a, b].
On E ⊆ [a, b], the function 1/x will always be greater than or equal to 1/b. Thus:∫

E

1

x
dx ≥

∫
E

1

b
dx =

1

b
µ(E)

On δE ⊆ [δa, δb], the function 1/x will always be greater than or equal to 1/δb. Thus:∫
δE

1

x
dx ≥

∫
δE

1

δb
dx =

1

δb
µ(δE)

3: Since E and δE are disjoint, we can use the additive property of the integral for disjoint domains.

4: Since E ∪ δE ⊆ [a, δb] and the integrand function is always positive on [a, δb], we can again use the
additivity of the integral to get this part of the inequality.

�

Problem 3

(i) Find a sequence of continuous functions on [0, 1] converging pointwise but not uniformly.

(ii) Prove that the space C([0, 1]) of continuous functions on [0, 1] is not complete in the L1 metric d(f, g) =∫ 1

0
|f(x)− g(x)|dx.

Solution:

(i) Define fn via:

fn(x) =

{
0 for x ∈ [0, 1− 1

n )

n(x− 1) + 1 for x ∈ [1− 1
n , 1]
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fn converges pointwise to the function

f(x) =

{
0 for x ∈ [0, 1)

1 for x = 1

fn(1) = 1 = f(1) for all n, and if x ∈ [0, 1), then there exists N such that x < 1− 1
N , and for all n ≥ N

we will have fn(x) = 0.
Since each function fn is continuous, if {fn} converged uniformly it would converge to a continuous
function. Since it converges to a function which is not continuous, this convergence is not uniform.

(ii) We need to find a sequence of functions in C([0, 1]) that converges to something in L1([0, 1]) \C([0, 1]),
with respect to the L1 metric. Define fn:

fn(x) :=


1 if 0 ≤ x ≤ 1

2

1− n(x− 1
2 ) if 1

2 ≤ x ≤
1
2 + 1

n

0 if 1
2 + 1

n ≤ x ≤ 1

These functions are individually continuous, but they converge in L1 sense to f(x) defined:

f(x) :=

{
1 if 0 ≤ x ≤ 1

2

0 if 1
2 < x ≤ 1

This function f is in L1([0, 1]) \ C([0, 1]).
To see the L1-convergence:

‖f − fn‖L1 =

∫ 1

0

|f(x)− fn(x)|dx

=

∫ 1
2+

1
n

1
2

|1− 1 + n(x− 1

2
)|dx

= n

∫ 1
2+

1
n

1
2

(x− 1

2
)dx

= n

(
x2

2
− 1

2
x
∣∣∣ 12+ 1

n

1
2

)
=

1

2n

Taking the limit as n→∞, ‖f − fn‖L1 → 0. This shows L1 convergence, but clearly f 6∈ C([0, 1]).

�

Problem 4

Let {ϕn} be a sequence of continuous real-valued functions defined on a compact metric space X. For each
x ∈ X, suppose that the sequence of values {ϕn(x)} is non-decreasing and bounded above. Define

ϕ(x) = lim
n→∞

ϕn(x)

If ϕ is continuous, prove that the sequence {ϕn} converges uniformly to ϕ.

Solution:
Fix ε > 0.
Define the sequence of functions gn:

gn(x) := ϕ(x)− ϕn(x)
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Since {ϕn(x)} is a nondecreasing sequence with limit ϕ(x), the sequence of gn functions is nonincreasing as
n→∞.
Define the open sets En:

En(x) := {x ∈ X : gn(x) < ε}

These sets are open, because gn is continuous and the En are the preimages of open sets under gn.
Also, X = ∪nEn, because every x ∈ X is eventually in some En, since lim

n→∞
ϕn(x) = ϕ(x).

Thus, {En}∞n=1 forms an open cover of X. Since X is compact, there exists some finite subcover: {En}Nn=1,
for some N ∈ N.
Thus, for all x ∈ X:

ϕ(x)− ϕN (x) = gN (x) < ε

Which shows that ϕn → ϕ uniformly.

�

Problem 5

Let M be a bounded subset of C([a, b]), the set of continuous functions on [a, b] equipped with the sup norm.
Set

A =

{
F : [a, b]→ R : F (x) =

∫ x

a

f(t)dt for some f ∈M
}

Show that the closure of A is a compact subset of C([a, b]).

Solution:
By Arzela-Ascoli, to show that A is compact, we need to show it is closed, bounded and equicontinuous.
A note on M : Since M is bounded, there exists some real number m such that ‖f‖∞ ≤ m for all f ∈M .
By definition, A is closed.
To show that A is bounded, consider an arbitrary F ∈ A.

|F (x)| =
∣∣∣∣∫ x

a

f(t)dt

∣∣∣∣
≤
∫ x

a

|f(t)|dt

≤
∫ x

a

mdt

≤ m|b− a|

This shows that F is bounded by m|b− a|.
If F ∈ A but not in A, then there is a sequence {Fn} ⊆ A which converges to F .
For any given ε > 0, there exists N ∈ N such that if n ≥ N then |F (x)− Fn(x)| < ε

|F (x)| = |F (x)− Fn(x) + Fn(x)|
≤ |F (x)− Fn(x)|+ |Fn(x)|
≤ ε+m|b− a|

Since ε can be chosen arbitrarily small, F is bounded by m|b− a| as well.
To show that A is equicontinuous, we need to show that for any x ∈ [a, b] and any ε > 0 there exists a δ > 0
such that

|x− y| < δ ⇒ |f(x)− f(y)| < ε for all f ∈ A
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Fixing x ∈ [a, b] and ε > 0, consider F ∈ A. If F ∈ A, then:

|F (x)− F (y)| =
∣∣∣∣∫ x

y

f(x)dx

∣∣∣∣
wlog, assume x > y (otherwise, switch them).

≤
∫ x

y

|f(x)|dx

≤
∫ x

y

mdx

= |x− y|m

So if we pick δ = ε/m, if |x− y| < δ then |F (x)− F (y)| < ε as desired.
If F is in the closure of A instead of the interior, then F is a limit point of some sequence of Fn in A, so:

|F (x)− F (y)| ≤ |F (x)− Fn(x)|+ |Fn(x)− Fn(y)|+ |Fn(y)− F (y)|

The first and last terms on the right side of the above inequality can be made arbitrarily small, and we
showed above that the middle term is less than ε for an appropriate choice of δ (for δ = ε/(3m)), so we have
that the equicontinuity holds across all of A. This delta will also work for F ’s in A, so we have equicontinuity.
This shows that A is closed, bounded, and equicontinuous, so by Arzela-Ascoli A is a compact subset of
C([a, b]).

�

Problem 6

Let f be a Lebesgue measurable real-valued function on the interval (0, 1). For n = 1, 2, 3, ... assume that
the integrals ∫ 1

0

x(f(x))ndx

exist and have the same nonzero value. Prove that f(x) = 1 on a set of positive measure and is otherwise
almost everywhere zero.
Hint: First show that f is essentially bounded.

Solution:
First, we will show that f(x) ≤ 1 a.e. on [0, 1].
If f(x) > 1 on a subset A ⊆ [0, 1], then f(x)2n → ∞ as n → ∞ on A. If m(A) > 0, this would contradict

the fact that we assume
∫ 1

0
x(f(x))ndx takes the same finite value for all values of n:∫ 1

0

(f(x))2nx ≥
∫
A

(f(x))2nxdx

→∞ as n→∞

So m(A) = 0, and we have
∫
A
x(f(x))2nxdx = 0 for all n. This shows f(x) ≤ 1 almost everywhere on [0, 1].

Now, look at the two integrals when n = 2 and when n = 3. They should have the same finite value, so
when we subtract them we will get 0:∫ 1

0

x(f(x))2dx−
∫ 1

0

x(f(x))3dx = 0∫ 1

0

x(f(x))2(1− f(x))dx = 0

The integrand x(f(x))2(1 − f(x)) is nonnegative, because x ≥ 0, (f(x))2 ≥ 0 and f(x) ≤ 1 a.e. on [0, 1].
The integrand is also measurable, because f and x are measurable, and so is (1− f(x)).
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The integral of a nonnegative measurable function is 0 if and only if the integrand is 0 a.e. (Proposition 9,
page 80 of Royden Fitzpatrick):

x(f(x))2(1− f(x)) = 0 a.e. on [0, 1]

Since x = 0 only at 0, this means, (f(x))2(1− f(x)) = 0 a.e. on (0, 1].
So either f(x) = 0 or f(x) = 1 a.e. on (0, 1].
It remains to show that m({x ∈ [0, 1] : f(x) = 1}) > 0.

If m({x ∈ [0, 1] : f(x) = 1}) = 0, then f(x) = 0 a.e. on [0, 1], which would mean
∫ 1

0
xf(x)dx = 0 (by

the same proposition above: prop 9 from Royden Fitzpatrick). Since we are assuming that ∈10 xf(x)dx is
nonzero, this cannot be the case. Thus, m({x ∈ [0, 1] : f(x) = 1}) > 0.

�
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