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Problem 1

Suppose that f :[0,1] — R is continuous. Prove that

1

lim f@™)dx

n—roo 0

exists and evaluate the limit. Does the limit always exist if f is only assume to be Lebesgue integrable?

Solution:

Note that if = € [0,1], then 2™ € [0,1] for any n € N.

By the Extreme Value Theorem, since f is continuous on the closed interval [0, 1], it must achieve a maximum
value on that interval: sup |f(z)| = ||f]l < oo

z€[0,1]
1 1
/ Fa)dx < / 1l d = I1f]l..
0 0

Since the righthand side is finite and independent of n, taking the limit as n — oo we still get a finite value
for the integral.
To find the value, we need to approximate f by polynomials, so first suppose p(x) is a polynomial:

For any n:

m
= E a;z* where a; € R
i=0

/1 dx—/ Zaxmdm‘
0

By hnearlty of the integral:

For any given n:

m

—Zaz/ z""dx
1=0

m er+1
B Zai (zn +1 )

Taking the limit as n — oo:
1 m

. n Y ai;
lim p(z™)dx = nh—{{.loz

‘ =0
n—oo 0 :O’L'fL-l-l

By the Stone-Weierstrass theorem, since f € C([0, 1]), we can find a sequence of polynomials with coefficients
in R such that {p;} — f uniformly on [0, 1].
For all n, if z € [0,1], then 2™ € [0, 1], so the same sequence of polynomials can be used to approximate



fm).

Fix € > 0:

/f dm—/pl )dx

/ £z — pila™)|da
S/O If = pill do

=[If = pills

As i — o0, || f — pillo = 0, so there exists N € N such that if ¢ > N, then || f — pi|| <€
Taking ¢ > N:
<|f-pill <€

(z™)dx — /Olpi(x")dx

This shows that the value of the integral of f(z™) is equal to the limit of the integral of the approximating
polynomials:

1
/ f(@™)dz = lim pi(z™)dx =0

17— 00 0

If f is Lebesgue integrable, then f € L1([0,1]). The continuous functions C([0,1]) are dense in L, so we
can approximate this integral using a sequence of C([0,1]) functions to approximate the integrand.

If f € L'([0,1]) is chosen arbitrarily, we can find a sequence {g;} C C([0,1]) such that g; — f with respect
to the L' norm on [0, 1].

/|f (z)|de — 0 as i — oo

Likeweise, 2™ € [0, 1] for any n, so we can use this sequence to approximate f(z™) for any n.
As we have shown, for each of the g; functions

1
lim gi(z")dx

n—oo 0

exists and is finite.
Now, we will show that the integral can be approximated for f € L([0,1]). Fixing e > 0:

dx—/gz (x™)dz| < /|f ™)|dx
0

= [l (") = gi(z") ]| x

Since || f(z™) — g;(z™)||;» — 0 as i — oo, we can find N € N such that for all i > N:

1f(@™) = gi(@")]| 2 <€

which yields the desired approximation.



Problem 2

Assume that a Lebesgue measurable set F is contained in the interval [a, b] for some 0 < a < b < co. Let
d > 1. If the sets E and 0F (the elements of E multiplied by ¢§) are disjoint, prove that the measure of E is
at most 2 log(bd/a).

Solution:
We will justify the following (in)equalities, which yields the desired result:

2 1 1

1 1 1 b q
—u(E) = —u(BE)+—=u(dF) < —d —dr = —dx < —dxz = log(6b)—1 = log(db
) Y gul0E) < [ yto+ | saa 3 | sdr < [ Sde = 10g(6b)-log(a) = log(ab/a)
2 4

1: For the first inequality, we need to show that u(dF) = du(FE). This comes from the definition of measure.
If we suppose that F is an open set, then it can be written as a union of disjoint open intervals Uy (ag, b)
and its Lebesgue measure is given:

WE) = (bk — ax)

k

Since the set §E contains the elements of F multiplied by d, 6 E can be written as the union U (dag, dby),
so its Lebesgue measure is given:

POE) = (0by — dar) =0 Y (bx — ax) = op(E)
k k

Likewise, if E is closed, we can pull out the ¢ from the definition of Lebesgue measure to conclude that
5u(E) = u(oE).

2: Since the function 1/xz is strictly decreasing on (0oc0), it is strictly decreasing on [a, b].
On FE C [a,b], the function 1/2 will always be greater than or equal to 1/b. Thus:

1 1 1
/Exdx_/Ebdx pHP)

On 0FE C [da, 0b], the function 1/x will always be greater than or equal to 1/db. Thus:
1 1 1
—dx > —dr = —u(dF
_/5Ea:x*/5E6bx 5 OE)

3: Since E and §F are disjoint, we can use the additive property of the integral for disjoint domains.

4: Since EUJE C [a,db] and the integrand function is always positive on [a,db], we can again use the
additivity of the integral to get this part of the inequality.

O

Problem 3

(i) Find a sequence of continuous functions on [0, 1] converging pointwise but not uniformly.
(ii) Prove that the space C([0, 1]) of continuous functions on [0, 1] is not complete in the L' metric d(f, g) =
1
Jo 1f(@) — g(@)ldz.

Solution:

(i) Define f,, via:

fu(z) =

0 for z €0,1— 1)
n(x—1)+1 forze[l—211]



fn converges pointwise to the function

_JO0 forze[0,1)
f(x)_{l forzx=1

fn(1) =1= f(1) for all n, and if # € [0,1), then there exists N such that z < 1— %, and for alln > N
we will have f,(z) = 0.

Since each function f,, is continuous, if {f,} converged uniformly it would converge to a continuous
function. Since it converges to a function which is not continuous, this convergence is not uniform.

(i) We need to find a sequence of functions in C([0, 1]) that converges to something in L*([0,1]) \ C([0, 1]),
with respect to the L' metric. Define f,:

1 ifo<az <3
fal@)i=q1-n(z—3) Hy<e<it]
0 ifi+i<a<l

These functions are individually continuous, but they converge in L! sense to f(z) defined:

1 ifo<z<i
f@y_{o ifl<z<1

This function f is in L([0,1]) \ C([0, 1]).
To see the L!-convergence:
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Taking the limit as n — oo, ||f — fall 1 — 0. This shows L' convergence, but clearly f ¢ C([0,1]).

Problem 4

Let {¢n} be a sequence of continuous real-valued functions defined on a compact metric space X. For each
x € X, suppose that the sequence of values {¢, ()} is non-decreasing and bounded above. Define

p(z) = lim ¢, (z)

n

If ¢ is continuous, prove that the sequence {¢,} converges uniformly to .

Solution:
Fix € > 0.
Define the sequence of functions g, :



Since {¢n(z)} is a nondecreasing sequence with limit ¢(x), the sequence of g,, functions is nonincreasing as
n — 00.
Define the open sets F,:
E,(z):={z € X :gn(z) <€}
These sets are open, because g, is continuous and the E,, are the preimages of open sets under g,,.
Also, X = U,E,, because every z € X is eventually in some E,, since nh_)rI;o on(z) = ().

Thus, {E,,}5°; forms an open cover of X. Since X is compact, there exists some finite subcover: {E,}Y_,,
for some N € N.
Thus, for all x € X:

p(x) —on(@) = gn(z) <e€
Which shows that ¢, — ¢ uniformly.

Problem 5

Let M be a bounded subset of C([a, b]), the set of continuous functions on [a, b] equipped with the sup norm.
Set

A= {F: (0,t] - R : F(z) = /azf(t)dt for some f € M}

Show that the closure of A is a compact subset of C([a, b]).

Solution:

By Arzela-Ascoli, to show that A is compact, we need to show it is closed, bounded and equicontinuous.
A note on M : Since M is bounded, there exists some real number m such that || f|| ., < m for all f € M.
By definition, A is closed.

To show that A is bounded, consider an arbitrary F € A.

This shows that F' is bounded by m|b — al.
If F € A but not in A, then there is a sequence {F,,} C A which converges to F.
For any given € > 0, there exists N € N such that if n > N then |F(x) — F,(2)| < €

[F(2)| = [F(z) = Fa(z) + Fu(2)]
< |F(z) = Fu(2)] + [Fa(2)]
< e+ m|b—a

Since € can be chosen arbitrarily small, F' is bounded by m|b — a| as well.
To show that A is equicontinuous, we need to show that for any = € [a,b] and any € > 0 there exists a § > 0
such that

lz —y| <d=|f(x) — f(y)| <eforall feA



Fixing z € [a,b] and € > 0, consider F' € A. If F € A, then:

/: f(z)dx

wlog, assume x > y (otherwise, switch them).

< [ lf@)lis

[F(z) - Fy)| =

So if we pick § = e/m, if |x —y| < ¢ then |F(z) — F(y)| < € as desired.
If F is in the closure of A instead of the interior, then F' is a limit point of some sequence of F;, in A, so:

[F(z) = F(y)| < [F(z) = Fa(2)| + [Fa(z) = Fa(y)| + [Fuly) = F(y)

The first and last terms on the right side of the above inequality can be made arbitrarily small, and we
showed above that the middle term is less than e for an appropriate choice of § (for § = €¢/(3m)), so we have
that the equicontinuity holds across all of A. This delta will also work for F’s in A, so we have equicontinuity.
This shows that A is closed, bounded, and equicontinuous, so by Arzela-Ascoli A is a compact subset of

C([a,b]).
O

Problem 6

Let f be a Lebesgue measurable real-valued function on the interval (0,1). For n = 1,2,3,... assume that
the integrals

/ (/)

exist and have the same nonzero value. Prove that f(z) = 1 on a set of positive measure and is otherwise
almost everywhere zero.
Hint: First show that f is essentially bounded.

Solution:
First, we will show that f(z) <1 a.e. on [0,1].
If f(z) > 1 on a subset A C [0,1], then f(z)?" — 0o as n — 0o on A. If m(A) > 0, this would contradict

the fact that we assume fol z(f(x))"dx takes the same finite value for all values of n:

/ (@) > [ (@)
— o0 asn — oo

So m(A) =0, and we have [, z(f(z))*"zdz = 0 for all n. This shows f(x) < 1 almost everywhere on [0, 1].
Now, look at the two integrals when n = 2 and when n = 3. They should have the same finite value, so
when we subtract them we will get 0:

1 o(f(x))*da — 1 o(f(2))’de =0
J J

/0 (f (@)1 — f(x))dz =0

The integrand z(f(z))?(1 — f(z)) is nonnegative, because z > 0, (f(x))? > 0 and f(z) < 1 a.e. on [0,1].
The integrand is also measurable, because f and z are measurable, and so is (1 — f(z)).



The integral of a nonnegative measurable function is 0 if and only if the integrand is 0 a.e. (Proposition 9,
page 80 of Royden Fitzpatrick):

2(f(2))2(1 — f(2)) = 0 aue. on [0,1]

Since z = 0 only at 0, this means, (f(z))*(1 — f(z)) = 0 a.e. on (0,1].

So either f(z) =0or f(x) =1 a.e. on (0,1].

It remains to show that m({z € [0,1] : f(z) =1}) > 0.

If m({z € [0,1] : f(z) = 1}) = 0, then f(z) = 0 a.e. on [0,1], which would mean fol zf(x)dx = 0 (by
the same proposition above: prop 9 from Royden Fitzpatrick). Since we are assuming that €} zf(z)dz is
nonzero, this cannot be the case. Thus, m({z € [0,1] : f(z) = 1}) > 0.

O



