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Problem 1

Let X be a metric space, A ⊂ X a compact subset and p ∈ X \ A a point of X not in A. Prove that there
exist disjoint open sets O1 and O2 in X such that A ⊂ O1 and p ∈ O2.

Solution:
EVERY METRIC SPACE IS HAUSDORFF.
For every x ∈ A, there exist open sets Ux, Vp such that x ∈ Ux, p ∈ Vp and Ux ∩ Vp = ∅.
Let {Ux}x∈A be a collection of such open sets for every x ∈ A, and let {Vk}k∈I be the collection of corre-
sponding open sets containing p.
{Ux}x∈A forms an open cover of A, so since A is compact, there exists a finite subcover {Ui}Ni=1 ⊆ {Ux}x∈A.
Let {Vi}Ni=1 ⊆ {Vk}k∈I be the corresponding open sets containing p.

Then, U :=
N⋃
i=1

Ui is an open set containing A, and V :=
N⋂
i=1

Vi is an open set containing p. Furthermore, by

construction we have U ∩ V = ∅, as desired.
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Problem 2

Let f(x) be a continuous real-valued function on [0, 1] which satisfies∫ 1

0

f(x)xndx = 0 for n = 0, 1, 2, ...

Prove that f(x) is identically 0.
Hint: You may find the (Stone-)Weierstrass theorem useful.

Solution:
Note that since

∫ 1

0
f(x)xndx = 0, this implies that

∫ 1

0
f(x)p(x)dx = 0 for any polynomial p(x).

The polynomial functions are dense in the continuous functions, so for any ε > 0 there exists a sequence of
polynomials {pn(x)} which converge to f(x). Consider the integral:∣∣∣∣∫ 1

0

(f(x))2dx

∣∣∣∣ =

∫ 1

0

|f(x)| · (f(x)− pn(x) + pn(x))dx

=≤
∫ 1

0

|f(x)| · |f(x)− pn(x)|dx+

∣∣∣∣∫ 1

0

f(x)pn(x)dx

∣∣∣∣
Since

∫ 1

0

f(x)pn(x)dx = 0 as noted above:

=

∫ 1

0

|f(x)| · |f(x)− pn(x)|dx

Taking the limit as n→∞, |f(x)− pn(x)| → 0, so:

= 0

This implies that (f(x))2 = 0 a.e., since this is a positive valued function. That implies that f(x) = 0 a.e.,
as desired.
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Problem 3

Let f, g be nonnegative, measurable functions on [0, 1] such that∫ 1

0

f(x)dx = 2

∫ 1

0

g(x)dx = 1∫ 1

0

f(x)2dx = 5

Let E = {x ∈ [0, 1]|f(x) ≥ g(x)}. Show that m(E) ≥ 1/5 (m is the Lebesgue measure).

Solutions:
On E, f(x) ≥ g(x), so on Ec, we have f(x) < g(x). By monotincity of the integral:∫

Ec

f(x)dx ≤
∫
Ec

g(x)dx∫ 1

0

f(x)dx−
∫
E

f(x)dx ≤
∫ 1

0

g(x)dx−
∫
E

g(x)dx

2−
∫
E

f(x)dx ≤ 1−
∫
E

g(x)dx

−
∫
E

f(x)dx ≤ −1−
∫
E

g(x)dx∫
E

f(x)dx ≥ 1 +

∫
E

g(x)dx

Since g is nonnegative, this implies that
∫
E
f(x)dx ≥ 1.

Note that f ∈ L2([0, 1]), since ‖f‖22 = 5 is given. We will use this fact so that we can apply H”older’s
inequality:

1 ≤
∫
E

f(x)dx

=

∫ 1

0

f(x)χEdx

By Hölder’s Inequality: :

≤ ‖f‖2 ‖χE‖2
=
√

5 ·
√
µ(E)

Squaring both sides and dividing by 5, we get µ(E) ≥ 1/5, as desired.
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Problem 4

Assume that f : [0, 1]→ R is an absolutely continuous function with
∫ 1

0
f(x)dx = 0. Prove for any y ∈ [0, 1]

that ∣∣∣∣∫ 1

0

(y − x)f ′(x)dx

∣∣∣∣ ≤ sup
0≤x≤1

|f(x)|

Solution:
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Since f is absolutely continuous, we know f ′(x) exists for all x ∈ [0, 1] and f(x) = f(0) +
∫ x

0
f(t)dt.∣∣∣∣∫ 1

0

(y − x)f ′(x)dx

∣∣∣∣ =

∣∣∣∣y ∫ 1

0

f ′(x)dx−
∫ 1

0

xf ′(x)dx

∣∣∣∣
Integrating the second integral by parts:

=

∣∣∣∣y ∫ 1

0

f ′(x)dx−
(
xf(x)

∣∣∣1
0
−
∫ 1

0

f(x)dx

)∣∣∣∣
=

∣∣∣∣y ∫ 1

0

f ′(x)dx− f(1)

∣∣∣∣
Using the FTC to evaluate the integral:

= |yf(1)− yf(0)− f(1)|
= |f(1)(y − 1)− yf(0)|
Factoring out a − 1 :

= |(1− y)f(1) + yf(0)|

If y is some point in [0, 1], then (1− y)f(1) + yf(0) is a parametrization of the straight line connecting f(0)
and f(1).
This means that (1− y)f(1) + yf(0) ≤ max

x∈{0,1}
f(x).

Certainly we have | max
x∈{0,1}

f(x)| ≤ sup
0≤x≤1

|f(x)|, so the desired result follows.
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Problem 5

Let f ∈ L3([−1, 1]). Show that ∫ 1

−1

|f(x)|√
|x|

dx <∞

Solution:

Since f ∈ L3([−1, 1]), if we show that 1√
|x|
∈ L3/2([−1, 1]), then we can apply Hölder’s inequality.

We need to show its L3/2-norm is finite:∫ 1

−1

(
1√
|x|

)3/2

dx =

∫ 1

−1
|x|−3/4dx

=

∫ 0

−1
(−x)−3/4dx+

∫ 1

0

x−3/4dx

= 2

∫ 1

0

x−3/4dx

= 2(4x1/4
∣∣∣1
0
)

= 8

<∞

which shows 1√
|x|
∈ L3/2([−1, 1]).

Now Hölder’s theorem applies and we must have |f(x) · 1√
|x|
| ∈ L1([−1, 1]) and

∫ 1

−1

|f(x)|√
|x|

dx ≤ ‖f‖L3 ·

∥∥∥∥∥ 1√
|x|

∥∥∥∥∥
L3/2

<∞
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Problem 6

(a) Show that for x > 0 the limit lim
R→∞

∫ R

0
cos(t)
x+t dt exists.

(b) Define for x > 0

f(x) = lim
R→∞

∫ R

0

cos(t)

x+ t
dt

Show that f(x) is continuous on (0,∞).

Solution:

(a) Is noticing that
cos(t)

x+ t
=

∫ ∞
0

e−(x+t)y cos(t)dy

worth anything?
...Maybe not.
Look at the integral and using integration by parts:∫ R

0

cos(t)

x+ t
dt =

sin(t)

x+ t

∣∣∣R
0

+

∫ R

0

sin(t)

(x+ t)2
dt

=
sin(R)

x+R
− sin(0)

x
+

∫ R

0

sin(t)

(x+ t)2
dt

Since sin(t), sin(R) ≤ 1:

≤ 1

x+R
+

∫ R

0

1

(x+ t)2
dt

=
1

x+R
+

(
−1

(x+ t)

∣∣∣R
0

)
=

1

x+R
− 1

x+R
+

1

x

=
1

x

Taking the limit as R→∞:

lim
R→∞

∫ R

0

cos(t)

x+ t
dt =

1

x

Since the value 1/x is finite, the limit necessarily exists.

(b) To show that f(x) is a continuous function?
Assume wlog that x ≤ y. To show f is continuous at x ∈ (0,∞):

|f(x)− f(y)| = lim
R→∞

∣∣∣∣∣
∫ R

0

cos(t)

(
1

x+ t
− 1

y + t

)
dt

∣∣∣∣∣
= lim

R→∞

∣∣∣∣∣
∫ R

0

cos(t)

(
y − x

(x+ t)(y + t)

)
dt

∣∣∣∣∣
By the change of variables z = x+ t :

= |y − x| lim
R→∞

∫ R

x

1

z · |y − x+ z|
dz

= |y − x| · log(y/x)

y − x
So if x, y are chosen such that log(y/x) < ε, then the result holds.
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