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Problem 1

Let X be a metric space, A C X a compact subset and p € X \ A a point of X not in A. Prove that there
exist disjoint open sets O; and Oz in X such that A C O; and p € Os.

Solution:
EVERY METRIC SPACE IS HAUSDORFF.
For every « € A, there exist open sets Uy, V), such that v € Up,p e V, and U, NV, = @.
Let {U,}zca be a collection of such open sets for every x € A, and let {Vi}rez be the collection of corre-
sponding open sets containing p.
{U,}zca forms an open cover of A, so since A is compact, there exists a finite subcover {U;}¥.; C {U,}zea.
Let {V;}¥, C {Vi}rer be the corresponding open sets containing p.
N N
Then, U := |J U; is an open set containing A, and V := (] V; is an open set containing p. Furthermore, by

i=1 i=1
construction we have U NV = &, as desired.
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Problem 2

Let f(z) be a continuous real-valued function on [0, 1] which satisfies
f(x)z"dx =0 for n=0,1,2,...
Prove that f(x) is identically 0.

Hint: You may find the (Stone-)Weierstrass theorem useful.

Solution:

Note that since fo )z"dz = 0, this implies that fo )p(z)dx = 0 for any polynomial p(x).

The polynomial functlons are dense in the continuous functlons, so for any € > 0 there exists a sequence of
polynomials {p,(z)} which converge to f(x). Consider the integral:

/ (F()d

= [ @1 1@ = o) + pa(o)ie

—</|f ~ pala Idx+’/f 2)pa(2)da

Since / f(@)pn(z)dz = 0 as noted above:

/ e — pa(@)lde

Taking the limit as n — oo, |f(z) — pn(z)| — 0, so:
=0

This implies that (f(z))? = 0 a.e., since this is a positive valued function. That implies that f(z) = 0 a.e.,
as desired.
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Problem 3

Let f, g be nonnegative, measurable functions on [0, 1] such that

/ e =

/19(:17)d:c1
/ fa

Let E = {x € [0,1]|f(z) > g(x)}. Show that m(E) > 1/5 (m is the Lebesgue measure).

Solutions:
On E, f(x) > g(x), so on E°, we have f(z) < g(z). By monotincity of the integral:

[ @< [ glayas

/01 f(x)dx?Ef(x)dx</01g/(x)dx/Eg(gg)dz
2— [ fla)de <1— [ g(a)do
/zf(w)dﬂc < -1 E/Eg(x)dx
/Ef(w)dxz 1+/Eg(x)d:c

Since g is nonnegative, this implies that [, f(z)dx > 1.
Note that f € L?([0,1]), since ||f||§ = 5 is given. We will use this fact so that we can apply H”older’s

inequality:
1< / f(x)dx
E

_ / ' fe)pds

By Holder’s Inequality: :
< flly Ixell

VB VilB)

Squaring both sides and dividing by 5, we get u(E) > 1/5, as desired.

Problem 4

Assume that f : [0,1] — R is an absolutely continuous function with fol f(z)dx = 0. Prove for any y € [0,1]
that

< sup |f()]
0<z<1

/ (- ) (a)da

Solution:



Since f is absolutely continuous, we know f/(z) exists for all z € [0,1] and f(z) = f(0) + [ f(t)dt.

= y/o1 [ (z)dx — /01 xf' (z)dx

Integrating the second integral by parts:

_ y/ol f(x)dx — (xf(ﬂﬁ)’; - /Olf(x)dx>‘

1
= "(2)dx —
v [ 1@da= 1)
Using the FTC to evaluate the integral:
= lyf(1) —yf(0) - f(1)|
= /Wy —1) =y f(0)|

Factoring out a —1:
=1 =y)f(1)+yf(0)
If y is some point in [0, 1], then (1 —y)f(1) +yf(0) is a parametrization of the straight line connecting f(0)

A?y—waMx

and f(1).
This means that (1 —y)f(1) +yf(0) < H%%}i} f(z).
x€q0,
Certainly we have | max f(z)] < sup |f(z)], so the desired result follows.
ze{0,1} 0<z<1
]
Problem 5
Let f € L3([-1,1]). Show that
1
[T
-1 V2]
Solution:
Since f € L3([—1,1]), if we show that \/% € L3/%([~1,1]), then we can apply Holder’s inequality.
We need to show its L3/2-norm is finite:
1 1 3/2 1 )
— dz :/ x| e
[4<1ﬂ> [ e
0 1
= / (—2) "3 da +/ 3 dx
-1 0
1
= 2/ a3/ dx
0
1
= 2(43@1/4) )
0
—8
< o0
which shows \/—1‘;' € L3/2([-1,1]).
Now Holder’s theorem applies and we must have |f(z) - ﬁ| € L'([-1,1]) and
1
|/ ()] 1
P e < fllye- | ——=| <o
(/1¢x| V| o
]



Problem 6

(a) Show that for > 0 the limit lim fOR cos(t)
R—o0

ot dt exists.

(b) Define for z > 0

R
f(z) = lim / COS(t)dt
R—oo Jo x+t

Show that f(z) is continuous on (0, c0).

Solution:

(a) Is noticing that

o0
cos(t) :/ o~ (@+t)y cos(t)dy
T+t 0

worth anything?
...Maybe not.
Look at the integral and using integration by parts:

/R cos(t) . _ sin(t)‘“" n / " sin(t) dt

x+t x+tlo (x+1)2
. . R .
_ sin(R)  sin(0) +/ sin(t) dt
x+ R x o (z+1)?

Since sin(t), sin(R) < 1:

1 R
< dt
“z+R * /0 (x+1t)?

B xiRJr ((x_jt)‘R>

0
1 1 +1
z+R z+R =z
1
o

Taking the limit as R — oo:
R

1
lim cos(?) dt = —
R~>ooo x+t x

Since the value 1/z is finite, the limit necessarily exists.

(b) To show that f(z) is a continuous function?
Assume wlog that z < y. To show f is continuous at z € (0, 00):

1) = 01 = Jim | [ eost) (4 - 5 Y

By the change of variables z =z 4+t :
r 1
= |y — x| lim ——dz
WS, T y—ata
log(y/x
— |y — |- log(y/x)
y—x
So if z,y are chosen such that log(y/x) < €, then the result holds.




