Analysis Prelim January 2012

Sarah Arpin University of Colorado Boulder Mathematics Department Sarah.Arpin@colorado.edu

Problem 1

- (a) Let A be a measurable subset of [0, 1]. Define the function $f : [0, 1] \to \mathbb{R}$ by setting $f(x) = \mu(A \cap [0, x])$; here μ is Lebesgue measure. Show that f is absolutely continuous.
- (b) Does there exist a measurable set $A \subset [0, 1]$ such that one has

$$\mu(A \cap [a,b]) = \frac{1}{2}(b-a)$$

for every interval $[a, b] \subset [0, 1]$?

Solution:

(a) f is absolutely continuous iff $\forall \epsilon > 0$, there exists $\delta > 0$ such that if

$$\sum_{k=1}^{N} (b_k - a_k) < \delta \text{ for some collection of disjoint subintervals } \{(a_k, b_k)\}_{k=1}^{N} \subseteq [0, 1]$$

then:

$$\sum_{k=1}^{N} |f(b_k) - f(a_k)| < \epsilon$$

Using the definition of the function f:

$$\sum_{k=1}^{N} |f(b_k) - f(a_k)| = \sum_{k=1}^{N} |\mu(A \cap [0, b_k]) - \mu(A \cap [0, a_k])|$$

By the excision property:

$$= \sum_{k=1}^{N} \mu(A \cap [a_k, b_k])$$

Since $A \cap [a_k, b_k] \subseteq [a_k, b_k]$:
$$\leq \sum_{k=1}^{N} \mu([a_k, b_k])$$

$$= \sum_{k=1}^{N} |b_k - a_k|$$

So if we set $\delta = \epsilon$, we get the desired result. Thus, f is absolutely continuous.

(b) Not possible. Proof by contradiction.

Suppose there does exist $A \subset [0,1]$ such that $\mu(A \cap [a,b]) = \frac{1}{2}(b-a)$ for every interval $[a,b] \subset [0,1]$. Then:

$$\mu(A \cap [b, a]) = f(b) - f(a) = \frac{1}{2}(b - a)$$

Consider the interval [0, x] where x is a variable:

$$f(x) - f(0) = \frac{1}{2}(x - 0)$$

$$f'(x) = \frac{1}{2}$$

Thus $f'(x) = \frac{1}{2}$ a.e. Looking at the original definition of f(x) and finding f'(x), this would imply:

$$\frac{d}{dx}f(x) = \frac{d}{dx} \int_{A \cap [0,x]} 1dx$$
$$= \frac{d}{dx} \int_0^x \chi_A(t)dt$$
$$= \chi_A(x) \text{(by the fundamental theorem of calculus)}$$

But $\chi_A(x) = 0$ or 1, so this is not possible.

Problem 2

Let $f \in L^p(\mathbb{R})$, $1 \le p < \infty$. Set $f_n(x) = f(x + \frac{1}{n})$. Show that the sequence f_n converges to f in L^p . Is this true for $p = \infty$?

Solution:

The continuous functions of compact support $C_C(\mathbb{R})$ are dense in $L^p(\mathbb{R})$ for $1 \leq p < \infty$. First, suppose $f \in C_C(\mathbb{R})$. Then, there exists $[a, b] \subset \mathbb{R}$ such that

$$\int_{\mathbb{R}} f d\mu = \int_{a}^{b} f d\mu$$

Since f is continuous, we know $f_n(x) \to f(x)$ pointwise. The function $|\cdot|^p$ is also continuous, so this means $|f(x) - f_n(x)|^p \to 0$ pointwise as $n \to \infty$.

Also, by the extreme value theorem there exists M > 0 such that $|f(x)| \leq M$ on [a, b]. We will show that $|f - f_n|^p$ is bounded as well, and then justify the switching of the limit with the integral by the Lebesgue Dominated Convergence Theorem.

$$|f(x) - f_n(x)|^p \le (|f(x)| + |f_n(x)|)^p \cdot \chi_{[a,b]}$$

$$\le (2M)^p \cdot \chi_{[a,b]}$$

The function $(2M)^p \cdot \chi_{[a,b]}$ is integrable:

$$\int_{\mathbb{R}} (2M)^p \cdot \chi_{[a,b]} d\mu = \int_a^b (2M)^p = (b-a)(2M)^p < \infty$$

So the function $|f(x) - f_n(x)|^p$ is dominated by the integrable function $(2M)^p \cdot \chi_{[a,b]}$, and by the Lebesgue Dominated Convergence Theorem we are allowed to switch the limit and the integral:

$$\lim_{n \to \infty} \int_{\mathbb{R}} |f(x) - f_n(x)|^p dx = \int_{\mathbb{R}} 0 dx$$
$$= 0$$

This shows that $\|f - f_n\|_p^p \to 0$ as $n \to \infty$, so by taking the *p*-th route we show $\|f - f_n\|_p \to 0$, as desired. Now that we have shown that the result holds for continuous functions of compact support, we will use the fact that these functions are dense in $L^p(\mathbb{R})$ to show that $L^p(\mathbb{R})$ has the property as well. Take $f \in L^p(\mathbb{R})$. There exists $g \in C_C(\mathbb{R})$ such that $\|f - g\|_p < \sqrt[p]{\epsilon/2}$. Let $g_n(x) := g(x + \frac{1}{n})$.

Considering the integral in question, fix an arbitrarily small $\epsilon > 0$:

$$\begin{split} \lim_{n \to \infty} \|f - f_n\|_p^p &= \int_{\mathbb{R}} |f(x) - f_n(x)|^p dx \\ &= \lim_{n \to \infty} \int_{\mathbb{R}} |f(x) - g(x) + g(x) - g_n(x) + g_n(x) - f_n(x)|^p dx \\ &\leq \lim_{n \to \infty} \int_{\mathbb{R}} |f(x) - g(x)|^p dx + \lim_{n \to \infty} \int_{\mathbb{R}} |g(x) - g_n(x)|^p dx + \lim_{n \to \infty} \int_{\mathbb{R}} |f_n(x) - g_n(x)|^p dx \\ &\text{In the last integral, substitute } x + \frac{1}{n} = y: \\ &= \lim_{n \to \infty} \int_{\mathbb{R}} |f(x) - g(x)|^p dx + \lim_{n \to \infty} \int_{\mathbb{R}} |g(x) - g_n(x)|^p dx + \lim_{n \to \infty} \int_{\mathbb{R}} |f(x) - g(x)|^p dx \\ &= \|f - g\|_p^p + \lim_{n \to \infty} \int_{\mathbb{R}} |g(x) - g_n(x)|^p dx + \|f - g\|_p^p \\ &< \epsilon + 0 \end{split}$$

Since ϵ can be chosen to be arbitrarily small, this shows $||f - f_n||_p^p \to 0$ as $n \to \infty$, and thus $||f - f_n||_p \to 0$ as desired.

Problem 3

Let f_n be a sequence of continuous functions on [0, 1] such that $|f_n(x)| \leq 1$ for all $n \in \mathbb{N}, x \in [0, 1]$. Let K be a continuous function on $[0, 1] \times [0, 1]$. Define a sequence of functions g_n on [0, 1] by

$$g_n(x) := \int_0^1 K(x, y) f_n(y) dy$$

Show that the sequence g_n contains a uniformly convergent subsequence.

Solution:

First, show that $g_n(x)$ is a continuous function for each n. Fix $\epsilon > 0$.

$$|g_n(x_1) - g_n(x_2)| = \left| \int_0^1 (K(x_1, y) - K(x_2, y)) f_n(y) dy \right|$$

$$\leq \int_0^1 |K(x_1, y) - K(x_2, y)| \cdot |f_n(y)| dy$$

$$\leq \int_0^1 |K(x_1, y) - K(x_2, y)| \cdot |f_n(y)| dy$$

Since K is continuous on a compact set, K must be uniformly continuous.

Thus, there exists $\delta > 0$ such that if $|x_1 - x_2| < \delta$, then $|K(x_1, y) - K(x_2, y)| < \epsilon$: Supposing we take such x_1, x_2 with $|x_1 - x_2| < \delta$:

$$\leq \int_0^1 \epsilon \cdot 1 dy$$
$$= \epsilon$$

So g_n is continuous. The continuity condition does not depend on n, so $\{g_n\}$ is equicontinuous. By Arzela-Ascoli: A subset $\{g_n\} \subset C([0,1])$ contains a uniformly convergent subsequence if and only if it is bounded and equicontinuous.

We have already shown that $\{g_n\}$ is equicontinuous. Next, show that it is bounded.

Note that, by the extreme value theorem, there exists M such that $|K(x,y)| \leq M$ for all $(x,y) \in [0,1] \times [0,1]$.

$$g_n(x)| = \left| \int_0^1 K(x, y) f_n(y) dy \right|$$

$$\leq \int_0^1 |K(x, y)| \cdot |f_n(y)| dy$$

$$\leq \int_0^1 M \cdot 1 dy$$

$$= M$$

So $|g_n(x)| \leq M$ for all n and for all $x \in [0, 1]$.

Problem 4

Let $\{f_n\}$ be a sequence of measurable functions on [0, 1], and suppose that for every a > 0 the infinite series $\sum_{n=1}^{\infty} \mu(\{x \in [0, 1] : |f_n(x)| > a\})$ converges; here μ is Lebesgue measure. Prove that $\lim_{n \to \infty} f_n(x) = 0$ for almost every $x \in [0, 1]$.

Solution: By the Borel-Cantelli Lemma, if the series $\sum_{n=1}^{\infty} \mu(\{x \in [0,1] : |f_n(x)| > a\})$ converges, then almost every $x \in [0,1]$ belongs to at most finitely many of the sets $\{x \in [0,1] : |f_n(x)| > a\}$. Fix $\epsilon > 0$.

By hypothesis, the series $\sum_{n=1}^{\infty} \mu(\{x \in [0,1] : |f_n(x)| > \epsilon/2\})$ converges, so almost every $x \in [0,1]$ belongs to at most finitely many of the sets $\{x \in [0,1] : |f_n(x)| > \epsilon/2\}$.

Thus, there exists $N \in \mathbb{N}$ such that $\mu(\{x \in [0,1] : |f_n(x)| > \epsilon/2\}) = 0$ for all $n \ge N$. Thus, almost every $x \in [0,1]$ belongs to $\{x \in [0,1] : |f_N(x)| \le \epsilon/2\}$, so for almost every $x \in [0,1], |f_n(x)| \le \epsilon/2 < \epsilon$ for all $n \ge N$. This shows $\lim_{n \to \infty} |f_n(x)| = 0$, since ϵ can be made arbitrarily small.

Problem 5

Let $A \subset \mathbb{R}$ be a set of zero Lebesgue measure. Prove that it can be 'translated completely into the set of irrationals', that is, there exists a $c \in \mathbb{R}$ such that $A + c \subset \mathbb{R} \setminus \mathbb{Q}$, where $A + c := \{x + c : x \in A\}$.

Solution:

By contradiction, suppose that there exists $q \in \mathbb{Q}$ such that $q \in A + (-r)$ for every $r \in \mathbb{R}$. Thus, for every $r \in \mathbb{R}$, there exists some q such that:

$$q = a + (-r)$$
 for some $a \in A$

This implies r = a - q. Since this holds for every $r \in \mathbb{R}$:

$$\mathbb{R} \subseteq \bigcup_{q \in \mathbb{Q}} (A - q)$$

However, m(A - q) = 0, because Lebesgue measure is translation invariant. Since the union over \mathbb{Q} is countable, this would mean that \mathbb{R} is a countable union of measure 0 sets, which would mean \mathbb{R} is measure 0 itself (by the countable additivity of measure). Of course \mathbb{R} is not measure 0, so this is not possible. Thus, there must exist some $r \in \mathbb{R}$ such that $A + r \subset \mathbb{R} \setminus \mathbb{Q}$.

Problem 6

Let μ be the Lebesgue measure on the interval [a, b]. Let $A_n, n \ge 1$ be measurable subsets of [a, b], and f(x) the number of sets containing x, for $x \in [a, b]$. That is, $f(x) = \#(\{n \ge 1 : x \in A_n\})$ Prove that $f : [a, b] \to \mathbb{N} \cup \{+\infty\}$ is measurable and that

$$(b-a)\int_{\mathbb{R}}f^2(x)dx\geq \left[\sum_{k=1}^{\infty}\mu(A_k)\right]^2$$

Solution:

First, note that

$$f(x) = \sum_{n=1}^{\infty} \chi_{A_n}$$

So f is a nonnegative function on [a, b].

By definition, f is measurable if and only if the sets $\{x \in [a, b] : f(x) \ge n\}$ are measurable for $n \in \mathbb{N}$. Note how these sets are constructed:

$$\{x \in [a,b] : f(x) \ge 0\} = [a,b]$$
$$\{x \in [a,b] : f(x) \ge 1\} = \bigcup_{n=1}^{\infty} A_n$$
$$\{x \in [a,b] : f(x) \ge 2\} = \bigcup_{n_1 \ne n_2 \in \mathbb{N}} (A_{n_1} \cap A_{n_2})$$
$$\vdots$$
$$\{x \in [a,b] : f(x) \ge k\} = \bigcup_{n_1,\dots,n_k \in \mathbb{N} \text{ disjoint}} \left(\bigcap_{i=1}^k A_{n_i}\right)$$

Since the A_n are measurable, these are measurable sets as well, so f is a measurable function. To show the specified inequality, consider two cases. First, if $f \notin L^2(\mathbb{R})$, then:

$$\int_{\mathbb{R}} f^2(x) dx \geq \infty \geq \left[\sum_{k=1}^{\infty} \mu(A_k)\right]^2$$

So the desired result holds. Next, suppose $f \in L^2(\mathbb{R})$. $\chi_{[a,b]} \in L^2$ as well, so by Cauchy-Schwarz:

$$\int_{\mathbb{R}} f(x)dx = \int_{\mathbb{R}} f(x) \cdot \chi_{[a,b]}dx$$
$$\leq \left\|\chi_{[a,b]}\right\|_{L^{2}} \cdot \left\|f\right\|_{L^{2}}$$
$$= (b-a)^{1/2} \left(\int_{\mathbb{R}} f^{2}(x)dx\right)^{1/2}$$

Squaring both sides:

$$\left(\int_{\mathbb{R}} f(x)dx\right)^2 \le (b-a)\int_{\mathbb{R}} f^2(x)dx$$

So it remains only to show that $\left(\int_{\mathbb{R}} f(x) dx\right)^2 = \left[\sum_{k=1}^{\infty} \mu(A_k)\right]^2$.

$$\left(\int_{\mathbb{R}} f(x)dx\right)^2 = \left(\int_{\mathbb{R}} \sum_{k=1}^{\infty} \chi_{A_k}(x)dx\right)^2$$

By Tonelli's theorem, since the integrand is nonnegative we can switch the sum and integral:

$$= \left(\sum_{k=1}^{\infty} \int_{\mathbb{R}} \chi_{A_k}\right)^2$$
$$= \left(\sum_{k=1}^{\infty} \mu(A_k)\right)^2$$

Which shows the desired result.