
Analysis Prelim January 2012

Sarah Arpin
University of Colorado Boulder

Mathematics Department
Sarah.Arpin@colorado.edu

Problem 1

(a) Let A be a measurable subset of [0, 1]. Define the function f : [0, 1]→ R by setting f(x) = µ(A∩ [0, x]);
here µ is Lebesgue measure. Show that f is absolutely continuous.

(b) Does there exist a measurable set A ⊂ [0, 1] such that one has

µ(A ∩ [a, b]) =
1

2
(b− a)

for every interval [a, b] ⊂ [0, 1]?

Solution:

(a) f is absolutely continuous iff ∀ε > 0, there exists δ > 0 such that if

N∑
k=1

(bk − ak) < δ for some collection of disjoint subintervals {(ak, bk)}Nk=1 ⊆ [0, 1]

then:
N∑

k=1

|f(bk)− f(ak)| < ε

Using the definition of the function f :

N∑
k=1

|f(bk)− f(ak)| =
N∑

k=1

|µ(A ∩ [0, bk])− µ(A ∩ [0, ak])|

By the excision property:

=

N∑
k=1

µ(A ∩ [ak, bk])

Since A ∩ [ak, bk] ⊆ [ak, bk]:

≤
N∑

k=1

µ([ak, bk])

=

N∑
k=1

|bk − ak|

So if we set δ = ε, we get the desired result. Thus, f is absolutely continuous.

(b) Not possible. Proof by contradiction.
Suppose there does exist A ⊂ [0, 1] such that µ(A ∩ [a, b]) = 1

2 (b − a) for every interval [a, b] ⊂ [0, 1].
Then:

µ(A ∩ [b, a]) = f(b)− f(a) =
1

2
(b− a)

Consider the interval [0, x] where x is a variable:

f(x)− f(0) =
1

2
(x− 0)
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f ′(x) =
1

2

Thus f ′(x) = 1
2 a.e. Looking at the original definition of f(x) and finding f ′(x), this would imply:

d

dx
f(x) =

d

dx

∫
A∩[0,x]

1dx

=
d

dx

∫ x

0

χA(t)dt

= χA(x)(by the fundamental theorem of calculus)

But χA(x) = 0 or 1, so this is not possible.

�

Problem 2

Let f ∈ Lp(R), 1 ≤ p <∞. Set fn(x) = f(x+ 1
n ). Show that the sequence fn converges to f in Lp. Is this

true for p =∞?

Solution:
The continuous functions of compact support CC(R) are dense in Lp(R) for 1 ≤ p <∞.
First, suppose f ∈ CC(R). Then, there exists [a, b] ⊂ R such that∫

R
fdµ =

∫ b

a

fdµ

Since f is continuous, we know fn(x)→ f(x) pointwise. The function | · |p is also continuous, so this means
|f(x)− fn(x)|p → 0 pointwise as n→∞.
Also, by the extreme value theorem there exists M > 0 such that |f(x)| ≤ M on [a, b]. We will show that
|f − fn|p is bounded as well, and then justify the switching of the limit with the integral by the Lebesgue
Dominated Convergence Theorem.

|f(x)− fn(x)|p ≤ (|f(x)|+ |fn(x)|)p · χ[a,b]

≤ (2M)p · χ[a,b]

The function (2M)p · χ[a,b] is integrable:∫
R
(2M)p · χ[a,b]dµ =

∫ b

a

(2M)p = (b− a)(2M)p <∞

So the function |f(x)− fn(x)|p is dominated by the integrable function (2M)p · χ[a,b], and by the Lebesgue
Dominated Convergence Theorem we are allowed to switch the limit and the integral:

lim
n→∞

∫
R
|f(x)− fn(x)|pdx =

∫
R

0dx

= 0

This shows that ‖f − fn‖pp → 0 as n→∞, so by taking the p-th route we show ‖f − fn‖p → 0, as desired.
Now that we have shown that the result holds for continuous functions of compact support, we will use the
fact that these functions are dense in Lp(R) to show that Lp(R) has the property as well.
Take f ∈ Lp(R). There exists g ∈ CC(R) such that ‖f − g‖p < p

√
ε/2.

Let gn(x) := g(x+ 1
n .
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Considering the integral in question, fix an arbitrarily small ε > 0:

lim
n→∞

‖f − fn‖pp =

∫
R
|f(x)− fn(x)|pdx

= lim
n→∞

∫
R
|f(x)− g(x) + g(x)− gn(x) + gn(x)− fn(x)|pdx

≤ lim
n→∞

∫
R
|f(x)− g(x)|pdx+ lim

n→∞

∫
R
|g(x)− gn(x)|pdx+ lim

n→∞

∫
R
|fn(x)− gn(x)|pdx

In the last integral, substitute x+
1

n
= y:

= lim
n→∞

∫
R
|f(x)− g(x)|pdx+ lim

n→∞

∫
R
|g(x)− gn(x)|pdx+ lim

n→∞

∫
R
|f(x)− g(x)|pdx

= ‖f − g‖pp + lim
n→∞

∫
R
|g(x)− gn(x)|pdx+ ‖f − g‖pp

< ε+ 0

Since ε can be chosen to be arbitrarily small, this shows ‖f − fn‖pp → 0 as n→∞, and thus ‖f − fn‖p → 0
as desired.

�

Problem 3

Let fn be a sequence of continuous functions on [0, 1] such that |fn(x)| ≤ 1 for all n ∈ N, x ∈ [0, 1]. Let K
be a continuous function on [0, 1]× [0, 1]. Define a sequence of functions gn on [0, 1] by

gn(x) :=

∫ 1

0

K(x, y)fn(y)dy

Show that the sequence gn contains a uniformly convergent subsequence.

Solution:
First, show that gn(x) is a continuous function for each n. Fix ε > 0.

|gn(x1)− gn(x2)| =
∣∣∣∣∫ 1

0

(K(x1, y)−K(x2, y))fn(y)dy

∣∣∣∣
≤
∫ 1

0

|K(x1, y)−K(x2, y)| · |fn(y)|dy

≤
∫ 1

0

|K(x1, y)−K(x2, y)| · |fn(y)|dy

Since K is continuous on a compact set, K must be uniformly continuous.

Thus, there exists δ > 0 such that if |x1 − x2| < δ, then |K(x1, y)−K(x2, y)| < ε :

Supposing we take such x1, x2 with |x1 − x2| < δ:

≤
∫ 1

0

ε · 1dy

= ε

So gn is continuous. The continuity condition does not depend on n, so {gn} is equicontinuous.
By Arzela-Ascoli: A subset {gn} ⊂ C([0, 1]) contains a uniformly convergent subsequence if and only if it is
bounded and equicontinuous.
We have already shown that {gn} is equicontinuous. Next, show that it is bounded.
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Note that, by the extreme value theorem, there exists M such that |K(x, y)| ≤M for all (x, y) ∈ [0, 1]× [0, 1].

|gn(x)| =
∣∣∣∣∫ 1

0

K(x, y)fn(y)dy

∣∣∣∣
≤
∫ 1

0

|K(x, y)| · |fn(y)|dy

≤
∫ 1

0

M · 1dy

= M

So |gn(x)| ≤M for all n and for all x ∈ [0, 1].

�

Problem 4

Let {fn} be a sequence of measurable functions on [0, 1], and suppose that for every a > 0 the infinite series
∞∑

n=1
µ({x ∈ [0, 1] : |fn(x)| > a}) converges; here µ is Lebesgue measure. Prove that lim

n→∞
fn(x) = 0 for almost

every x ∈ [0, 1].

Solution: By the Borel-Cantelli Lemma, if the series
∞∑

n=1
µ({x ∈ [0, 1] : |fn(x)| > a}) converges, then almost

every x ∈ [0, 1] belongs to at most finitely many of the sets {x ∈ [0, 1] : |fn(x)| > a}.
Fix ε > 0.

By hypothesis, the series
∞∑

n=1
µ({x ∈ [0, 1] : |fn(x)| > ε/2}) converges, so almost every x ∈ [0, 1] belongs to

at most finitely many of the sets {x ∈ [0, 1] : |fn(x)| > ε/2}.
Thus, there exists N ∈ N such that µ({x ∈ [0, 1] : |fn(x)| > ε/2}) = 0 for all n ≥ N . Thus, almost every
x ∈ [0, 1] belongs to {x ∈ [0, 1] : |fN (x)| ≤ ε/2}, so for almost every x ∈ [0, 1], |fn(x)| ≤ ε/2 < ε for all
n ≥ N . This shows lim

n→∞
|fn(x)| = 0, since ε can be made arbitrarily small.

�

Problem 5

Let A ⊂ R be a set of zero Lebesgue measure. Prove that it can be ‘translated completely into the set of
irrationals’, that is, there exists a c ∈ R such that A+ c ⊂ R \Q, where A+ c := {x+ c : x ∈ A}.

Solution:
By contradiction, suppose that there exists q ∈ Q such that q ∈ A+ (−r) for every r ∈ R.
Thus, for every r ∈ R, there exists some q such that:

q = a+ (−r) for some a ∈ A

This implies r = a− q. Since this holds for every r ∈ R:

R ⊆
⋃
q∈Q

(A− q)

However, m(A− q) = 0, because Lebesgue measure is translation invariant.
Since the union over Q is countable, this would mean that R is a countable union of measure 0 sets, which
would mean R is measure 0 itself (by the countable additivity of measure). Of course R is not measure 0, so
this is not possible. Thus, there must exist some r ∈ R such that A+ r ⊂ R \Q.

�
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Problem 6

Let µ be the Lebesgue measure on the interval [a, b]. Let An, n ≥ 1 be measurable subsets of [a, b], and f(x)
the number of sets containing x, for x ∈ [a, b]. That is, f(x) = #({n ≥ 1 : x ∈ An})
Prove that f : [a, b]→ N ∪ {+∞} is measurable and that

(b− a)

∫
R
f2(x)dx ≥

[ ∞∑
k=1

µ(Ak)

]2
Solution:

First, note that

f(x) =

∞∑
n=1

χAn

So f is a nonnegative function on [a, b].
By definition, f is measurable if and only if the sets {x ∈ [a, b] : f(x) ≥ n} are measurable for n ∈ N.
Note how these sets are constructed:

{x ∈ [a, b] : f(x) ≥ 0} = [a, b]

{x ∈ [a, b] : f(x) ≥ 1} =

∞⋃
n=1

An

{x ∈ [a, b] : f(x) ≥ 2} =
⋃

n1 6=n2∈N
(An1 ∩An2)

...
...

{x ∈ [a, b] : f(x) ≥ k} =
⋃

n1,...,nk∈N disjoint

(
k⋂

i=1

Ani

)

Since the An are measurable, these are measurable sets as well, so f is a measurable function.
To show the specified inequality, consider two cases.
First, if f 6∈ L2(R), then: ∫

R
f2(x)dx ≥ ∞ ≥

[ ∞∑
k=1

µ(Ak)

]2
So the desired result holds.
Next, suppose f ∈ L2(R). χ[a,b] ∈ L2 as well, so by Cauchy-Schwarz:∫

R
f(x)dx =

∫
R
f(x) · χ[a,b]dx

≤
∥∥χ[a,b]

∥∥
L2 · ‖f‖L2

= (b− a)1/2
(∫

R
f2(x)dx

)1/2

Squaring both sides:(∫
R
f(x)dx

)2

≤ (b− a)

∫
R
f2(x)dx
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So it remains only to show that
(∫

R f(x)dx
)2

=

[ ∞∑
k=1

µ(Ak)

]2
.

(∫
R
f(x)dx

)2

=

(∫
R

∞∑
k=1

χAk
(x)dx

)2

By Tonelli’s theorem, since the integrand is nonnegative we can switch the sum and integral:

=

( ∞∑
k=1

∫
R
χAk

)2

=

( ∞∑
k=1

µ(Ak)

)2

Which shows the desired result.

�
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