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Problem 1

Let {fn : n ∈ N} be a sequence of real-valued Lebesgue measurable functions defined on [0, 1]. Suppose
lim
n→∞

fn(x) = f(x) for almost all x ∈ [0, 1].

(a) Is f necessarily Lebesgue measurable? If yes, prove it, and if no, provide a counterexample.

(b) Give a condition on {fn : n ∈ N} that guarantees

lim
n→∞

∫ 1

0

fn =

∫ 1

0

f

Be sure to prove that your condition implies the desired conclusion.

(c) Give an example of a sequence of Lebesgue measurable functions defined on [0, 1] that violates your
condition in (b) and such that

lim
n→∞

∫ 1

0

fn 6=
∫ 1

0

f

Solution:

(a) Yes. f is measurable iff, for every c > 0, the set {x : f(x) > c} is measurable.

{x : f(x) > c} =

∞⋂
n=1

{x : fn(x) > c}

The countable intersection of measurable sets is measurable, so {x : f(x) > c} is measurable, as desired.
Thus, f is measurable.

(b) If f1 ≤ f2 ≤ f3 ≤ · · · , then the Monotone Convergence Theorem applies and we may switch the limit
and the integral.
If |fn(x)| ≤ g(x) for all n and for all x, for some g which is integrable, then the Lebesgue Dominated
Convergence Theorem applies and we may switch the limit and the integral.

(c) consider the sequence of functions {fn} defined:

fn(x) = n · χ[0,1/n]

fn(x)→ 0 pointwise a.e. on [0, 1] (just not at 0).
However,

lim
n→∞

∫ 1

0

fn(x)dx = lim
n→∞

∫ 1
n

0

ndx = lim
n→∞

1 = 1

So we do not have lim
n→∞

∫ 1

0
fn =

∫ 1

0
f .

�
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Problem 2

Let f ∈ L1(R), the set of Lebesgue integrable functions over R. Prove that

lim
x→0

∫
R
|f(x+ t)− f(t)|dt = 0

You may use the fact that the space CC(R) of continuous functions on R with compact support is dense in
L1(R), with respect to the L1 norm.

Solution:
First, consider a function g ∈ CC(R). By definition of compact support, there exists [a, b] ⊂ R such that∫

R
|g(x+ t)− g(t)|dt =

∫ b

a

|g(x+ t)− g(t)|dt

Note that lim
x→0
|g(x + t) − g(t)| = 0. We will show that it is possible to pass the limit through the integral

using the Lebesgue Dominated Convergence Theorem:
Since [a, b] is closed and bounded and g is continuous, the extreme value theorem applies and gives us a
finite M > 0 such that |g(x)| ≤M on [a, b].

Since
∫ b
a

2Mdt = (b−a) ·2M <∞, 2M is an integrable function. Also, |g(x+ t)−g(t)| ≤ 2M by the triangle
inequality. This allows us to apply the Lebesgue Dominated Convergence Theorem to pass the limit through
the integral:

lim
x→0

∫
R
|g(x+ t)− g(t)|dt = lim

x→0

∫ b

a

|g(x+ t)− g(t)|dt =

∫ b

a

lim
x→0
|g(x+ t)− g(t)|dt = 0

The statement holds for continuous functions of compact support.
Fix ε > 0 and consider f ∈ L1(R).
Since CC(R) is dense in L1(R), there exists g ∈ CC(R) such that ‖f − g‖L1 < ε/2.∫

R
|f(x+ t)− f(t)|dt =

∫
R
|f(x+ t)− g(x+ t) + g(x+ t)− g(t) + g(t)− f(t)|dt

≤
∫
R
|f(x+ t)− g(x+ t)|dt+

∫
R
|g(x+ t)− g(t)|dt+

∫
R
|g(t)− f(t)|dt

< ε/2 +

∫
R
|g(x+ t)− g(t)|dt+ ε/2

lim
x→0

∫
R
|f(x+ t)− f(t)|dt ≤ lim

x→0
(ε+

∫
R
|g(x+ t)− g(t)|dt)

= ε

Since ε can be made arbitrarily small, we have our result.

�

Problem 3

Let f be a measurable function on R with f ∈ L1(R) ∩ L∞(R).

(a) Prove that for all p ∈ (1,∞), f ∈ Lp(R).

(b) Prove that
lim
p→∞

‖f‖p = ‖f‖∞

Solution:
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(a) Take p ∈ (1,∞). Since ‖f‖∞ = sup
x∈R
|f(x)| <∞, we know

∥∥|f |p−1∥∥∞ = sup
x∈R
|f(x)|p−1 <∞.

Thus, |f |p−1 ∈ L∞(R).
Since |f | ∈ L1(R) and |f |p−1 ∈ L∞(R), Hölder’s inequality gives us |f |p ∈ L1(R) and:∫

R
|f(x)|pdx ≤ ‖f‖L1 ·

∥∥|f |p−1∥∥∞ <∞

Which shows ‖f‖pp <∞, so f ∈ Lp(R).

(b) Note that R is σ-finite, so there exist sets An of finite measure such that An ↗ R and R =
∞⋃
n=1

An. For

a small ε > 0, define the set:
S := {x ∈ R : |f(x)| ≤ ‖f‖∞ − ε}

By construction, µ(S) > 0. Also:

S = S ∩ R

= S ∩

( ∞⋃
n=1

An

)

=

∞⋃
n=1

(S ∩An)

Since µ(S) > 0, there exists some k such that µ(S ∩ Ak) > 0, by countable subadditivity of measure.
Also, µ(Ak) <∞, so µ(S ∩Ak) ∈ (0,∞).
Moving forward with this in mind, for any p:

‖f‖p =

(∫
R
|f |pdµ

)1/p

Since |f |p ≥ 0 and S ⊆ R :

≥
(∫

S∩Ak

|f |pdµ
)1/p

Since |f | ≥ ‖f‖∞ − ε on S :

≥
(∫

S∩Ak

| ‖f‖∞ − ε|
p

)1/p

= (µ(S ∩Ak))1/p| ‖f‖∞ − ε|

Since µ(S ∩Ak) ∈ (0,∞), as p→∞, µ(S ∩Ak)1/p → 1. Thus:

lim inf
p→∞

‖f‖p ≥ | ‖f‖∞ − ε|

Since this holds for all ε > 0:
lim inf
p→∞

‖f‖p ≥ ‖f‖∞

To get the reverse inequality, recall from part (a) that |f |p−1 ∈ L∞(R). Then use Hölder’s inequality:

‖f‖p =

(∫
R
|f |pdµ

)1/p

≤
(
‖|f |‖L1

∥∥|f |p−1∥∥∞)1/p
= ‖f‖1/pL1 ‖f‖

p−1
p
∞
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Since ‖f‖L1 <∞, as p→∞, ‖f‖1/pL1 → 1 and ‖f‖
p−1
p
∞ → ‖f‖∞. Thus:

lim sup
p→∞

‖f‖p ≤ ‖f‖∞

Since we have lim sup
p→∞

‖f‖p ≤ ‖f‖∞ ≤ lim inf
p→∞

‖f‖p, equality must hold:

lim
p→∞

‖f‖p = ‖f‖∞

�

Problem 4

A function f : [a, b] → R is said to be Lipschitz on [a, b] provided there is a constant M > 0 such that
|f(x)− f(y)| ≤M |x− y| for all x, y ∈ [a, b].

(a) Prove that if g : [a, b] → [c, d] is absolutely continuous on [a, b], and f : [c, d] → R is Lipschitz on [c, d],
then f ◦ g : [a, b]→ R is absolutely continuous on [a, b].

(b) By using part (a) or otherwise, prove that any Lipschitz function f defined on [a, b] is absolutely contin-
uous. Is the converse true, i.e. is an absolutely continuous function f : [a, b]→ R necessarily Lipschitz?
Either prove this is true, or provide a counterexample.

Solution:
Note:

Cont. Differentiable ⊆ Lipschitz ⊆ abs. continuous ⊆ bounded variation ⊆ diff. a.e.

(a) Fix ε > 0. We want to show that there exists a δ > 0 such that if {(ak, bk)} is a collection of pairwise
disjoint subintervals of [a, b] such that

∞∑
k=1

(bk − ak) < δ

implies
∞∑
k=1

|(f ◦ g)(bk)− (f ◦ g)(ak)| < ε

Let M be the Lipschitz constant corresponding to f , as described above.
Since g is absolutely continuous, there exists δ > 0 such that if

∞∑
k=1

(bk − ak) < δ

then
∞∑
k=1

|g(bk)− g(ak)| < ε

M

Consider now the desired sum, with respect to a partition of [a, b] satisfying the condition imposed by
the δ selected above:∑

k=1

|f(g(bk))− f(g(ak))| ≤
∑
k=1

M |g(bk)− g(ak)|, since f is Lipschitz.

= M
∑
k=1

|g(bk)− g(ak)|

< M(ε/M), by selection of the (ak, bk) subintervals.

= ε

Which shows that f ◦ g is absolutely continuous.
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(b) Every Lipschitz function is absolutely continuous. Let f be Lipschitz with Lipschitz constantM ∈ (0,∞).

Fix ε > 0. Pick a partition {(xk, yk)}Nk=1 such that
N∑
k=1

|yk − xk| < ε/M . Then:

N∑
k=1

|f(yk)− f(xk)| ≤
N∑
k=1

M |yk − xk|, since f is Lipschitz.

= M
∑
k=1

|yk − xk|

< M(ε/M)

= ε

Absolutely continuous functions need not be Lipschitz. Consider the function f(x) =
√
x on (0, 1]. It is

absolutely continuous, but it is not Lipschitz.

• Not Lipschitz: f(x) is continuously differentiable on its domain (0, 1]. A differentiable function is
Lipschitz if and only if it has bounded first derivative, and the derivative of f(x)→∞ as x→ 0;

f ′(x) =
1

2
√
x
→∞ as x→ 0

So f(x) is not Lipschitz.

• Absolutely Continuous:
A function f(x) defined on (0, 1] is absolutely continuous if and only if there exists a Lebesgue
integrable function g such that:

f(x) = f(0) +

∫ x

0

g(t)dt

f(x) =
√
x does have such an integrable derivative, namely f ′(x) = 1

2
√
x

�

Problem 5

Let f ∈ L1[−π, π], and for n ∈ Z, define cn = 1
2π

∫ π
−π f(t)e−intdt, where eiθ = cos θ + i sin θ.

(a) Prove that lim
|n|→∞

cn exists.

(b) Is the limit in (a) independent of f? If so, prove it. If not, give examples of f1, f2 ∈ L1[−π, π] with
different limits arising in (a).

Solution:
This question is precisely the Riemann Lebesgue Lemma.

(a) First, consider the case where f(x) ∈ C∞C ([−π, π]) (a smooth function of compact support). Let
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supp(f) ⊆ [a, b] ⊂ [−π, π].

lim
|n|→∞

|cn| = lim
|n|→∞

∣∣∣∣ 1

2π

∫
R
f(t)e−intdt

∣∣∣∣
= lim
|n|→∞

1

2π

∣∣∣∣∣
∫ b

a

f(t)e−intdt

∣∣∣∣∣
Using integration by parts:

= lim
|n|→∞

1

2π

∣∣∣∣∣
(
f(t)e−int

−in

∣∣∣b
a

+
1

in

∫ b

a

f ′(t)e−intdt

)∣∣∣∣∣
≤ lim
|n|→∞

(
1

2πin

∫ b

a

|f ′(t)|dt

)

= 0 Since

∫ b

a

|f ′(t)|dt <∞.

The smooth functions of compact support are dense in L1 with respect to the L1 norm. Fix ε > 0. There
exists g ∈ C∞C ([−π, π]) such that

‖g − f‖L1 < ε

Consider the limit in question:

lim
|n|→∞

|cn| = lim
|n|→∞

∣∣∣∣ 1

2π

∫ π

−π
f(t)e−intdt

∣∣∣∣
= lim
|n|→∞

∣∣∣∣ 1

2π

∫ π

−π
(f(t)− g(t) + g(t))e−intdt

∣∣∣∣
≤ lim
|n|→∞

1

2π

∫ π

−π
|f(t)− g(t)| · |e−int|dt+ lim

|n|→∞

∣∣∣∣ 1

2π

∫ π

−π
g(t)e−intdt

∣∣∣∣
≤ lim
|n|→∞

1

2π

∫ π

−π
|f(t)− g(t)|dt+ 0

= lim
|n|→∞

1

2π
‖f − g‖L1

<
ε

2π

*Alternatively, we could use the simple functions, which are dense in Lp for p ∈ [1,∞].

(b) The limit is 0, which does not depend on the choice of f .

�

Problem 6

Let f : [0, 1]→ R be continuous with f(0) = f(1). Prove that there exists x ∈ [0, 34 ] with f(x) = f(x+ 1
4 ).

Solution:
Proof by contradiction. Suppose no such x exists. Then, f(x+ 1

4 )− f(x) 6= 0 for any x ∈ [0, 34 ].
This is a continuous function, so the intermediate value theorem applies and we see f(x + 1

4 ) − f(x) > 0
every on [0, 34 ] or f(x+ 1

4 )− f(x) < 0 everywhere on [0, 34 ].
Without loss of generality (we can always multiply by −1), suppose f(x+ 1

4 )−f(x) > 0 everywhere on [0, 34 ].
By plugging in x = 0, 14 ,

1
2 , and 3

4 :

f(0) > f(
1

4
) > f(

1

2
) > f(

3

4
) > f(1)

But this contradicts f(0) = f(1), so our hypothesis must be false.
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