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Problem 1

Let {fn} be a sequence of measurable real-valued functions on [0, 1]. Show that the set of x for which
lim
n→∞

fn(x) exists is measurable.

Solution:
The lim sup and lim inf of sequences of measurable functions are measurable functions.
The set of x ∈ [0, 1] for which lim

n→∞
fn(x) exists is the set:

{x ∈ [0, 1] : lim sup
n→∞

fn(x)− lim inf
n→∞

fn(x) = 0}

This set can also be expressed as an intersection:

∞⋂
n=1

{x ∈ [0, 1] : lim sup
n→∞

fn(x)− lim inf
n→∞

fn(x) < 1/n}

Since lim sup− lim inf is measurable, this is an intersection of measurable sets, and thus is measurable itself.

�

Problem 2

Let {fn} be a sequence of measurable functions and suppose that

∞∑
n=1

m({x ∈ [0, 1] : fn(x) > 1}) <∞

where m is Lebesgue measure on [0, 1]. Prove that lim sup fn(x) ≤ 1 for almost every x ∈ [0, 1].

Solution:
By the Borel-Cantelli Lemma, since the specified series converges, almost every x ∈ [0, 1] belongs to at most
finitely many of the sets {x ∈ [0, 1] : fn(x) > 1}. There exists N ∈ N such that m({x ∈ [0, 1] : fk(x) > 1}) = 0
for k ≥ N .
Looking at the complement of this set, almost every x satisfies fk(x) ≤ 1 for k ≥ N . So sup

k≥N
fk(x) ≥ 1, and

thus lim sup
k≥N

≥ 1.

�
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Problem 3

(a) Let f be a real-valued Lebesgue measurable function defined on [0, 1]. Give the definition of the essential
supremum of f , ‖f‖∞, and prove that if f and g are real-valued functions defined on [0, 1] whose essential
supremums are finite, then f + g is defined for almost all x ∈ [0, 1].

(b) Let f : [0, 1]→ R be a Lebesgue measurable function with ‖f‖∞ <∞. Prove that

‖f‖∞ = sup

{∣∣∣∣∣
∫
[0,1]

f(x)g(x)dx

∣∣∣∣∣ : g ∈ L1[0, 1], ‖g‖1 = 1

}

Solution:

(a) f + g is defined by f(x) + g(x).
Since ‖f‖∞ and ‖g‖∞ are both finite, that means that f(x) and g(x) are both finite almost everywhere.
By possibly excising two sets of measure 0, this means that f(x) + g(x) is finite a.e. Thus, f + g is
defined for almost all x ∈ [0, 1].

(b) By Hölder’s Inequality, if g ∈ L1 and f ∈ L∞, then fg ∈ L1 and:∫
[0,1]

|f(x)g(x)|dx ≤ ‖f‖∞ ‖g‖1

If we choose g ∈ L1 such that ‖g‖1 = 1, then we will always have∫
[0,1]

|f(x)g(x)|dx ≤ ‖f‖∞

Thus, choosing g ∈ L1 with ‖g‖1 = 1:∣∣∣∣∣
∫
[0,1]

f(x)g(x)dx

∣∣∣∣∣ ≤
∫
[0,1]

|f(x)g(x)|dx ≤ ‖f‖∞

Taking the sup: ∣∣∣∣∣
∫
[0,1]

f(x)g(x)dx

∣∣∣∣∣ ≤ ‖f‖∞
To show the reverse inequality, choose an arbitrary ε > 0 and let aε = ‖f‖∞ − ε.
Define the set:

Eaε := {x ∈ [0, 1] : f(x) > aε}

By the definition of the sup-norm, m(Eaε) > 0.
Define the function g(x):

g(x) := sgn(f)(x) ·
χEaε (x)

m(Eaε)

g ∈ L1[0, 1] and ‖g‖1 = 1:

‖g‖1 =

∫ 1

0

|g(x)|dx =
1

m(Eaε)

∫
Eaε

1dx = 1
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Futhermore:

sup

{∣∣∣∣∣
∫
[0,1]

f(x)g(x)dx

∣∣∣∣∣ : g ∈ L1[0, 1], ‖g‖1 = 1

}
≥
∣∣∣∣∫ 1

0

f(x)g(x)dx

∣∣∣∣
=

∫
Eaε

f(x)

m(Eaε)
dx

>

∫
Eaε

1

m(Eaε)
dx

= aε

= ‖f‖∞ − ε

Since ε can be chosen arbitrarily small, this shows

‖f‖∞ ≤ sup

{∣∣∣∣∣
∫
[0,1]

f(x)g(x)dx

∣∣∣∣∣ : g ∈ L1[0, 1], ‖g‖1 = 1

}

We have shown that this inequality holds in both directions, so we must have:

‖f‖∞ = sup

{∣∣∣∣∣
∫
[0,1]

f(x)g(x)dx

∣∣∣∣∣ : g ∈ L1[0, 1], ‖g‖1 = 1

}

�

Problem 4

Suppose that {fn}∞n=1 ∈ L∞[a, b], where −∞ < a < b <∞. Let f ∈ L1[a, b].

(a) Show that for all n ≥ 1, fn ∈ L1[a, b].

(b) If fn → f in L1[a, b], and sup
n≥1
‖fn‖∞ <∞, prove that f ∈ L∞[a, b].

(c) Assuming part (b), prove that for all p ∈ (1,∞), fn → f ∈ Lp[a, b].

Solution:

(a) Since fn ∈ L∞[a, b], ‖f‖∞ <∞. Also, by definition of essential supremum, |fn| ≤ ‖f‖∞ a.e. on [a, b].
Possibly excising a set of measure 0, consider the L1-norm of an arbitrary fn:

‖fn‖1 =

∫ b

a

|fn(x)|dx

≤
∫ b

a

‖fn‖∞ dx

= ‖fn‖∞ |b− a|
<∞

Thus, since ‖fn‖∞ and |b− a| are both finite, we see ‖fn‖1 <∞, and thus fn ∈ L1[a.b].

(b) Convergence in L1 implies convergence in measure, which implies that there is a subsequence which
converges pointwise a.e. So, for a.e. x ∈ [a, b]:

lim
k→∞

fnk(x) = f(x)
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‖f‖∞ = sup
x∈[a,b]

|f(x)|

= sup
x∈[a,b]

lim
k→∞

|fnk(x)|

≤ lim inf
k→∞

sup
x∈[a,b]

|fnk(x)|

= lim inf
k→∞

‖fnk‖∞
≤ sup

k≥1
‖fnk‖∞

<∞

(c) Let p ∈ (1,∞). To show fn → f in Lp[a, b], we need to show ‖f − fn‖p → 0 as n→∞.
Looking at the Lp-norm of the difference:

‖f − fn‖p =

(∫ b

a

|f − fn|p
)1/p

By Hölder’s Inequality:

≤ (‖|f − fn|p‖1 · ‖1‖∞)
1/p

= ‖f − fn‖1
Since fn → f in L1:

→ 0 as n→∞

�

Problem 5

(a) Prove that for every x > 0:
1

x
=

∫ ∞
0

e−xtdt

(b) Prove that
∂

∂x

[
e−xt(−t sin(x)− cos(x))

t2 + 1

]
= e−xt sin(x)

(c) Using parts (a) and (b), prove that

lim
A→∞

∫ A

0

sin(x)

x
dx =

π

2

State any theorems that you are using in your proof.

Solution:

(a) ∫ ∞
0

e−xtdt = lim
a→∞

∫ a

0

e−xtdt

= lim
a→∞

(
−1

x
e−xt

∣∣∣a
0

)
= lim
a→∞

(
−1

x · exa
+

1

x · ex·0

)
=

1

x
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(b)

∂

∂x

[
e−xt(−t sin(x)− cos(x))

t2 + 1

]
=

1

t2 + 1

∂

∂x
(e−xt(−t sin(x)− cos(x)))

=
1

t2 + 1

(
−te−xt(−t sin(x)− cos(x)) + e−xt(−t cos(x) + sin(x))

)
=

e−xt

t2 + 1
((t2 + 1) sin(x))

= e−xt sin(x)

(c) Begin by using the identity established in part (a):

lim
A→∞

∫ A

0

sin(x)

x
dx = lim

A→∞

∫ A

0

sin(x)

(∫ ∞
0

e−xtdt

)
dx

= lim
A→∞

∫ A

0

∫ ∞
0

sin(x)e−xtdtdx

We will justify switching the order of integration by Fubini’s Theorem:

=

∫ ∞
0

lim
A→∞

∫ A

0

sin(x)e−xtdxdt

Using (b) to integrate:

=

∫ ∞
0

lim
A→∞

(
e−xt(−t sin(x)− cos(x))

t2 + 1

∣∣∣A
0

)
dt

=

∫ ∞
0

lim
A→∞

(
e−tA(−t sin(A)− cos(A)

t2 + 1
− −t sin(0)− cos(0)

t2 + 1

)
=

∫ ∞
0

1

t2 + 1
dt

=
π

2

Since our result is finite, Fubini’s Theorem justifies switching the order of integration in the third line.

�

Problem 6

Let fn be a sequence of real valued C1 functions on [0, 1] such that, for all n,

|f ′n(x)| ≤ 1√
x

for x > 0

∫ 1

0

fn(x)dx = 0

Prove that the sequence has a subsequence that converges uniformly on [0, 1].

Solution:
By Arzela-Ascoli, we need to show that the family of functions {fn} is uniformly bounded and equicontinuous.
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Investigating the equicontinuity first. Without loss of generality, assume x > y.

|fn(x)− fn(y)| =
∣∣∣∣fn(0) +

∫ x

0

f ′n(t)dt− fn(0)−
∫ y

0

f ′n(t)dt

∣∣∣∣
=

∣∣∣∣∫ x

y

f ′n(t)dt

∣∣∣∣
≤
∫ x

y

|f ′n(t)|dt

≤
∫ x

y

1√
t
dt

= 2
√
x− 2

√
y

For any ε > 0, 2
√
x− 2

√
y < ε for any x, y ∈ [0, 1] such that |x− y| < 1

4ε
2. So setting δ = 1

4ε
2, we see that

the family of functions is uniformly equicontinuous (the delta does not depend on the particular fn function,
nor does it depend on the choice of x.).
Now, show that {fn} is bounded.

We are given that
∫ 1

0
fn(x)dx = 0 for all n. This implies, by the mean value theorem, that there exists cn

for every n such that fn(cn) = 0.
Now, express fn(x) as an integral:

fn(x) = fn(cn) +

∫ x

cn

f ′n(t)dt =

∫ x

cn

f ′n(t)dt

We will use this integral expression to uniformly bound the fn’s:

|fn(x)| =
∣∣∣∣∫ x

cn

f ′n(t)dt

∣∣∣∣
≤
∫ x

cn

|f ′n(t)|dt

≤
∫ x

cn

1√
t
dt

= 2
√
x− 2

√
cn

Since x, cn ∈ [0, 1]:

≤ 2

Thus, the fn are uniformly bounded by 2.
By the Arzela-Ascoli theorem, this means that the sequence {fn} must have a uniformly convergent subse-
quence.
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