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Prove that, up to isomorphism, there is a unique group of order 1001 (= 7 x 11 x 13).

Solution 1:
If |G| and ¢(|G|) are relatively prime, then there is a unique group of order |G/|.

©(1001) = 6 x 10 x 12 = 720

ged(1001,720) =1
Thus, there is a unique group of order 1001, namely Zjo1-

Solution 2:

If G is abelian, then the only invariant factor of 1001 is 1001, since it is a product of distinct primes, so by
the Fundamental Theorem of Finitely Generated Abelian Groups G = Z1go1-

It remains to show that there are no non-abelian groups of order 1001.

Consider the Sylow numbers of G, by the Sylow theorems:

e n7 must be congruent to 1 mod 7, and it must divide 11 - 13. The only possibility is ny = 1, which
makes the Sylow 7-subgroup of G unique and thus normal. (If there’s only one Sylow p-subgroup P of
a group G, any conjugates gPg~! are also Sylow p-subgroups, so P = gPg~!, making P normal.)

e 111 must be congruent to 1 mod 11, and it must divide 7 - 13. The only possibility is ny; = 1, which
makes the Sylow 11-subgroup of G unique and thus normal.

e 1,3 must be congruent to 1 mod 13, and it must divide 7 - 11. The only possibility is ny3 = 1, which
makes the Sylow 13-subgroup of G unique and thus normal.

If the order of a group is pg, where p, g are primes with pt (¢ — 1), then the group is abelian.

If G’ denotes the commutator subgroup of G, then G/G’ is the largest abelian quotient of G: If H <G and
G/H is abelian, then G' < H.

Let Py, P11, P13 denote the Sylow 7-,11-, and 13-subgroups of G, respectively.

e |G/P;| =11-13, so G/P; is abelian and G’ < P.
o |G/Py1| =7-13, s0 G/Py; is abelian and G’ < Py;.
e |G/P3| =7-11, so G/Py3 is abelian and G’ < Py3.

Since G’ is a subgroup of each Sylow p-subgroup of G, it must be in the intersection of these Sylow p-
subgroups of G. But the distinct Sylow p-subgroups of G intersect only in the identity, so G’ = {e}, which
means G is abelian, as 7'y lay = 1 for all 2,y € G.
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Let S, be the symmetric group on n symbols.

(i) Prove that if 2 < n < 4 then there is a surjective homomorphism of groups from S, to S,_1.

(ii) Prove that if n > 5 then there is no surjective homomorphism of groups from S,, to S,_1.

Solution:

(i) Take the cases n = 2, 3,4 separately.

If n = 2, then define ¢ : S; — S; via ¢(x) = 1. This is a surjective homomorphism since
p@)p(y) =1-1=1=p(zy).
If n = 3, then define ¢ : S3 — Ss via:

(2) (1) if zis even
xTr) =
4 (12)  if 2 is odd

This is surjective, since S3 contains both even and odd permutations.

This is a homomorphism, since the product of two even permutations is even, the product of two
odd permutations is even and (12)(12) = (1), and the product of an even and an odd permutation
is odd.

If n = 4, consider the subgroup K < Sy:
K ={(1),(12)(34), (13)(24), (14)(23)}

S, acts on the nonidentity elements of K by conjugation and permutes them. This action is
nontrivial:

(12)(12)(34) (12) = (14)(23)
(12)(13)(24) (12) = (12)(34)
(12)(14)(23) (12) = (13)(24)

This action gives a homomorphism taking each of the elements of Sy to a permutation on 3
elements, so mapping Sy to Ss.

(ii) By contradiction, suppose that there is a surjective homomorphism ¢ : S, = Sp_1, |@(Sn)| = (n — 1)L
By the first isomorphism theorem, S,/ ker o = S,,_;.
By Lagrange, |ker ¢| = n, n > 5.
The kernel is always a normal subgroup, so ker p < .5,,.
We know that for n > 5, A,, is simple, so if we can show that the kernel has nontrivial intersection
with A,,, we will show the kernel has to be trivial.
|A,| = n!/2 # n,since n > 5, so ker ¢ # A,,. However, ker ¢ cannot contain only odd permutations,
since the product of two odd permutations is even, so ker N A, is nontrivial. But since ker ¢ is normal
in Sy, the intersection ker ¢ N A,, will be normal in A,,, but A, is simple and has no nontrivial normal
subgroups. This leads to a contradiction, so no such homomorphism ¢ is possible.
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Let R be a commutative ring with identity.

(i) Suppose I is an ideal of R that is contained in the principal ideal (a). Show that there is an ideal J of
R such that I = (a)J.

(ii) Suppose R = C[z,y]. Give an example of two ideal I C A of R for which there is no ideal J satisfying
I=AJ.

Solution:

(i) Let J={re R: {(a)r C I}
J is an ideal of R, because if z € R and r € J, then (a)r C I = (a)zr C I, so xr € J.
By construction (a)J C I. To show the two ideals are equal, show containment in the other direction.
Since I C (a), every element of I is of the form ar, for some r € R.
For any r’ € R, arr’ € I, since I is an ideal.
R is commutative, so ar’r € I for all ' € R. Then, (a)r C I, so r € J, ar € (a)J, and we have
IC{a)J.
Since inclusion holds in both directions, I = (a)J.

(ii) Let A = Clz,y], and let I = (x). There is no ideal J for which I = AJ. For example x +y € A, but
there is no r € C[z, y] such that (z + y)r € (z).
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Let F be a field and let A € M,,(F') be a non-invertible n x n matrix over F.
1. Prove that if 0 is the only eigenvalue of A in F'; and F is algebraically closed, then we have A™ = 0.

2. Find an example of a field F and a noninvertible matrix A € M, (F') such that 0 is the only eigenvalue
of A in F, but such that we do not have A™ = 0.

Solution:

1. If F is algebraically closed and 0 is the only eigenvalue of A in F', then 0 is the only eigenvalue of A,
period.
Consider the Jordan Canonical Form of A: A is similar to an n x n matrix P~' AP, which is in Jordan
canonical form, i.e., P"1AP is a block diagonal matrix whose diagonal blocks are the Jordan blocks
of the elementary divisors of A. This means that A is similar to a matrix which is strictly upper
triangular. A strictly upper triangular matrix is necessarily nilpotent, so A is nilpotent, and A™ = 0.

2. Let F' =R (which is a field, but is not algebraically closed) and consider the matrix A:

The only zero of ¢(A) in F' is 0.

Now, show A3 # 0:
When we multiply A by itself, we swap the second and third rows, then negate the third row. This
will never give us 0, and certainly does not give us A% = 0:

0 0 0 00 0
A2=1[0 -1 o0 ],4%=[0 0 -1
0 0 -1 01 0

Another way to show A? # 0 is to look at the characteristic polynomial of A. By Cayley-Hamilton, A
satisfies its own characteristic polynomial:

c(A)=0=>A3+A=0=A4=—-A+#0
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Let L/K be a Galois extension of fields. The norm map from L to K is defined to be
Nao= ] o«
o€Gal(L/K)
(i) Show that N restricts to a homomorphism of groups from L* to K*.

(ii) Let F, denote the field with g elements and let m be a positive integer. Show that N : F;.. — F; is
surjective. [Hint: use the Frobenius automorphism.]

(iii) Let o be a generator for Gal(Fym /Fy;). Compute the cardinality of

(iv) Show that ker(N) = S, where N and S are as defined in parts (ii) and (iii) respectively.

Solution:

(i) Consider N(1):
Ny= J] ecm=1

o€Gal(L/K)

Since all of the o are homomorphisms, o(1) = 1.
Since N is multiplicative, N : L* — K* is a group homomorphism.



Table 1: Galois Group: Actions of Automorphisms on Roots

Automorphism | Effect on & | Effect on ¢
1 £ i

o i€ i

o? =& 1

a3 —i€ i

T I3 —1

oT i€ —1

o°T —£ —1

o3 —i€ —1
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Let f = 2* — 3. Find the degree of the splitting field of f over Q. Describe the Galois group of f, by giving
its action on the roots of f explicitly, and identifying it as isomorphic to a known finite group.

Solution:
f factors:

f(x) = (z = (z + &) (z —i&)(z +if)
where ¢ = V/3.

The splitting field of f is Q[&,¢]. The extension Q[¢,4] : Q is finite and normal, because Q[¢, ] is a splitting
field for the polynomial f.

By Eisenstein’s criterion, f is irreducible: Consider the prime p = 3: 31 ag4 = 1, 3 | a3,a2,a1 = 0, and
3| ao=3,3%tap=3. Thus, f satisfies Eisenstein’s criteria for irreducibility.

To find the degree of the extension Q[¢, 4] : Q, consider the tower law:

[Ql¢, 4] : Q] = [Q[¢, i] - Q[<]] - [Qle] - Q)

The minimal polynomial of £ over Q is f, because f(§) =0 and f is irreducible, so [Q[zi] : Q] = 4.

The minimal polynomial of i over Q[¢] is 2% + 1, so [Q[¢, 1] : Q[¢]] = 2.

By the tower law, this means [Q[¢, ] : Q] = 8.

To find the elements of the Galois group of Q[&, 7] : @, we need to find the automorphisms of Q[¢, 7] that fix
Q.

Consider the automorphisms o, 7 given:

U(Z) = i7g(§) = i§77—(i) = _ivT(g) =

o and 7 will generate the Galois group, which we know is order 8. Consider the relations in Table 1.
The Galois group is generated by an element of order 4 and an element of order 2, so it is isomorphic to Dsg.



