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Let G be a group. Let H E G be a normal subgroup of prime index p. Let a ∈ H. Suppose the conjugacy
class of a inside G is of size m. Show that the conjugacy class of a inside H is of size either m or m/p,

Solution:
The number of conjugates of an element a in G is equal to the index of the centralizer: [G : CG(a)] = m.
The number of conjugates of a in H is the index of the centralizer of a in H: [H : CH(a)]. This is the value
we need to find.
Note: CG(a) ∩H = CH(a).
Since H is a normal subgroup, we can apply the second isomorphism theorem to get:

CG(a)H/H ∼= CG(a)/CH(a)

This implies that the indices are equal:

[CG(a)H : H] = [CG(a) : CH(a)]

Then, since we know the index of H in G:

p = [G : H]

= [G : CG(a)H][CG(a)H : H]

Since p is prime, we have either [CG(a)H : H] = 1 or p. By the equality given in the second isomorphism
theorem, this means [CG(a) : CH(a)] = 1 or p.

Case 1: If [CG(a) : CH(a)] = 1, then:

[G : CH(a)] = [G : CH(a)]

[G : CG(a)][CG(a) : CH(a)] = [G : H][H : CH(a)]

m · 1 = p · [H : CH(a)]

So in this case [H : CH(a)] = m/p and this is the size of the conjugacy class of a inside H.

Case 2: If [CG(a) : CH(a)] = p, then:

[G : CH(a)] = [G : CH(a)]

[G : CG(a)][CG(a) : CH(a)] = [G : H][H : CH(a)]

m · p = p · [H : CH(a)]

m = H : CH(a)]

So in this case [H : CH(a)] = m and this is the size of the conjugacy class of a inside H.
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Classify all groups of order 253.

Solution:
Let G be a finite group, |G| = 253 = 11 · 23.
Since 11 and 23 are prime, by the Fundamental Theorem of Finitely Generated Abelian Groups there is only
one abelian group of order 253, namely Z253, because there is only one invariant factor.
If G is not abelian, investigate the Sylow p-subgroups of G by using Sylow’s Theorems:
The number of Sylow 11-subgroups of G is n11, where n11 ≡ 1 (mod 11) and n11 | 23. This means that
n11 = 1 or 23.
The number of Sylow 23-subgroups of G is n23, where n23 ≡ 1 (mod 23) and n23 | 11. This means that
n23 = 1.
Let P23 denote the unique Sylow 23-subgroup of G. Since P23 is unique, it must be a normal subgroup of G.
(All conjugates of a Sylow p-subgroup must be Sylow p-subgroups, so if there is only one Sylow 23-subgroup
P23, all of the conjugates of P23 must be equal to P23, and thus P23 EG.)
Let P11 ∈ Syl11(G).
The non-identity elements of P11 are all of order 11, and the non-idenity elements of P23 are all of order 23,
so P11 ∩ P23 = {1}.
This means we can construct a semidirect product G ∼= P23 o P11 with order |P23| · |P11| = 253.
Let the action of P11 on P23 be left multiplication, so that for p ∈ P11, q ∈ P23:

p · q = pq

We need to show that this semi-direct product is unique:
For any other choice of action ϕ : P11 → Aut(P23) where ϕ is a homomorphism, we need to show

P23 oϕ P11
∼= P23 o P11

The homomorphisms ϕ ∈ Hom(P11,Aut(P23)), so we need to find the size of Hom(P11,Aut(P23)).

Hom(P11,Aut(P23)) ∼= Hom(Z11,Aut(Z23)) ∼= Hom(Z11,Z×23)

Then,
∣∣Hom(Z11,Z×23)

∣∣ = 11, since (11, 22) = 11.
One of these homomorphisms is the trivial map to the identity, and this one gives us the cyclic direct product
we have already mentioned.
It remains to show that the remaining ten homomorphisms in Hom(P11,Aut(P23)) product isomorphic
semidirect products.
Equivalently, we can show that if ϕ,ψ are two nontrivial homomorphisms in Hom(P11,Aut(P23)), then
ϕ(P11) = ψ(P11).
If the images of P11 are isomorphic, then the semidirect products are isomorphic:

ϕ(P11) = ψ(P11)⇒ P23 oϕ P11
∼= P23 oψ P11

Note that Aut(P23) is cyclic, so it has a unique subgroup of order 11, say 〈γ〉 with |γ| = 11.
For each nontrivial ϕi ∈ Hom(P11,Aut(P23)), the image of P11 under ϕi needs to be a subgroup of Aut(P23)
whose order divides 11. Since 11 is prime, our only options are 1 and 11. 1 is already handled in the trivial
case where the semidirect product ends up being direct, and for subgroups of order 11 we only have one
choice: 〈γ〉.
For each of the ten nontrivial ϕi ∈ Hom(P11,Aut(P23)), there exists a generator yi ∈ P11 such that ϕi(yi) = γ.
Then, ϕi(P11) = ϕj(P11) for each nontrivial ϕi, ϕj ∈ Hom(P11,Aut(P23)), because the images are completely
determined by the actions of the homomorphisms on the generators.
Thus, there is only one distinct nontrivial semidirect product, so there are two possibilities for groups of
order 253:

G ∼= Z253 or G ∼= Z23 o Z11
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Let R be a commutative ring with identity and I and J two ideals such that I + J = R.

(a) Show that IJ = I ∩ J .

(b) Give an example where I + J 6= R and IJ 6= I ∩ J .

Solution:

(a) The intersection of two ideals is an ideal, so we have the following equalities:

I ∩ J = (I ∩ J)R

= (I ∩ J)(I + J)

= I(I ∩ J) + J(I ∩ J)

⊆ IJ + IJ

= IJ

The reverse containment is immediate, since I and J are ideals:

IJ ⊆ I and IJ ⊆ J

So IJ ⊆ I ∩ J .
Since containment holds in both directions, IJ = I ∩ J

(b) Let R be the ring of integers and consider the ideals I = (2) and J = (4).
Clearly, I + J 6= R, because 3 ∈ R but there is no sum of elements of I and J that will get us an odd
integer.
The product IJ = (2), and the intersection I ∩ J = (4), so we see IJ 6= I ∩ J .
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(a) Suppose that A is a complex n× n matrix with A3 = −A. Show that A is diagonalizable.

(b) Suppose that A is a 2 × 2 matrix over the field Q of rational numbers with no non-trivial eigenvectors

with entries in Q, and that A3 = −A. Show that A is similar over Q to

(
0 −1
1 0

)
.

Solution:

(a) If A3 = −A, then A3 + A = 0, so the minimal polynomial of A divides A3 + A. If we factor A3 + A
over the complex numbers, we get distinct linear factors: A(A + iI)(A − iI), so the matrix A must be
diagonalizable, as its minimal polynomial must be the product of distinct linear factors.

(b) The eigenvalues of A are the roots of the characteristic polynomial, which is a degree 2 polynomial since
A is 2 × 2 and it is the product of the invariant factors of A. The invariant factors must be factors of
the minimal polynomial, and the minimal polynomial must divide x3 + x = x(x2 + 1). This means that
the minimal polynomial must be x2 + 1.
The given matrix is the 2× 2 matrix with invariant factor x2 + 1, so this must be the rational canonical
form of A in this case.
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Find the number of monic irreducible sextic polynomials in F3[x], where F3 is the field of three elements.

Solution:
The number of monic irreducible polynomials of degree n over the finite field Fq is given by Gauss’s formula:

1

n

∑
d|n

µ(n/d)qd

where µ(1) = 1, and if r is a product of distinct primes then µ(r) = 1 if there are an even number of distinct
primes and µ(r) = −1 if there is an odd number of distinct primes, and µ(x) = 0 for any other composite x.
In this particular case, n = 6, q = 3:

1

n

∑
d|n

µ(n/d)qd =
1

6

(
µ(6)31 + µ(3)32 + µ(2)33 + µ(1)36

)
=

1

6
(3− 9− 27 + 729)

= 116
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Let Q be the field of rational numbers, and C the field of complex numbers. Let
√

2 denote the positive

square root of 2 in C. Let α =
√

4 + 3
√

2 denote the positive square root of 4 + 3
√

2 in C.

(a) Determine the minimal polynomial of α.

(b) Show that L = Q(α) is not Galois over Q.

(c) Let M be the galois closure of L over Q. What is the order of the galois group G of M over Q?

Solution:

(a) First, show that α2 is not a perfect square in Q(
√

2), to show that α is not in Q(
√

2).
To do this, assume that α2 = (a+ b

√
2)2 for some a+ b

√
2 ∈ Q(

√
2):

α2 = (a+ b
√

2)2

4 + 3
√

2 = (a2 + 2b2) + 2ab
√

2

This would imply that 2ab = 3 and a2 + 2b2 = 4. Solving this system of equations:

a =
3

2b
⇒
(

3

2b

)2

+ 2b2 = 4

⇒ 9

4b2
+ 2b2 = 4

⇒ 9 + 8b4 = 16b2

⇒ 8b4 − 16b2 + 9 = 0

⇒ b2 =
16±

√
256− 288

16

Which would make b imaginary, which is not possible since i 6∈ Q(
√

2).

Thus, the conjugates of α are the four elements ±
√

4± 3
√

2. These will be the other roots of the minimal
polynomial of α. To find this polynomial, multiply:

(x−
√

4 + 3
√

2)(x+

√
4 + 3

√
2)(x−

√
4− 3

√
2)(x+

√
4− 3

√
2) = x4 − 8x2 − 2

(b) To show that L = Q(α) is not Galois, show that one of these roots is not in Q(α). Consider β =√
4− 3

√
2.

If both α and β are in L, then so must the product αβ:

αβ = (

√
4 + 3

√
2)(

√
4− 3

√
2

= i
√

2

β = i

√
2

α

But this is not possible, since i
√

2 6∈ Q(α).
This means that the minimal polynomial of α does not split in Q(α), so this cannot be a Galois extension.

(c) The order of the Galois group is the degree of the extension. We showed that the extension Q(α) is not
Galois, but we do know that |Gal(M/Q)| must divide 4!.
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