August 2012 Algebra Prelim

Sarah Arpin

1

Show that there is no simple group of order 120.

Solution:

Let n_p denote the number of Sylow *p*-subgroups of a group *G* such that $|G| = 120 = 2^3 \cdot 3 \cdot 5$. Assume *G* is simple. We will show that this leads to a contradiction.

Using the Sylow theorems, we see:

$$n_5 \equiv 1 \pmod{5}$$
, and $n_5|25 \Rightarrow n_5 = 1 \text{ or } 6$

If G is simple, then it cannot contain any normal subgroups, and if $n_5 = 1$ the Sylow 5-subgroup of G would be normal (all conjugates of Sylow p-subgroups are Sylow p-subgroups: if all of $P_5 \in \text{Syl}_5(G)$'s conjugates are equal to itself, P_5 is normal, which contradicts G being simple).

Let G act by conjugation on the set of Sylow 5-subgroups of G. This action produces a homomorphism $\varphi: G \to S_6$.

This action is nontrivial, so the image of G under φ must nontrivially intersect A_6 , since $\varphi(G)$ cannot consist solely of odd permutations. So $\varphi^{-1}(A_6) \neq \{1\}$.

Since $A_6 \leq S_6$, $\varphi^{-1}(A_6) \leq G$. If we assume that G is simple, this means $\varphi^{-1}(A_6) = G$, so we have embedded G as a subgroup of A_6 .

By order considerations, we see that $|A_6:G| = 3$, which is not possible: if we let A_6 act on the left cosets of G in A_6 by left multiplication, this action would embed A_6 into S_3 , which is not possible since A_6 is simple and S_3 is not.

Thus, our original assumption that G is simple must be wrong, so there is no simple group of order 120.

Show that any group of order $104 = 2^3 \cdot 13$ is solvable (without using Burnside's theorem).

Solution:

Let G be a group of order 104.

By Sylow analysis, we see that G must have a normal Sylow 13-subgroup, say $P \in Syl_{13}(G)$.

P is solvable, because $P \cong \mathbb{Z}_{13}$, which is cyclic and cyclic groups are solvable.

If we consider G/P, we have a group of order 2^3 . A prime power group of order p^k has a subgroup of order p^i for i = 0, 1, ..., k - 1, so G/P has a subgroup H_1 of order 2^2 , H_1 has a subgroup H_2 of order 2. [G/P:H] = 2, so H is a normal subgroup of G/P.

 $[H:H_1] = 2$, so H_1 is a normal subgroup of H.

 $[H_1:H_2] = 2$, so H_2 is a normal subgroup of H_1 .

 $|H_2| = 2$, so H_2 is isomorphic to \mathbb{Z}_2 and is thus cyclic. Same holds for the other quotients H_1/H_2 and H/H_1 . Thus, we have the following normal series to show that G/P is solvable:

$$1 \trianglelefteq H_2 \trianglelefteq H_1 \trianglelefteq H \trianglelefteq G/P$$

Since G/P is solvable and P is solvable, G must be solvable as well.

3

Suppose R is a commutative ring with identity. A proper ideal I in R is said to be a *primary* ideal if whenever elements a and b in R satisfy $ab \in I$ and $a \notin I$, then there exists a positive integer m such that $b^m \in I$.

- (a) Show that every prime ideal in R is a primary ideal.
- (b) Let I be a primary ideal and let

 $I' = \{a \in R : a^m \in I \text{ for some positive integer } m\}$

Show that I' is a prime ideal containing I.

(c) Show that if R is a PID then any primary ideal of R is a power of a prime ideal.

Solution:

- (a) If I is a prime ideal then $ab \in I$ implies either $a \in I$ or $b \in I$, which satisfies the necessary condition taking m = 1.
- (b) By construction, every element $a \in I$ is $a^1 \in I$, so $I \subseteq I'$. To show that I' is a prime ideal, suppose $ab \in I'$. Then, $(ab)^m \in I$, so $a^m b^m \in I$. Since I is a primary ideal, if $a^m \notin I$, then $b^{mn} \in I$, for some positive integer n. If $a^m \in I$, then $a \in I'$. If $a^m \notin I$, then $b \in I'$, by construction. Thus, either $a \in I'$ or $b \in I'$, so I' is a prime ideal.
- (c) Suppose I is a primary ideal of R. Since R is a PID, we have I = (a) for some $a \in R$. If R is a PID, then it is also a UFD and we have a factorization of a into a product of irreducibles: $p_1...p_n$. If a iself is irreducible, then $a = p_1$, and the irreducibles are prime in a PID, so (a) is immediately a prime ideal itself.

 $a \in I$, so $p_1...p_n \in I$, which means either $p_1 \in I$ or $(p_2...p_n)^m \in I$, for some positive integer m.

Case 1: If $p_1 \in I = (a)$, then there exists some $s \in R$ such that $sa = p_1$. This implies $sp_2...p_n = 1$, which means $p_2, ..., p_n$ are units, so $(p_1) = (a) = I$.

Case 2: If $(p_2...p_n)^m \in I$, for some positive integer m, then there exists $r \in R$ such that $ra = (p_2...p_n)^m$, which implies $rp_1 = (p_2...p_n)^{m-1}$. Howeve