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In this problem, you may assume without proof that the alternating groups An are simple for n ≥ 5.

(a) Prove that any index 6 subgroup of the alternating group A6 is isomorphic to A5.

(b) Show that any simple group of order 60 is isomorphic to A5.

Solution:

(a) Let H ≤ A6 such that |A6 : H| = 6.
Let S = {H,σ1H,σ2H, ..., σ5H} denote the 6 distinct left cosets of H in A6.
Let A6 act on the cosets in S by left multiplication.
The stabilizer of this action on H is equal to H:

x ∈ StabG(H)⇔ xH = H

⇔ x ∈ H

The elements in StabG(H) fix H, so they must permute the other 5 cosets of H. Thus, StabG(H) ≤ A5,
and thus H ≤ A5.
Also, |H| = 60 = |A5|, so this means H ∼= A5.

(b) Let G be a simple group of order 60 = 22 · 3 · 5.
By the Sylow theorems, n5 ≡ 1 (mod 5), and n5|22 · 3 = 12, so n5 = 6, since n5 6= 1 when G is simple.
Let G act on the Sylow 5-subgroups by conjugation. This action induces an injective homomorphism ϕ
of G into S6.
ϕ(G) ∩ A6 6= 0, because ϕ(G) cannot contain only odd permutations. Thus ϕ−1(A6) must be a normal
subgroup of G, so it must be all of G. Thus, ϕ(G) is a subgroup of A6. Since ϕ is injective, |G| = |ϕ(G)|,
so |A6 : G| = 6, and we can apply the result from part (a).
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Let G be a finite group with a normal subgroup N EG, and suppose θ : G→ H is a group homomorphism
into a solvable group H. Show that if the commutator subgroup of G/N is itself, then θ(G) = θ(N).

Solution:
Consider the induced map θ : G/N → θ(G)/θ(N) defined via θ(gN) = θ(g)θ(N).
Consider the following:

θ(G)/θ(N) = θ(G/N)

= θ([G/N,G/N ])

= [θ(G/N), θ(G/N)]

= [θ(G)/θ(N), θ(G), θ(N)]

So θ(G)/θ(N) = [θ(G)/θ(N), θ(G), θ(N)]. This means that the derived series of θ(G)/θ(N) is just θ(G)/θ(N).
Since θ(G) ≤ H and H is solvable, θ(G) is solvable.
Quotients of solvable groups are also solvable, so θ(G)/θ(N) must also be solvable.
If θ(G)/θ(N) is solvable, its derived series must eventually be 1, but we showed that its derived series is just
θ(G)/θ(N), so this means

θ(G)/θ(N) = 1

Which implies θ(G) = θ(N), as desired.
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Show that x, y, and z are irreducible and prime elements of k[x, y, z], where k is a field. Prove that
k[x, y, z]/〈xy − z2〉 is an integral domain.

Solution:
First, consider the ideal (x). x is prime if and only if k[x, y, z]/(x) is an integral domain. However,
k[x, y, z]/(x) ∼= k[y, z], which we know is an integral domain since it is a polynomial extension of a field.
Thus, (x) must be a prime ideal. In an integral domain, every prime is irreducible, so x must be prime and
irreducible. This holds for the other indeterminates as well.
To show that R = k[x, y, z]/〈xy−z2〉 is an integral domain, consider the elements of R, noting that xy = z2.∑

i,j,k∈N∪{0}

xiyjzk =
∑

i≥j,k∈N∪{0}

xiyjzk +
∑

i<j,k∈N∪{0}

xiyjzk

=
∑

i≥j,k∈N∪{0}

(xy)jxi−jzk +
∑

i<j,k∈N∪{0}

(xy)iyj−izk

=
∑

i≥j,k∈N∪{0}

xi−jzk+2j +
∑

i<j,k∈N∪{0}

yj−izk+2i

∈ k[x, z] + k[y, z]

k[x, z] and k[y, z] are both integral domains, so its sum must be as well.
Thus, none of these elements can be zero divisors so R is an integral domain.
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Let p be an odd prime, and let SL2(Fp) be the group of all 2× 2 matrices with determinant 1 over Fp. Show
that SL2(Fp) has p+ 2 conjugacy classes.

Solution:
The distinct conjugacy classes will have distinct rational canonical forms, so we need to count the possible
rational canonical forms of the matrices in SL2(Fp). To count these, we can count the number of possible
minimal polynomials of matrices in SL2(Fp).
Consider an arbitrary matrix A ∈ SL2(Fp) and calculate its characteristic polynomial:

A =

(
a b
c d

)
: ad− bc = 1

The characteristic polynomial can be calculated by finding the determinant of λI −A:

cA(x) = det(λI −A)

= (λ− a)(λ− d)− bc
= λ2 − (a+ d)λ+ ad− (ad− 1)

= λ2 − (a+ d)λ+ 1

The number of possible characteristic polynomials of this form is p.
If cA(x) splits into distinct linear factors, then the minimal polynomial must be equal to the characteristic
polynomial, and we only have one option for minimal polynomials of this form. This is because the minimal
polynomial must divide the characteristic polynomial and it must have the same roots.
If there is a double root, then cA(x) must be of the form (x+ 1)2 or (x− 1)2, because the only square roots
of 1 in Fp are 1 and −1.
If cA(x) = (x − 1)2, then there is one more possibility for mA(x) aside from mA(x) = cA(x), namely:
mA(x) = (x− 1). Likewise for the situation where cA(x) = (x+ 1)2.
Thus, we add two more possiblities to the list of minimal polynomials, so the number of possible minimal
polynomials is p+ 2.
As discussed above, this means the number of possible conjugates in SL2(Fp) is p+ 2.
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Let E = F25 be the field with 32 elements, let F = F2 be the prime subfield of E, let A be an algebraic
closure of E, and let c be a root in A of f(x) = x4 + x3 + 1 in F[x].

(a) Show that f(x) is irreducible in F [x].

(b) Find the splitting field of f(x), regarded as a polynomial in E[x].

Solution:

1. First, check to see if f(x) has linear factors by plugging in the elements of F:

f(0) = 1 6= 0

f(1) = 1 + 1 + 1 = 1 6= 0

So f(x) has no linear factors.
Next, consider the possibility that f(x) has quadratic factors. They would necessarily be irreducible,
because f(x) does not have linear factors.
The only irreducible quadratic in F is: x2 +x+1, because x2 +1 = (x+1)(x+1) and x2 +x = x(x+1).

(x2 + x+ 1)(x2 + x+ 1) = x4 + 2x3 + 3x2 + 2x+ 1 = x4 + x2 + 1 6= f(x)

So f(x) does not have quadratic factors either. Thus, f(x) is irreducible in F.

2. Since f(x) is irreducible in F = F2 and the degree of f is 4, f(x) split in F24 . The smallest field
containing both F25 = E and F24 is F220, so this the splitting field of f(x) as a polynomial over E.
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