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Give examples of the following or explain why no such example exists.

(a) A non-abelian group of order 48.

(b) A finite nilpotent group G and a normal subgroup N such that G/N is not nilpotent.

(c) A group G and a prime p such that G has exactly 5 Sylow p-subgroups.

Solution:

(a) The dihedral group D48 = 〈r, s|r24 = s2 = 1, rs = sr−1〉 is not abelian.

(b) If G is nilpotent, then any subgroup and any quotient group of G must be nilpotent as well.
A group is nilpotent if and only if it is the direct product of its Sylow p-subgroups, and its Sylow
p-subgroups are unique for each p dividing the order of G, so:

G ∼= P1 × ...× Ps

where Pi is the unique Sylow pi-subgroup for each prime pi dividing the order of G. If N is a subgroup
of G, then N is a subgroup of this direct product, so N is itself a direct product in the same form and
is thus also nilpotent.
Quotients of nilpotent groups are nilpotent.

(c) Yes, there does exist such a group. Let np denote the number of Sylow p-subgroups of a group G. If
np = 5, then by the Sylow theorems 5 ≡ 1(modp), so p = 2.
Consider a group of order 10, and suppose n2 = 5. Then, there are 5 elements of order 2.
n5 ≡ 1(mod5) and n5|2, so n5 = 1, and we have 4 elements of order 5. This leaves the final element as
the identity, so this is valid so far.
Since n5 ≡ 1(mod5), the Sylow 5-subgroup of G must be normal, and since P5 ∩P2 = 1, G is equivalent
to a semi-direct product:

G ∼= P5 o P2

To check that this is a semidirect product, we have to make sure that there is some nontrivial ϕ ∈
Hom(P2,Aut(P5)). Since Aut(P5) ∼= Z×

4 , there are two generators to map to, and thus there does exist
a nontrivial ϕ for this semidirect product.
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If G is an abelian group acting on a finite set X, then the action of G on X ×X defined by

g · (x, y) = (g · x, g · y) for all (x, y) ∈ X ×X and g ∈ G

has at least |X| orbits.

(a) Prove this statement in the case that the action of G on X is transitive.

(b) Prove this statement in the case that the action of G on X is an arbitrary action.

Solution:

(a) If G acts transitively on X, then |OG(x)| = |X| for all x ∈ X.
By the orbit stabilizer theorem, we know

|G| = |OG(x)||StabG(x)|

Since we know G acts transitively,
|G| = |X||StabG(x)|

If g ∈ StabG(x, y), then:

g · (x, y) = (x, y)

(g · x, g · y) = (x, y)

So g ∈ StabG(x) and g ∈ StabG(y), and we have StabG(x, y) = StabG(x) ∩ StabG(y).
Since we know that G is transitive, we can also show that StabG(x) = StabG(y):
Take g ∈ StabG(x). Since G acts transitively on X, there exists some h ∈ G such that h · x = y.
Consider the action of g on x:

g · x = x

g · (h · y) = h · y
gh · y = h · y and since G is abelian:

hg · y = h · y
h · (g · y) = h · y

g · y = y

So StabG(x) ⊆ StabG(y).
The reverse containment holds in a symmetric way, so we have StabG(x) = StabG(y).
Combining this with what we have above:

StabG(x, y) = StabG(x) ∩ StabG(y) = StabG(x)

We can also apply the orbit stabilizer theorem to the action of G on X ×X:

|G| = |OG(x, y)||StabG(x, y)|

Plugging in what we know about |G| from its action on X and using the fact that StabG(x, y) = StabG(x):

|X||StabG(x)| = |OG(x, y)||StabG(x)|

|X| = |OG(x, y)|
Also, |X ×X| = (number of orbits) · (size of each orbit), so:

|X|2 = (number of orbits) · |X|

|X| = (number of orbits)
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(b) Let O1, ...,On be the distinct orbits of G acting on X.
G acts transitively on the set {O1, ...,On}, so for each i = 1, ..., n if we define the action of G on Oi×Oi,
this action has exactly |Oi| orbits.
Denote the following set:

Ω := (X ×X) \

(
n⋃

i=1

(Oi ×Oi

)
Now, we can count:

(# of orbits of G on X ×X) =

n∑
i=1

(# of orbits on Oi ×Oi) + (# of orbits on Ω)

≥
n∑

i=1

(# of orbits on Oi ×Oi)

=

n∑
i=1

|Oi|

= |X|

�
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Let R be a commutative unital ring with 1 6= 0. Show that if every proper principal ideal of R is a prime
ideal, then R is a field.

Solution:
Let R be an ideal with the property that every proper principal ideal is a prime ideal.
First, note that since (0) is a principal ideal, it must also be prime, so R is an integral domain.
Now, take a nonzero element a ∈ R and consider the ideal (a2).
If (a2) = R, then 1 ∈ (a2), so there exists some element r ∈ R such that ra2 = 1, which implies ra(a) = 1
and (a)ra = 1. This means that a has an inverse: a−1 = ra.
If (a2) 6= R, then (a2) is a proper ideal of R. By assumption (a2) must also be a prime ideal, so since
a2 ∈ (a2) we must have a ∈ (a2). Then there exists some element r ∈ R such that ra2 = a. Since we are in
an integral domain, we can cancel and we get ra = 1. This means that a has an inverse: a−1 = r.
Since a was chosen as an arbitrary nonzero element of R, we have shown that every nonzero element has a
multiplicative inverse, so R is a field.
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Let p be a prime number, q a power of p, and let f be an irreducible polynomial in Fp[x]. Prove that any
two irreducible factors of f over the field Fq have the same degree.
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Let E be a finite Galois extension of F , and suppose that E has a subfield M such that F �M � E and M
is contained in every intermediate field between F and E that is different from F . Prove that:

(a) [E : F ] is a prime power

(b) for any two intermediate fields K1,K2 between F and E we have K1 ≤ K2 or K2 ≤ K1.

Solution:

(a) Note that, by the fundamental theorem of Galois theory, [E : F ] = |Gal(E/F )|.
Set G = Gal(E/F ) and let H be the subgroup of G that has the corresponding fixed field M . Every
other subgroup K of G must be a subgroup of H, because H is a maximal subgroup of G, and by
assumption K must have a corresponding fixed field that contains M , so if K � G, K ≤ H.
This means that H is the unique subgroup of G of |H|, so H is characteristic in G, and in particular H
is normal in G.
The index of a maximal normal subgroup is necessarily prime, so [G : H] = p, for some prime p.
Consider the set of cosets of H in G : {H,σ1H, ..., σp−1H}, so there is some σ ∈ G where σ 6∈ H.
Then, 〈σ〉 = G, because otherwise 〈σ〉 would have to be contained in H, but σ 6∈ H prevents this. Thus,
G is a cyclic group.
Since G is cyclic, it must be the direct product of its Sylow p-subgroups, and each Sylow p-subgroup
must be unique. The Sylow p-subgroups for different primes P intersect only in the identity, so if there
is more than one H cannot be one of these groups, but it must properly contain all of them, which would
make H = G which is again a contradiction. Thus, there can only be one Sylow p-subgroup of G, so |G|
only has one prime divisor and we have |G| = pk for some prime p and some k ∈ N.

(b) The result follows from the subgroup diagram of a cyclic group of order pk: It is a straight line.
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