August 2007 Algebra Prelim

Sarah Arpin

1

Prove that in a group of order 12, any two elements of order 6 must commute.

Solution:

Let G be a group, |G| = 12. If G is abelian, then every element commutes with every other element and we are done. Assume G is not abelian and take $x, y \in G$ with |x| = |y| = 6, and suppose $y \notin \langle x \rangle$.

 $G = \langle x \rangle \langle y \rangle$, so this means that $|\langle x \rangle \cap \langle y \rangle| = 3$. The subgroups of $\langle x \rangle$ and $\langle y \rangle$ of order 3 are $\{1, x^2, x^4\}$ and $\{1, y^2, y^4\}$, respectively, so if these are equivalent we either have $y^2 = x^2$ or $y^2 = x^4$. Show that any group of order 105 has an element of order 35.

Solution:

Let G be a group, |G| = 105. First, consider the Sylow theorems. $105 = 5 \cdot 7$. The number of Sylow 5-subgroups of G, n_5 , must be 1, since

$$n_5 \equiv 1 \pmod{5}$$
, and $n_5|7$

The number of Sylow 7-subgroups of G, n_7 , must also be 1, since

$$n_7 \equiv 1 \pmod{7}$$
, and $n_7|5$

Since there is only one Sylow 5-subgroup, it must be a normal subgroup of G: Every conjugate of a Sylow 5-subgroup of G must also be a Sylow 5-subgroup, so if $P_5 \in \text{Syl}_5(G)$ is equal to all of its conjugates it is a normal subgroup of G.

The same holds for the unique Sylow 7-subgroup of G, so we have $P_7, P_5 \leq G$. This means that the product P_7P_5 is a subgroup of G. Also,

$$|P_7P_5| = \frac{|P_7||P_5|}{|P_7 \cap P_5|} = 35$$

Let $H = P_7 P_5$. We will show that H has to be cyclic to establish that H has a generator, which will be our desired element of order 35.

Doing a Sylow analysis on H, we see that H is unique Sylow 5- and 7-subgroups. Since |H| = 35, H is the direct product of these subgroups, and this direct product is necessarily cylic, because it is isomorphic to $\mathbb{Z}_7 \times \mathbb{Z}_5$.

Thus, H has a generator of order 35, as desired.

Let R be an integral domain in which every nonzero element factors into a product of finitely many irreducible elements up to a unit. For any $a, b \in R - \{0\}$, define the ideal:

$$I_{a,b} := \{x \in R : ax \in (b)\}$$

where (b) is the ideal of R generated by the element b. Then show that R is a UFD if and only if $I_{a,b}$ is principal for any $a, b \in R - \{0\}$.

Solution: Then

$\mathbf{4}$

Let R be an associative ring with $1 \neq 0$ and let $N \subseteq M$ be left R-modules. Suppose that N and M/N are Noetherian. Then show that M is Noetherian.

Solution: If $\mathbf{5}$

6

Determine the splitting field of the polynomial $x^5 + 2x^4 + 5x^2 + x + 4$ and its Galois group.

Solution:

First, check to see if the polynomial has any linear factors. We do this by brute force. x=-2 is a root.