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Motivation

Motivation

Post-Quantum Cryptography

NIST: 2015 call for proposals of post-quantum safe cryptography
protocols

Supersingular Isogeny Graph Cryptograhy: ∼ 15 years old: original
hash function by Charles-Goren-Lauter [CGL06]; SIKE key exchange
[Jao]

Hard Problems

Path-finding in supersingular `-isogeny graph

Endomorphism ring computation [EHL+18]
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Meet the Graphs

Three Graphs

G`(Fp):

Vertices: Fp-isomorphism
classes of elliptic curves
Edges: `-isogenies, up to
equivalence

G`(Fp):

Vertices: Fp-isomorphism
classes of elliptic curves
Edges: `-isogenies, up to
Fp-equivalence

Spine S:

Subgraph of G`(Fp)
Vertices: Fp-isomorphism
classes of curves with j ∈ Fp

Edges: `-isogenies up to
Fp-equivalence

G2(F89)

G2(F89)

S

Vertices labeled with j-invariants 4 / 18



Meet the Graphs

G`(Fp): Volcanoes

Ordinary `-isogeny graphs

Kohel [Koh96];
Fouquet and Morain [FM02]

Supersingular `-isogeny graphs /Fp:
p: a prime; E : supersingular elliptic
curve over Fp

EndFp(E ) ∼=

{
Z[
√
−p], floor

Z
[
1+
√
−p

2

]
, surface

5 / 18



From G`(Fp) to the Spine

Structure of G2(Fp)

Delfs and Galbraith determined the structure of G`(Fp) [DG16].
For ` = 2:

Theorem (Theorem 2.7 [DG16])

p ≡ 1 (mod 4): Vertices paired together in isolated edges.

p ≡ 3 (mod 8): Vertices form volcanoes, each with four vertices:
surface is one vertex connected to three vertices on the floor.

p ≡ 7 (mod 8): Vertices form a volcano; each surface vertex is
connected 1:1 with the floor.
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From G`(Fp) to the Spine

Structure of G`(Fp)

For ` > 2:

Theorem (Theorem 2.7 [DG16])(−p
`

)
= 1: two `-isogenies(−p

`

)
= −1: no `-isogenies

p = 103, ` = 3
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From G`(Fp) to the Spine

Possible changes, passing from G`(Fp) to Fp

Definition (3.13 ACL+19)

If two distinct components of G`(Fp) have exactly the same set of
vertices up to j-invariant, then they will stack over Fp.

A component of G`(Fp) will fold if it contains both vertices
corresponding to each j-invariant in its vertex set.

Two distinct components of G`(Fp) will attach with a new edge.

Two distinct components of G`(Fp) will attach along a j-invariant if
one vertex of each share a j-invariant (only possible for ` > 2).
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From G`(Fp) to the Spine

What actually happens for ` > 2?

Theorem (Proposition 3.9 ACL+19)

Mapping G`(Fp) to S, the only possible events are stacking, folding and n
attachments by a new edge and m attachments along a j-invariant with
m + 2n ≤ 2`(2`− 1).

G3(F83):

S:
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From G`(Fp) to the Spine

What actually happens for ` = 2?

Theorem (Theorem 3.26 of ACL+19 )

Mapping G2(Fp) to S, only stacking, folding or at most one attachment by
a new (double) edge are possible. No attachments by a j-invariant.

G2(F101):

S:
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Mirror Involution on G`(Fp)

Frobenius and Mirror Involution

E : y2 = x3 + ax + b
Frob−−→ E (p) : y2 = x3 + apx + bp

(x , y) 7→ (xp, yp)

j(E ) 7→ j(E )p

For α ∈ Fp2 \ Fp, let α denote the Frobenius conjugate of α.
If α is supersingular, so is α.

Definition (Mirror Involution on G`(Fp))

If ∃ `-isogeny φ : E (α1)→ E (α2) then ∃ `-isogeny φ′ : E (α1)→ E (α2).

Given a path in G`(Fp):

α β γ

Mirror Involution gives another path:

α β γ
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Mirror Involution on G`(Fp)

Mirror Paths

When can we connect a path with its mirror involution?

αi : j-invariants in Fp2 \ Fp

a: j-invariant in Fp

Option 1: Through an Fp vertex

α0 α1 a α1 α0

Option 2: Through an `-isogenous pair of conjugate vertices

α0 α1 α2 α2 α1 α0

How often are paths of the first type? Second type?
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Mirror Involution on G`(Fp)

How far are conjugate j-invariants in G2(Fp)?
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Mirror Involution on G`(Fp)

How often are conjugate j-invariants 2-isogenous?
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Mirror Involution on G`(Fp)

How often are conjugate j-invariants 2-isogenous?

[EHL+20]: Lower-bound on number of `-isogenous conjugate j-invariants

15 / 18



Conclusion

Summary

We understand completely how to map G`(Fp) into G`(Fp).

Mirror involution gives a new perspective on supersingular isogeny
graph structure, further studied in [EHL+20].

Vertices which are conjugate appear to be closer than random
vertices.

Further heuristics on other interesting graph aspects can be found in
our paper.
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Conclusion

Thank you.
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