Math 2300: Quiz 5, 9/27/2019

Name: _____

Score:

Please show your work on all questions. Note that there is a question on the back! Due at the beginning of class Monday 9/30.

1. (4 points) A force of $F(x) = x^2 - e^{3x}$, with x in meters, acts on an object. What is the work required to move the object from x = 3 to x = 7? Solution:

$$\begin{split} W &= \int_{3}^{7} F(x) dx \\ &= \int_{3}^{7} (x^2 - e^{3x}) dx \\ &= (\frac{x^3}{3} - \frac{e^{3x}}{3})_3^7 \\ &= (\frac{7^3}{3} - \frac{e^{3\cdot7}}{3}) - (\frac{3^3}{3} - \frac{e^{3\cdot3}}{3}) \\ &= \frac{343 - 27 - e^{21} + e^9}{3} \\ &= \frac{316 - e^{21} + e^9}{3} \end{split}$$

No units on this one, because I forgot to give you units for force (F(x)).

2. (2 points) Find the average value of the function $f(x) = x^4 \sqrt{1 - x^2}$ over the interval from x = 0 to x = 1.

3. (4 points) Find the work done pumping molasses out of a 10 foot tall cylindrical tank with a radius of 2 feet. The density of molasses is $100 lbs/(ft)^3$ (note that this includes gravity!), and the tank is completely full to begin with. Draw at least one picture to accompany your work.

Solution:

Note that the shape is a cylinder, so the cross sections are all circles of radius r = 2. Look at one slice first:

$$W_{\text{slice}} = F * d$$

= (\(\rho * vol\) * d
= (100 * \(\pi r^2 * dy\) * (10 - y)
= 400\(\pi (10 - y)dy\)

Now integrate it:

$$W = \int_0^{10} 400\pi (10 - y) dy$$

= $400\pi (10y - \frac{y^2}{2})|_0^{10}$
= $400\pi (100 - 50)$
= 20000π

So the solution is $20000\pi ft \cdot lbs$.