
Math 2300: Calculus Spring 2019

Lecture 50: Monday April 1
Lecturer: Sarah Arpin

WebAssign due tonight

50.1 Review

50.1.1 Representing a Function as a Power Series

Sometimes, it’s useful to confirm that a given function has a power series representation. It might seem
counter-intuitive that a power series (an infinite sum!) would be easier to work with than some given
function, but in theory this is often true. The fact that a funciton has a power series representation means
it has a lot of other nice properties too, so being able to confirm that you have a power series representation
is very useful.
We will learn one way to confirm that we have a power series representation: Using the geometric series
formula:

∞∑
i=1

ari−1 =
a

1− r

instead this time we will be interested in turning an expression that looks like the right-hand side into its
power series representation on the left-hand side.

50.1.1.1 Example 1:

Find a power series representation for the function 2
1+x . For what values of x will this power series repre-

sentation hold?
Solution:
Write it so that it looks more like 1

1−x :

2

1 + x
= 2

1

1− (−x)

Now let’s go the other way with our formula:

2
1

1− (−x)
= 2

∞∑
n=0

(−x)n

Note that this series is only convergent when |−x|< 1, so only for x ∈ (−1, 1).

50.1.1.2 Example 4:

Find a power series representation for the function 1
(1−x)2 . For what values of x will this power series

representation hold?
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Solution:
We’ll need to use a derivative for this one. Note that:

1

(1− x)2
=

d

dx

1

1− x

We are very familiar with the power series representation for 1
1−x :

1

1− x
=

∞∑
n=0

xn.

Plugging this in:

1

(1− x)2
=

d

dx

(
1

1− x

)
=

d

dx

( ∞∑
n=0

xn

)
=

∞∑
n=0

d

dx
xn =

∞∑
n=0

nxn−1 =

∞∑
n=1

nxn−1

Notice that we can switch from starting at n = 0 to starting at n = 1, because if we plug in n = 0, the entire
term is 0.
This is a geometric series, so it converges when |x|< 1, which is when x ∈ (−1, 1).

50.1.1.3 Example 5:

Find a power series representation for the function 2x2

1+x3 . For what values of x will this power series repre-
sentation hold?
Solution:
Look for the geometric series:

2x2

1 + x3
= 2x2 1

1− (−x3)
= 2x2

∞∑
n=0

(−x3)n =

∞∑
n=0

2(−1)nx3n+2

This only converges if |x3|< 1, so only when x ∈ (−1, 1).
More examples are posted on my website notes from the day we went over this in class.

50.1.2 Taylor Series and Approximation of Error

The Taylor Series expansion gives us a way to express even more kinds of functions as power series: now
they don’t just have to look like a geometric series, we have a formula for finding a power series expansion,
as long as f has enough derivatives:

f(x) = T (x) =

∞∑
n=0

f (n)(a)(x− a)n

n!

This is useful for the same reason finding power series representations of functions is useful. However, getting
a Taylor Series expansion isn’t going to be helpful in finding function values, since finding the value a series
converges to is quite difficult.
However, knowing the Taylor Series is there in the background can help us figure out how accurate a Taylor
Polynomial is. (Recall: an nth Taylor polynomial just truncates the Taylor series at the nth degree term.)
Here’s the theorem, called Taylor’s Inequality:
Let f(x) be a function, and let Tn(x) be the nth degree Taylor Polynomial for f(x) centered at x = a. If
f (n+1)(x) is continuous and satisfies |f (n+1)(x)|≤ M for all values of x such that |x − a|< d (i.e., x is less
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than d away from where we center the Taylor Series), then the remainder f(x)−Tn(x) = Rn(x) satisfies the
inequality:

|Rn(x)|≤ M

(n + 1)!
|x− a|n+1

for all x such that |x− a|< d.

This property |f (n+1)(x)|≤M is important. Not all of the functions we know have this property. For example,
if f(x) = x2, then f ′(x) = 2x does not have this property everywhere. But if we limit ourselves to an interval,
say we do a Taylor series centered at x = 0 and then only use it in [−1, 1], then f ′(x) is bounded on [−1, 1]:
it’s always ≤ 2.

50.1.2.1 Example

Consider f(x) = ex:

(a) Find the Taylor Series for f(x) centered at x = 0.

(b) Find the 4th degree Taylor Polynomial for f(x) using part (a).

(c) Use T4(x) from part (b) to approximate e0.1.

(d) How accurate is your approximation in part (c) guaranteed to be?

Solution:

(a) Let’s use the table method again, and see if we can find the pattern.

n f (n)(x) f (n)(0) f(n)(0)
n!

f(n)(0)
n! (x− 0)n

0 ex 1 1
0! = 1 1

1 ex 1 1
1! = 1 (x-0)

2 ex 1 1
2! = 1

2
1
2 (x− 0)2

3 ex 1 1
3! = 1

6
1
6 (x− 0)3

4 ex 1 1
4! = 1

24
1
24 (x− 0)4

...
...

...
...

...
n ex 1 1

n!
1
n! (x− 0)n

We’ve done this previously, so we can also just look it up:

ex = T (x) =

∞∑
n=0

xn

n!

NOTE: When we plug in values of x into ex, we can do the same thing on the other side. For example:

e3 = T (3) =

∞∑
n=0

3n

n!

Some questions may ask you to “evaluate” the series
∞∑

n=0

3n

n! . What they mean is really just “recognize

that
∞∑

n=0

3n

n! = e3”. I will include a table of useful-to-recognize Maclaurin series at the end of these notes.
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(b) Just using the terms up to degree 4, we get:

T4(x) = 1 + x +
x2

2
+

x3

6
+

x4

24

(c) Now just plug in x = .1:

T4(0.1) = 1 + .1 +
.12

2
+

.13

6
+

.14

24
≈ 1.10517083...

(d) Using Taylor’s Inequality, we know:

|R4(x)|≤ M

5!
(x− 0)5

for |x− 0|< d, where |f (5)(x)|≤M for |x− 0|< d. Note that f (5)(x) = ex. We are estimating at x = 0.1,
so we are looking at |x|≤ 0.1. How can we simply bound ex in an interval around 0 that includes 0.1?
In this range, we can be sure that ex is less than 2. For |x|≤ 0.1, I can be confident that ex < 2. Why?
Because e1 = 2.7..., and e0 = 1, so I believe e.1 < 2. So use this value for M :

|R4(x)|≤ 2

5!
x5

⇒ |R4(.1)|≤ 2

5!
.15 ≈ 0.000000167...

Since we have calculators, we can check that this is true:

e.1− 1.10517083... ≈ 0.000000088...,

so we can see that we are within 0.000000167 of the true answer with our estimate using a 4th degree
polynomial.
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50.1.3 Maclaurin Series to Recognize

50.1.4 Taylor Series Example

Find the Maclaurin Series expansion of f(x) = xe2x. Determine the radius of convergence.
Start by making a table: Once you see the pattern, you have it:

n f (n)(x) f (n)(0) f(n)(0)
n!

f(n)(0)
n! xn

0 xe2x 0 0 0
1 e2x(2x + 1) 1 1 x
2 2e2x(2x + 2) 4 4

2! = 2 2x2

3 4e2x(2x + 3) 12 12
3! = 2 2x3

...
...

...
...

...

k 2k−1e2x(2x + k) 2k−1k 2k−1k
k! = 2k−1

(k−1)!
2k−1k

k! xk = 2k−1

(k−1)!x
k

f(x) = T (x) =

∞∑
n=1

2n−1xn

(n− 1)!
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To determine the radius of convergence, use the ratio test:

lim
n→∞

∣∣∣∣2nxn+1

n!
· (n− 1)!

2n−1xn

∣∣∣∣ = lim
n→∞

∣∣∣∣2xn
∣∣∣∣

= 2 lim
n→∞

|x|
n

= 0 < 1 for all x

so the interval of convergence is all real numbers, and the radius of convergence is ∞.


