Math 2300: Calculus Spring 2019

Lecture 50: Monday April 1

Lecturer: Sarah Arpin

WebAssign due tonight

50.1 Review

50.1.1 Representing a Function as a Power Series

Sometimes, it’s useful to confirm that a given function has a power series representation. It might seem
counter-intuitive that a power series (an infinite sum!) would be easier to work with than some given
function, but in theory this is often true. The fact that a funciton has a power series representation means
it has a lot of other nice properties too, so being able to confirm that you have a power series representation
is very useful.

We will learn one way to confirm that we have a power series representation: Using the geometric series

formula:
o0 a
E ar'™1 =
. 1—1r
=1

instead this time we will be interested in turning an expression that looks like the right-hand side into its
power series representation on the left-hand side.

50.1.1.1 Example 1:

Find a power series representation for the function H% For what values of x will this power series repre-
sentation hold?
Solution:
Write it so that it looks more like 12—:
2 1
=2

1+z 1—(—x)

Now let’s go the other way with our formula:

1 - n
T 2

Note that this series is only convergent when |—z|< 1, so only for z € (—1,1).

50.1.1.2 Example 4:

Find a power series representation for the function ﬁ For what values of z will this power series

representation hold?
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Solution:
We’ll need to use a derivative for this one. Note that:
1 d 1
(1-2)2 drl—z

We are very familiar with the power series representation for ﬁ:

1 o0
1—x :an'
n=0

Plugging this in:

1 d 1 d [ ., T - S
= (1) i (S7) S = o =

n=0 n=0 n=1

Notice that we can switch from starting at n = 0 to starting at n = 1, because if we plug in n = 0, the entire
term is 0.
This is a geometric series, so it converges when |z|< 1, which is when x € (—1,1).

50.1.1.3 Example 5:

2 . . .
%. For what values of x will this power series repre-

Find a power series representation for the function =
sentation hold?
Solution:

Look for the geometric series:

2x° 2 1 2Oo 3 — 3n+2
e T T e

This only converges if |2%|< 1, so only when z € (—1,1).
More examples are posted on my website notes from the day we went over this in class.

50.1.2 Taylor Series and Approximation of Error

The Taylor Series expansion gives us a way to express even more kinds of functions as power series: now
they don’t just have to look like a geometric series, we have a formula for finding a power series expansion,
as long as f has enough derivatives:

= M (a)(z — a)”
fl)=1(@) =y L@l

n!
n=0

This is useful for the same reason finding power series representations of functions is useful. However, getting
a Taylor Series expansion isn’t going to be helpful in finding function values, since finding the value a series
converges to is quite difficult.

However, knowing the Taylor Series is there in the background can help us figure out how accurate a Taylor
Polynomial is. (Recall: an nth Taylor polynomial just truncates the Taylor series at the nth degree term.)
Here’s the theorem, called Taylor’s Inequality:

Let f(x) be a function, and let T;,(x) be the nth degree Taylor Polynomial for f(x) centered at x = a. If
f*D () is continuous and satisfies | f("+1)(2)|< M for all values of « such that |z — a|< d (i.e., z is less
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than d away from where we center the Taylor Series), then the remainder f(z) — T, (z) = R, () satisfies the
inequality:

M n
|Rn(f£)|§ m'ﬁﬂ — a| +1

for all z such that |z — a|< d.

This property | f" 1) (2)|< M is important. Not all of the functions we know have this property. For example,
if f(x) = 22, then f'(x) = 2z does not have this property everywhere. But if we limit ourselves to an interval,
say we do a Taylor series centered at x = 0 and then only use it in [—1,1], then f'(x) is bounded on [—1,1]:
it’s always < 2.

50.1.2.1 Example
Consider f(z) = e”:

(a) Find the Taylor Series for f(z) centered at x = 0.
(b) Find the 4th degree Taylor Polynomial for f(x) using part (a).
(c) Use Ty(x) from part (b) to approximate 1.

)

(d) How accurate is your approximation in part (c) guaranteed to be?
Solution:

(a) Let’s use the table method again, and see if we can find the pattern.

n | @) | fm) | 20 | 0oy
01 e” 1 é =1

1]e” 1 =1 | (x0)

2 | e” 1 5 =7 | s(x—0)?

3| e 1 z=z | (@—0)7

4 | e” 1 =31 | 3;@—0)*

n | e” 1 = L(z—0)"

We’ve done this previously, so we can also just look it up:

o0
xn

X P _— JR—
e =T(z) = Z py
n=0
NOTE: When we plug in values of x into e®, we can do the same thing on the other side. For example:
o0 3n

¢ =TE) =) —

n=0
oo

Some questions may ask you to “evaluate” the series Zo % What they mean is really just “recognize
n=

o0
that Y. 2; =¢* . I will include a table of useful-to-recognize Maclaurin series at the end of these notes.
n=0
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(b) Just using the terms up to degree 4, we get:

2?2 23 2t
Ty(z) =1 rir .
a(x) +m+2+6+24
(¢) Now just plug in z = .1:
LI RS
Ti(0.1) = 1414 5+ o + 57 ~ 1.10517083...
(d) Using Taylor’s Inequality, we know:
M
Ru(@)l< G (@~ 0)°

for |# — 0|< d, where | f®) (x)|< M for |z — 0|< d. Note that f(®)(x) = e®. We are estimating at = = 0.1,
so we are looking at |z|< 0.1. How can we simply bound e” in an interval around 0 that includes 0.17
In this range, we can be sure that e® is less than 2. For |z|< 0.1, I can be confident that e* < 2. Why?
Because e! = 2.7..., and €® = 1, so I believe e'1 < 2. So use this value for M:

2
= [R4(.1)|< 5.15 ~ 0.000000167...

Since we have calculators, we can check that this is true:
el —1.10517083... = 0.000000088...,

so we can see that we are within 0.000000167 of the true answer with our estimate using a 4th degree
polynomial.
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50.1.3 Maclaurin Series to Recognize

l - )
: =X =1+x+x7+x "+ R=1
- X n—0
{1 \.n X _1_2 _‘_3
e = pA =1+ +—+—+ - R =w
) I! 2! 3!
..2-14-] .1.3 "'.5 .l'T
sinx= >(—1)——=x — +— 4. R =
E:u 2n + 1) 3! 5! 7!
.'.'-‘_n _1_2 X -]‘_._.,
cos x = (— ) — -+ R=u
=0 (2n)! 2! 6!
l,.,1-I+| ',3 l_‘: I\_'.'
tan"'x = E‘—l —_— = — +———+"- R=1
n=0 2n + 1 3 5 7
o [k kk—1) ,  kik— 1)k —2)
(1+x)=3 ( ).r”= |+ kx + ———x" + v x*+ - R=1
= n) - -

Useful Maclaurin Series

50.1.4 Taylor Series Example

Find the Maclaurin Series expansion of f(z) = we?

. Determine the radius of convergence.

Start by making a table: Once you see the pattern, you have it:

n | f)() ) | L L

0 | ze®® 0 0 0

1| e*2x+1) 1 1 x

2 | 2e%*(2x + 2) 4 & =2 222

3 | 4e**(2x + 3) 12 = =2 223

k| 2Fte2r (22 + k) | 2- 1k 2’3;% _ (ik:)' 2kk|1k k _ (k’“ 11),xk
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To determine the radius of convergence, use the ratio test:

. |2rantt (n—1)! 2z
lim . = lim |—
n— oo n! on—1gn n—oo | N

. T
=2 lim u
n—oo N

=0<1lforalz

so the interval of convergence is all real numbers, and the radius of convergence is oo.



