Lecture 46: Tuesday March 19

Lecturer: Sarah Arpin

46.1 8.6: Representing Functions with Power Series

Today we will learn to use the fact that we know the value of a convergent geometric series to write power series as functions. We had an introduction to this yesterday, so 46.1.1 and 46.1.2 should go quickly. Same with Examples 1 and 2. Spend more time on Examples 3 and 4.

46.1.1 Recall Geometric Series Information:

If |r| < 1, then the geometric series $\sum_{n=0}^{\infty} ar^n$ converges. Recall that we have the formula:

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}.$$

What does this tell us about $\sum_{n=0}^{\infty} ar^n$?

By writing out the first few terms of the series $\sum_{n=0}^{\infty} ar^n$ and the first few terms of the series $\sum_{n=1}^{\infty} ar^{n-1}$ to justify

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}.$$

Note that it doesn't matter where you index your sum: If it's a geometric series, then a is always the first term and r is always the part that's being raised to the n power.

46.1.2 Recall Power Series Information:

The power series $\sum_{n=0}^{\infty} x^n$ was one of the first ones we looked at. Remember how we looked at it and recognized that it is a geometric series with r = x, so it converges precisely when $x \in (-1, 1)$. When we assume $x \in (-1, 1)$, how can we use the formula $\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$?

Have the students think about this for a little bit. Remind them that a is always just the first term of the series and r is always the part being raised to the n-power.

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}.$$

So we have this formula for the power series $\sum_{n=0}^{\infty} x^n$, provided $x \in (-1, 1)$.

We call $\sum_{n=0}^{\infty} x^n$ the **power series representation** of the function $\frac{1}{1-x}$.

Spring 2019

Subtlety: Note that we can plug in any $x \neq 1$ into the formula $\frac{1}{1-x}$, but it's only equal to the power series at that x-value for x's in (-1, 1). This is a big deal for mathematicians! The formula on the right has a larger domain than the power series function on the left, but they are only equal for x's in (-1, 1). This is a first peek at a strange analysis topic called "analytic continuation". For Calc 2, you don't need to know anything about this besides the fact that the formula only holds when the power series converges.

46.1.3Back to the point

Functions that "look like" $\frac{1}{1-x}$ can be written as power series! Let's practice going from function to power series. The first two should be familiar:

46.1.3.1Example 1:

Find a power series representation for the function $\frac{2}{1+x}$. For what values of x will this power series representation hold?

Solution:

Write it so that it looks more like $\frac{1}{1-x}$:

$$\frac{2}{1+x} = 2\frac{1}{1-(-x)}$$

Now let's go the other way with our formula:

$$2\frac{1}{1-(-x)} = 2\sum_{n=0}^{\infty} (-x)^n$$

Note that this series is only convergent when |-x| < 1, so only for $x \in (-1, 1)$.

46.1.3.2 Example 2:

Find a power series representation for the function $\frac{2}{3+2x}$. For what values of x will this power series representation hold?

Solution:

Look for the geometric series:

$$\frac{2}{3+2x} = 2 \cdot \frac{1}{3(1+\frac{2}{3}x)} = \frac{2}{3} \cdot \frac{1}{1-(\frac{-2}{3}x)} = \frac{2}{3} \sum_{n=0}^{\infty} \left(\frac{-2}{3}x\right)^n = \sum_{n=0}^{\infty} (-1)^n \left(\frac{2}{3}x\right)^{n+1}$$

This only converges if $|\frac{2}{3}x| < 1$, which is when $x \in (-3/2, 3/2)$. Review solving inequalities with absolute values: Note that $|\frac{2}{3}x| < 1$ turns into $\frac{2}{3}x < 1$ AND $\frac{2}{3}x > -1$, so solving this yields x < 3/2 AND x > -3/2.

46.1.3.3 Example 3:

Find a power series representation for the function $\ln(5-x)$. What is the interval of convergence? Solution:

We'll need to use an integral for this one. Note that:

$$-\int \frac{1}{5-x} dx = \ln(5-x) + C.$$

Note: I'm putting the constant of integration on the right so that we can worry about it later. It's easy to find a power series representation for $\frac{1}{5-x}$:

$$\frac{1}{5-x} = \frac{1}{5} \cdot \frac{1}{1-\frac{x}{5}} = \frac{1}{5} \sum_{n=0}^{\infty} \left(\frac{x}{5}\right)^n$$

Plugging this in, we can integrate to finish the job:

$$\ln(5-x) + C = -\int \frac{1}{5-x} dx$$
$$= -\int \frac{1}{5} \sum_{n=0}^{\infty} \left(\frac{x}{5}\right)^n dx$$
$$= \frac{-1}{5} \int \sum_{n=0}^{\infty} \left(\frac{x}{5}\right)^n dx$$
$$= \frac{-1}{5} \sum_{n=0}^{\infty} \int \frac{x^n}{5^n} dx$$
$$= \frac{-1}{5} \sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)5^n}$$
$$= \sum_{n=0}^{\infty} \frac{-x^{n+1}}{(n+1)5^{n+1}}$$

In summary, we have:

$$\ln(5-x) + C = \sum_{n=0}^{\infty} \frac{-x^{n+1}}{(n+1)5^{n+1}}$$

Now that we're nearly there, we just need to worry about the constant of integration. To figure out what it must be, plug in a value for x on both sides. x = 0 will be easy:

$$\ln(5-0) + C = \sum_{n=0}^{\infty} \frac{-0^{n+1}}{(n+1)5^{n+1}}$$
$$\ln(5) + C = 0$$
$$C = -\ln(5)$$

So, in summary, we have:

$$\ln(5-x) - \ln(5) = \sum_{n=0}^{\infty} \frac{-x^{n+1}}{(n+1)5^{n+1}}$$

Solve for $\ln(5-x)$ to give our final answer:

$$\ln(5-x) = \ln(5) + \sum_{n=0}^{\infty} \frac{-x^{n+1}}{(n+1)5^{n+1}}$$

To find the interval of convergence, note that the power series we end up with is a geometric series with $r = \frac{x}{5}$, so it converges for $x \in (-5, 5)$.

46.1.3.4 Example 4:

Find a power series representation for the function $\frac{1}{(1-x)^2}$. For what values of x will this power series representation hold?

Solution:

We'll need to use a derivative for this one. Note that:

$$\frac{1}{(1-x)^2} = \frac{d}{dx}\frac{1}{1-x}$$

We are very familiar with the power series representation for $\frac{1}{1-x}$:

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n.$$

Plugging this in:

$$\frac{1}{(1-x)^2} = \frac{d}{dx} \left(\frac{1}{1-x}\right) = \frac{d}{dx} \left(\sum_{n=0}^{\infty} x^n\right) = \sum_{n=0}^{\infty} \frac{d}{dx} x^n = \sum_{n=0}^{\infty} nx^{n-1} = \sum_{n=1}^{\infty} nx^{n-1}$$

Notice that we can switch from starting at n = 0 to starting at n = 1, because if we plug in n = 0, the entire term is 0.

This is a geometric series, so it converges when |x| < 1, which is when $x \in (-1, 1)$.

46.1.3.5 Example 5:

Find a power series representation for the function $\frac{2x^2}{1+x^3}$. For what values of x will this power series representation hold?

Solution:

Look for the geometric series:

$$\frac{2x^2}{1+x^3} = 2x^2 \frac{1}{1-(-x^3)} = 2x^2 \sum_{n=0}^{\infty} (-x^3)^n = \sum_{n=0}^{\infty} 2(-1)^n x^{3n+2}$$

This only converges if $|x^3| < 1$, so only when $x \in (-1, 1)$.