
Math 2300: Calculus Spring 2019

Lecture 44: Friday March 14
Lecturer: Sarah Arpin

44.1 8.5: Power Series

We’ve been talking about polynomials (Taylor polynomials specifically). Before the exam, we talked about
series. Now, we’ll talk about those two concepts together.

A power series is an “infinite degree polynomial”. In other words, it’s a series where we have a variable x
(a variable besides the iteration variable). In general, it looks like:

∞∑
n=0

anx
n = a0 + a1x + a2x

2 + · · ·

A particular example:
∞∑

n=0

nxn = 0 + x + 2x2 + 3x3 + · · ·

You should think of a power series as a function, where the input is some value that we provide for x, and
the output is a series (a sum of numbers).

Small note: Notice that you can start indexing your sum at any non-negative integer. You can start at 5,
you’ll just miss out on certain powers of x:

∞∑
n=5

nxn = 5x5 + 6x6 + 7x7 + · · ·

But we cannot index at negative numbers, because then we don’t get a polynomial anymore:

∞∑
n=−1

nxn =
−1

x
+ 0 + x + 2x2 + 3x3 + · · ·

We talked a lot about determining when a series converges. For example:

∞∑
n=1

1

n
diverges

∞∑
n=1

1

n2
converges.

But, if we have a power series with a variable x, we can ask “for what values of x does the series
converge?” The two series above can be thought of just different evaluations of the function:

∞∑
n=1

(
1

n

)x

.

(Note that this is not a power series (it’s not an “infinite-degree” polynomial), but it illustrates the point
we are considering at the moment, so we will consider it just as motivation). We know that when x ≤ 1, the
series diverges, and when x > 1 the series converges. Let’s generalize this to less obvious scenarios. To find
the answer, we will use the ratio test.
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44.1.1 Introductory Example:

For what values of x does the power series
∞∑

n=0
xn converge?

Solution:
This one is a softball. We can recognize this as a geometric series with r = x, so it converges when x ∈ (−1, 1)
by the geometric series test.
Even though we know the answer, let’s practice using the ratio test to answer these types of questions:

By the ratio test, we need lim
n→∞

∣∣∣an+1

an

∣∣∣ < 1 to guarantee convergence:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣
= lim

n→∞
|x|

= |x|

So we require |x|< 1, which means x ∈ (−1, 1). This guarantees absolute convergence, even.

Remember that the ratio test is uncertain when the limit lim
n→∞

∣∣∣an+1

an

∣∣∣ = 1. So we test these boundary

conditions individually:
Boundary Case 1: x = 1:

∞∑
n=0

1n, diverges by divergence test.

Boundary Case 2: x = −1
∞∑

n=0

(−1)n, diverges by divergence test.

So the interval of convergence of this power series is (−1, 1). We say that the radius of convergence
is 1, because 1 is the radius of the interval (−1, 1).

44.1.2 Example 1:

What is the radius of convergence of the power series 1 + x + x2

2 + x3

6 + x4

24 + · · ·?
Solution:
First, figure out how to write this power series using sigma notation. We should recognize the denominators
as factorials:

1 + x +
x2

2
+

x3

6
+

x4

24
+ · · · = 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ · · · =

∞∑
n=0

xn

n!

Now, investigate using the ratio test. We need lim
n→∞

∣∣∣an+1

an

∣∣∣ < 1, and then we will investigate whatever

endpoints we have individually:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣xn+1/(n + 1)!

xn/n!

∣∣∣∣
= lim

n→∞

∣∣∣∣ x

n + 1

∣∣∣∣
= 0

Since 0 < 1 for all x, this power series has an infinite radius of convergence: (−∞,∞). No need to check the
boundary numbers when there’s no boundary!
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44.1.3 Example 2:

Find the interval and radius of convergence of the series:

∞∑
n=0

2n

n
(4x− 8)n

Solution:
This one is not geometric, so we MUST use the ratio test, and then investigate the boundary separately.
By the ratio test, we need:

lim
n→∞

∣∣∣∣2n+1(4x− 8)n+1

(n + 1)
· n

2n(4x− 8)n

∣∣∣∣ = lim
n→∞

∣∣∣∣2(4x− 8)

(n + 1)
· n

1

∣∣∣∣
= 2|(4x− 8)| lim

n→∞

∣∣∣∣ n

n + 1

∣∣∣∣
= |8x− 16|

So we need |8x− 16|< 1 (for the Ratio Test to give us the conclusion ”absolutely convergent), and then we
need to check the boundary conditions. (For a review of absolute value inequalities, see HERE).

−1 < 8x− 16 < 1

15 < 8x < 17

15

8
< x <

17

8

We can plug in x = 17/8 and x = 15/8 individually to check these boundary conditions now.
For x = 17/8:

∞∑
n=0

2n

n
(4(17/8)− 8)n =

∞∑
n=0

2n

n
((17/2)− 8)n =

∞∑
n=0

2n

n
(1/2)n =

∞∑
n=0

1

n
,

which diverges by p-series test with p = 1 ≤ 1.
For x = 15/8:

∞∑
n=0

2n

n
(4(15/8)− 8)n =

∞∑
n=0

2n

n
((15/2)− 8)n =

∞∑
n=0

2n

n
(−1/2)n =

∞∑
n=0

(−1)n

n
,

which is the alternating harmonic series, and we know this one converges (quick alternating series test
proves it). So our interval of convergence is: [15/8, 17/8). The radius of convergence is half the length of
this interval, so it is:

radius =
1

2
(
17

8
− 15

8
) =

1

8

44.1.4 Example 3:

Find the interval and radius of convergence of the series:

∞∑
n=0

(−1)n(x− 3)n

2n

Solution:
Two options for how to do this one: We can recognize it as a geometric series and force |r|< 1, or we can do

http://tutorial.math.lamar.edu/Classes/Alg/SolveAbsValueIneq.aspx
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our ratio test and boundary check procedure as usual.
Since we know it’s a geometric series, let’s do that procedure:

∞∑
n=0

(−1)n(x− 3)n

2n
=

∞∑
n=0

(
(−1)(x− 3)

2

)n

So r =
(

(−1)(x−3)
2

)
. Solving the absolute value inequality:

|r| < 1∣∣∣∣( (−1)(x− 3)

2

)∣∣∣∣ < 1

|x− 3| < 2

This corresponds to the double inequality:

−2 < x− 3 < 2

Solving this inequality, we get 1 < x < 5. so the interval of convergence is (1, 5).
The radius of convergence is half the length of this interval, so it is 2.
It was nice that we recognized this as a geometric series, because it means we don’t have to test the endpoints.
There’s no ”inconclusive” part in the geometric series test: it converges for |r|< 1 and diverges for |r|≥ 1.
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