
Math 2300: Calculus Spring 2019

Lecture 42: Wednesday March 13
Lecturer: Sarah Arpin

42.1 8.7: Taylor Polynomials (Continued)

Last class, we introduced Taylor polynomials as a way to approximate complicated functions. Let’s formalize
that now:

42.1.1 Definition

Tn(x), the nth degree Taylor polynomial for f(x) centered at x = a is defined:

Tn(x) = f(a) +
f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

We might want such a polynomial because polynomials are easier to compute with than other classes of
functions. For example, polynomials are nicer than exponentials, or logs, etc.
If a = 0, we call Tn(x) a Maclaurin polynomial

42.1.2 Noteworthy Property

• Notice that Tn(a) = f(a), T ′n(a) = f ′(a), ..., T
(n)
n (a) = f (n)(a).

42.1.3 Example 1

(a) Find T6(x) the 6th degree Taylor polynomial for f(x) = cos(x) centered at x = 0.

(b) Use your polynomial to estimate cos(5◦).

(c) cos(x) is an even function (i.e., cos(−x) = cos(x)). Is T6(x)?
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Solution:

(a) Let’s make a table to organize the derivative information: Using these to create our polynomial:

n f (n)(x) f (n)(0)
0 cos(x) cos(0) = 1
1 − sin(x) − sin(0) = 0
2 − cos(x) − cos(0) = −1
3 sin(x) $\sin(0)=0
4 cos(x) cos(0) = 1
5 − sin(x) − sin(0) = 0
6 − cos(x) − cos(0) = −1

T6(x) = 1 + 0 · x+
−1 · x2

2
+

0 · x3

3!
+

1 · x4

4!
+

0 · x5

5!
+
−1 · x6

6!

Simplifying:

T6(x) = 1− 1

2
x2 +

1

24
x4 − 1

720
x6

(b) To use it to approximate cos(5), we just need to plug in 5. But since we are using a trig function, we
must convert to radians: 5 = π/36:

T6(5) = 1− 1

2
(π/36)2 +

1

24
(π/36)4 − 1

720
(π/36)6 ≈ 0.99619

This is a pretty good estimate! π/36 isn’t far from zero, so this makes sense.

(c) Yes! To see that, note that T6(x) only has even powers of x, so T6(−x) = T6(x).

42.1.4 Example 2

(a) What is Tn(x), the nth degree Taylor polynomial for f(x) = ln(x) centered at x = 1?

(b) Estimate ln(2) using T4(x).

(c) What could you do to improve your estimate in part (b)?
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Solution:

(a) We can make another table to get organized, and let’s start looking for the pattern in the derivatives: If

n f (n)(x) f (n)(1)
0 ln(x) ln(1) = 0
1 1

x 1
2 −1

x2 −1
3 2

x3 2
4 −6

x4 −6
...

...
...

n (−1)n−1(n−1)!
xn (−1)n−1(n− 1)!

you didn’t recognize the pattern at T4(x), just keep going. Look for common patterns: Notice that we
keep multiplying by the exponent, so that generates the (n− 1)!. Notice that the even-power terms are
negative, and the odd-power terms are positive, so that gives us the (−1)n−1 part. It takes practice
to be able to recognize these patterns.

Using this chart to write down the polynomial:

Tn(x) = 0 +
1

1!
(x− 1) +

−1

2!
(x− 1)2 +

2

3!
(x− 1)3 +

−6

4!
(x− 1)4 + · · ·+ (−1)n−1(n− 1)!

n!
(x− 1)n

Tn(x) = (x− 1) +
−1

2
(x− 1)2 +

1

3
(x− 1)3 +

−1

4
(x− 1)4 + · · ·+ (−1)n−1

n
(x− 1)n

(b) Cut this off at n = 4 and plug in x = 2:

T4(2) = (2− 1) +
−1

2
(2− 1)2 +

1

3
(2− 1)3 +

−1

4
(2− 1)4 ≈ 0.583333

(c) It isn’t a great estimate: ln(2) ≈ 0.693147. How can we do better?

• You could use a higher degree Taylor polynomial (T6(x), for example).

• You could do a Taylor polynomial centered at x = e instead, since e is closer to 2 than 1 is.

42.1.5 A Look Ahead

If we construct an “infinite degree” Taylor polynomial, a lot of the time we can get precisely the function that
we want. Now, polynomials are only allowed to be finite degree. So this is a stretch. But using something
called a power series, which we will introduce on Friday, this is possible.

How would we write out the “infinite degree” Taylor polynomial from the example above? Using sigma
notation!

Tn(x) = (x− 1) +
−1

2
(x− 1)2 +

1

3
(x− 1)3 +

−1

4
(x− 1)4 + · · ·+ (−1)n−1

n
(x− 1)n =

n∑
k=1

(−1)k−1

k
(x− 1)k

T∞(x) =

∞∑
k=1

(−1)k−1

k
(x− 1)k

If we plug in x = 2 now, we see we get a convergent series (by the alternating series test). It’s still hard to
show what it converges to...but trust me, it converges to ln(2).


