Math 2300: Calculus Spring 2019

Lecture 42: Wednesday March 13

Lecturer: Sarah Arpin

42.1 8.7: Taylor Polynomials (Continued)

Last class, we introduced Taylor polynomials as a way to approximate complicated functions. Let’s formalize
that now:

42.1.1 Definition

T, (), the nth degree Taylor polynomial for f(x) centered at x = a is defined:
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We might want such a polynomial because polynomials are easier to compute with than other classes of
functions. For example, polynomials are nicer than exponentials, or logs, etc.
If a =0, we call T),(z) a Maclaurin polynomial

42.1.2 Noteworthy Property

e Notice that T},(a) = f(a), T'.(a) = f'(a), ..., T\" (a) = f™(a).

42.1.3 Example 1

(a) Find Tg(x) the 6th degree Taylor polynomial for f(z) = cos(z) centered at « = 0.
(b) Use your polynomial to estimate cos(5°).

(c) cos(z) is an even function (i.e., cos(—z) = cos(z)). Is Ts(x)?

42-1



42-2 Lecture 42: Wednesday March 13

Solution:

(a) Let’s make a table to organize the derivative information: Using these to create our polynomial:

n | f(z) [ f(0)
0 | cos(z) cos(0) =1
1 | —sin(z) | —sin(0) =0
2 | —cos(x) | —cos(0) =—1
3 | sin(z) $\sin(0)=
4 | cos(x) cos(0) =1
5 | —sin(z) | —sin(0) =0
6 | —cos(x) | —cos(0) =—1
2 3 4 5 6
To(z) =140 2+ 129” +03f + 14f +05f + 16!x
Simplifying:

1 1 1
Tﬁ(x) =1- §x2 + ﬂf‘l — %lﬁ

(b) To use it to approximate cos(5), we just need to plug in 5. But since we are using a trig function, we
must convert to radians: 5 = 7/36:

1 1 1
T(5) =1 — = 2, * 4 _ 6~ 0.
6(5) = 1= 5 (m/36)° + 3 (w/36)" — = (x/36)° ~ 0.99619

This is a pretty good estimate! 7/36 isn’t far from zero, so this makes sense.

(¢) Yes! To see that, note that Ts(z) only has even powers of x, so Ts(—x) = Tg(x).

42.1.4 Example 2
(a) What is T;,(x), the nth degree Taylor polynomial for f(z) = In(z) centered at x = 17
(b) Estimate In(2) using Ty(x).

(¢) What could you do to improve your estimate in part (b)?
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Solution:

(a) We can make another table to get organized, and let’s start looking for the pattern in the derivatives: If
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you didn’t recognize the pattern at Ty(x), just keep going. Look for common patterns: Notice that we
keep multiplying by the exponent, so that generates the (n — 1)!. Notice that the even-power terms are
negative, and the odd-power terms are positive, so that gives us the (—1)"~! part. It takes practice
to be able to recognize these patterns.

Using this chart to write down the polynomial:
(1) (n = 1)!

1 -1 2 —6 .
Tn(x):0+ﬁ(:c—1)+§(x—1)2+§(x—1)3+j(x—1)4+---+ - (x—1)
_ —1 2 1 3 —1 4 (="t n
To(z)=(z—1)+ 5 (x—1) +3(a: 1)° + 1 (x—1)*+---+ p (x—1)
(b) Cut this off at n = 4 and plug in x = 2:
-1 1 -1
T4(2):(271)+7(271)2+§(2—1)3+T(2—1)4z0.583333

(c) It isn’t a great estimate: In(2) ~ 0.693147. How can we do better?

e You could use a higher degree Taylor polynomial (75(x), for example).
e You could do a Taylor polynomial centered at x = e instead, since e is closer to 2 than 1 is.

42.1.5 A Look Ahead

If we construct an “infinite degree” Taylor polynomial, a lot of the time we can get precisely the function that
we want. Now, polynomials are only allowed to be finite degree. So this is a stretch. But using something
called a power series, which we will introduce on Friday, this is possible.

How would we write out the “infinite degree” Taylor polynomial from the example above? Using sigma
notation!

_ _ _1\n—1 n _1\k—-1
Te) = (= 1)+ a2+ s =+ o= e T o o 3 C gy
k=1

00 \k—1
Tow) =Y T a1y

If we plug in = 2 now, we see we get a convergent series (by the alternating series test). It’s still hard to
show what it converges to...but trust me, it converges to In(2).



