Math 1300: Calculus I

Lecture: Section 5.2: Definite Integrals

Lecturer: Sarah Arpin

Today's Goal: Define the definite integral; relate to the area problems we've been working on. Logistics: We will start this on Wednesday and need to finish it on the following Monday. There is an activity on Friday. And a check-in on MONDAY this time around! As well as the following Friday (so Monday and Friday of the same week).

Warm-Up 1.1 What is the area under the curve y = x + 1 between x = 0 and x = 2? Hint: Draw a picture to help - you can use geometric area formulas!

 $(A) \ 1$

(B) 2

 $(C) \frac{3}{2}$

(D) 4

(E) None of the above.

Last section, we used rectangles to approximate areas, and limits to find them precisely. We will do a little review of this by discussing Midpoint Rule. Then, we will introduce a new notation for these precise areas, discuss when this object exists, and develop a new way to find these values.

Fall 2020

1.1 Midpoint Rule

When we are computing sums of rectangle areas to estimate an area under the curve (computing a **Riemann Sum**, we have many options for choosing the height of the curve. Midpoint rule describes one such choice: using the midpoints of the intervals defining the rectangle widths.

Example 1.2 Use midpoint rule with n = 5 to approximate the area under the curve $y = \frac{2}{x-1}$ between x = 1 and x = 3.

1.2 New Notation for Area

The area under the curve f(x) on the interval [a, b] is computed by a limit of a sum of rectangle areas (a **Riemann sum**):

We introduce a new notation, using a symbol called an **integral**:

1.3 Evaluating Integrals as Limits of Riemann Sums

Example 1.3 Evaluate $\int_0^3 (x^3 - 2x) dx$ using a limit of Riemann sums.

Example 1.4 Set up an expression for $\int_1^2 2^x dx$ as a limit of sums. Do not evaluate.

We can also use the geometric interpretation of an integral in order to evaluate that integral. A few common examples of this:

Example 1.5 Use geometry to evaluate:

$$\int_{-2}^2 \sqrt{4-x^2} dx$$

Example 1.6 Express the area under the curve y = 2x - 4 between x = 2 and x = 4 as an integral. Draw this region, and evaluate the integral geometrically.

1.4 Properties of the integral

(1) $\int_a^b f(x)dx = -\int_b^a f(x)dx$

(2) $\int_a^a f(x)dx =$

(3) $\int_a^b c dx =$

(4) $\int_a^b cf(x)dx =$

(5) $\int_a^b [f(x) \pm g(x)] dx =$

(6) $\int_a^b f(x)dx + \int_b^c f(x)dx =$

(7) If $f(x) \ge 0$ for $a \le x \le b$, then $\int_a^b f(x) dx \ge 0$

(8) If $f(x) \ge g(x)$ for $a \le x \le b$, then $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.

(9) If $L \le f(x) \le M$ for $a \le x \le b$, then $L(b-a) \le \int_a^b f(x) dx \le M(b-a)$.