Math 1300: Calculus I

Lecture: Section 4.8: Antiderivatives

Lecturer: Sarah Arpin

Today's Goal: Learn about antiderivatives!

Logistics: We will start and finish this section on Wednesday. Don't forget Check-In 14 on Friday! Review sections 4.6 and 4.8 (this section!).

Warm-Up 1.1 Find two positive numbers whose sum is 300 and whose product is a maximum.

- (A) 150, 150
- (B) 100, 200
- (C) 50,250
- (D) 300, 300
- (E) None of the above

1.1 Antiderivatives

1.1.1 Terminology

Find the derivative of $f(x) = x^3 - 2x + 1$:

$$f'(x) =$$

Let's just name this new function g(x):

g(x) =

Since the derivative of f(x) is equal to g(x), we say that f(x) is an **antiderivative** of g(x).

Question: Are there other anti-derivatives of g(x)?

Theorem 1.2 If F(x) is an antiderivative of f(x), then so is F(x) + C, for any real number C.

Fall 2020

Example 1.3 Find all functions f(x) that satisfy $f'(x) = \frac{2}{1+x^2} - e^{-x}$.

Example 1.4 Find f(x) if $f'(x) = 3x^2 - 4x + 5$ and f(-1) = 2.

Example 1.5 Find g(t) if $g''(t) = 2e^t + 3\sin(t)$, g(0) = 0, and $g(\pi) = 0$.

Recall now and always that the acceleration due to gravity is $-9.8m/s^2$, or equivalently $-32ft/s^2$.

Example 1.6 A ball is thrown upward with a speed of 48 ft/s from the edge of a cliff 432 ft above the ground. Find its height above the ground t seconds later. When does it reach its maximum height? When does it hit the ground?

Example 1.7 A stone was dropped off a cliff and hit the ground with a speed of 120 ft/s. What is the height of the cliff?