Schmidt's continued fractions

Here we give a quick summary of Asmus Schmidt's continued fraction algorithm [S1], its ergodic theory [S2], and further results of Hitoshi Nakada concerning these [N1], [N2], [N3]. Define the following matrices in $\operatorname{PGL}(2, \mathbb{Z}[i])$:

$$
\begin{aligned}
& V_{1}=\left(\begin{array}{cc}
1 & i \\
0 & 1
\end{array}\right), V_{2}=\left(\begin{array}{cc}
1 & 0 \\
-i & 1
\end{array}\right), V_{3}=\left(\begin{array}{cc}
1-i & i \\
-i & 1+i
\end{array}\right), \\
& E_{1}=\left(\begin{array}{cc}
1 & 0 \\
1-i & i
\end{array}\right), E_{2}=\left(\begin{array}{cc}
1 & -1+i \\
0 & i
\end{array}\right), E_{3}=\left(\begin{array}{cc}
i & 0 \\
0 & 1
\end{array}\right), C=\left(\begin{array}{cc}
1 & -1+i \\
1-i & i
\end{array}\right) .
\end{aligned}
$$

Note that

$$
S^{-1} V_{i} S=V_{i+1}, S^{-1} E_{i} S=V_{i+1}, S^{-1} C S=C \text { (indices modulo 3) }
$$

where S elliptic of order three $\left(\begin{array}{cc}0 & -1 \\ 1 & -1\end{array}\right)$, and that

$$
\tau \circ m \circ \tau=m^{-1}
$$

for the Möbius transformations m induced by $\left\{V_{i}, E_{i}, C\right\}$ (here τ is complex conjugation).
In [S1] Schmidt uses infinite words in these letters to represent complex numbers as infinite products $z=\prod_{n} T_{n}, T_{n} \in\left\{V_{i}, E_{i}, C\right\}$ in two different ways. Let $M_{N}=\prod_{n=1}^{N} T_{n}$. We have regular chains

$$
\operatorname{det} M_{N}= \pm 1 \Rightarrow T_{n+1} \in\left\{V_{i}, E_{i}, C\right\}, \operatorname{det} M_{N}= \pm i \Rightarrow T_{n+1} \in\left\{V_{i}, C\right\}
$$

representing z in the upper half-plane \mathcal{I} (the model circle) and dually regular chains

$$
\operatorname{det} M_{N}= \pm i \Rightarrow T_{n+1} \in\left\{V_{i}, E_{i}, C\right\}, \operatorname{det} M_{N}= \pm 1 \Rightarrow T_{n+1} \in\left\{V_{i}, C\right\}
$$

representing $z \in\{0 \leq x \leq 1, y \geq 0,|z-1 / 2| \geq 1 / 2\}=: \mathcal{I}^{*}$ (the model triangle). The model circle is a disjoint union of four triangles and three circles, and the model triangle is a disjoint union of three triangles and one circle (pictured below):

$$
\begin{aligned}
\mathcal{I} & =\mathcal{V}_{1} \cup \mathcal{V}_{2} \cup \mathcal{V}_{3} \cup \mathcal{E}_{1} \cup \mathcal{E}_{2} \cup \mathcal{E}_{3} \cup \mathcal{C} \\
\mathcal{I}^{*} & =\mathcal{V}_{1}^{*} \cup \mathcal{V}_{2}^{*} \cup \mathcal{V}_{3}^{*} \cup \mathcal{C}^{*}
\end{aligned}
$$

where

$$
\mathcal{V}_{i}=v_{i}(\mathcal{I}), \mathcal{E}_{i}=e_{i}\left(\mathcal{I}^{*}\right), \mathcal{C}=c\left(\mathcal{I}^{*}\right), \mathcal{V}_{i}^{*}=v_{i}\left(\mathcal{I}^{*}\right), \mathcal{C}^{*}=c(\mathcal{I}),
$$

(lowercase letters indicating the Möbius transformation associated to the corresponding matrix).

$$
\mathcal{V}_{1}
$$

By considering $z=\prod_{n} T_{n}$ we obtain rational approximations $p_{i}^{(N)} / q_{i}^{(N)}$ to z by

$$
M_{N}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)=\left(\begin{array}{lll}
p_{1}^{(N)} & p_{2}^{(N)} & p_{3}^{(N)} \\
q_{1}^{(N)} & q_{2}^{(N)} & q_{3}^{(N)}
\end{array}\right)
$$

(which are the orbits of $\infty, 0,1$ under the partial products $m_{N}=t_{1} \circ \cdots \circ t_{N}$).
The shift map T on $X=\mathcal{I} \cup \mathcal{I}^{*}=\{$ chains, dual chains $\}$ maps X to itself via Möbius transformations, specifically (mapping $\mathcal{V}_{i}, \mathcal{C}^{*}$ onto \mathcal{I} and $\mathcal{V}_{i}^{*}, \mathcal{E}_{i}, \mathcal{C}$ onto \mathcal{I}^{*})

$$
T(z)=\left\{\begin{array}{cc}
v_{i}^{-1} z & z \in \mathcal{V}_{i} \cup \mathcal{V}_{i}^{*} \\
e_{i}^{-1} z & z \in \mathcal{E}_{i} \\
c^{-1} z & z \in \mathcal{C} \cup \mathcal{C}^{*}
\end{array} .\right.
$$

The shift $T: X \rightarrow X$ is shown to be ergodic ($[\mathbf{S 2}]$, theorem 5.1) with respect to the following probability measure

$$
\tilde{f}(z)=\left\{\begin{array}{cl}
\frac{1}{2 \pi^{2}}\left(h(z)+h(s z)+h\left(s^{2} z\right)\right) & z=x+y i \in \mathcal{I} \\
\frac{1}{2 \pi} \frac{1}{y^{2}} & z=x+y i \in \mathcal{I}^{*}
\end{array}\right.
$$

where

$$
h(z)=\frac{1}{x y}-\frac{1}{x^{2}} \arctan \left(\frac{x}{y}\right) .
$$

By inducing to $X \backslash \cup_{i}\left(\mathcal{V}_{i} \cup \mathcal{V}_{i}^{*}\right)$ Schmidt gives "faster" convergents $\hat{p}_{\alpha}^{(n)} / \hat{q}_{\alpha}^{(n)}$ and a sequence of exponents $e_{n}\left(1\right.$ for E_{i}, C, and the return time k for $\left.V_{i}^{k}\right)$. He then gives results analagous to those of simple continued fractions via the pointwise ergodic theorem, including the arithmetic and geometric mean of the exponentswhich exist for almost every z (S 2 theorem 5.3)

$$
\lim _{n \rightarrow \infty}\left(\prod_{i=1}^{n} e_{i}\right)^{1 / n}=1.26 \ldots, \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} e_{i}=1.6667 \ldots
$$

In [N1, Nakada constructs an invertible extension of T on a space of geodesics in two copies of three-dimensional hyperbolic space. In one copy we take geodesics from $\overline{\mathcal{I}^{*}}$ to \mathcal{I} and in the other the geodesics from $\overline{\mathcal{I}}$ to \mathcal{I}^{*} where the overline indicates complex conjugation. The regions are pictured below. The extension acts as Schmidt's T depending on the second coordinate. Nakada doesn't provide a second proof of ergodicity, but quotes Schmidt's result. Also in [N1], results about the the density of Gaussian rationals p / q that appear as convergents and satisfy $|z-p / q|<c /|q|^{2}$ are obtained. For instance ([N1], theorem 7.3), for almost every $z \in X$ and $0<c<\frac{1}{1+1 \sqrt{2}}$ it holds that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{p / q \in \mathbb{Q}(i): p / q=p_{i}^{(n)} / q_{i}^{(n)}, 1 \leq n \leq N, i=1,2,3,|z-p / q|<c /|q|^{2}\right\}=\frac{c^{2}}{\pi}
$$

In [N2], main theorem, Nakada describes the rate of convergence of Schmidt's convergents. Namely for almost every z

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|q_{i}^{(n)}\right|=\frac{E}{\pi}, \quad \lim _{n \rightarrow \infty} \frac{1}{n} \log \left|z-\frac{p_{i}^{(n)}}{q_{i}^{(n)}}\right|=-\frac{2 E}{\pi}, E=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2}}
$$

For reference, the relationship between the super-apollonian Möbius generators $\left\{\mathfrak{s}_{i}, \mathfrak{s}_{i}^{\perp}\right\}$ and Schmidt's $\left\{v_{i}, e_{i}, c\right\}$ are

$$
\begin{gathered}
\mathfrak{s}_{1}=c^{2} \circ \tau, \mathfrak{s}_{2}=e_{1}^{2} \circ \tau, \mathfrak{s}_{3}=e_{2}^{2} \circ \tau, \mathfrak{s}_{4}=e_{3}^{2} \circ \tau, \\
\mathfrak{s}_{1}^{\perp}=1 \circ \tau, \mathfrak{s}_{2}^{\perp}=v_{1}^{2} \circ \tau, \mathfrak{s}_{3}^{\perp}=v_{2}^{2} \circ \tau, \mathfrak{s}_{4}^{\perp}=v_{3}^{2} \circ \tau .
\end{gathered}
$$

References

[N1] Nakada, Hitoshi, On Ergodic Theory of A. Schmidt's Complex Continued Fractions over Gaussian Field, Mh. Math. 105, 131-150 (1988)
[N2] Nakada, Hitoshi The metrical theory of complex continued fractions, Acta Arith. 56 (1990), no. 4, 279-289
[N3] Nakada, Hitoshi On metrical theory of Diophantine approximation over imaginary quadratic field, Acta Arith. 51 (1988), no. 4, 399-403
[S1] Asmus L. Schmidt, Diophantine Approximation of Complex Numbers, Acta Math. 134, 1-85 (1975)
[S2] Asmus L. Schmidt, Ergodic Theory for Complex Continued Fractions, Mh. Math. 93, 3962 (1985)
[S3] Schmidt, A. L., Farey triangles and Farey quadrangles in the complex plane, Math. Scand., 21 (1967), 241—295

