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1 Proofs Using the Quadratic Gauss Sum

Definition. A Gauss sum g(a, x) associated to a character x of modulus n (a homomor-
phism x : (Z/nZ)* — C extended to Z, x(k) =0 if (k,n) > 1) is

n—1
g(CI,, X) — Z X(k>627riak/n
k=1
Observe that for (a,n) =1
n—1 n—1
gla,x) =Y x(k)em ™ = " x (1) x (@)™ = X(a)g(1, x)
k=1 =1

with | = ka. Also observe that

g(a,x) =D x(k)e > %" = x(=1)g(a, %).
k

Proposition. For a non-principal character x of prime modulus p and (a,p) = 1 we
have

lg(a, x)|* = p.



Proof. We evaluate ) g(a, x)g(a, x) two different ways:

Zgax aX ZXkll Qﬂzakl/p_zxkllz%rmkl)/

a,k,l

= X(kl™")pdw = p(p — 1),
k,l

> gla,x)gla, x) = > x(a)g(1,x)x(a)g(1, x)

= (p—D)lg(1, )

For y real, the above says ¢(1,x)* = x(—1)p, which we will use below.
Theorem (Quadratic Reciprocity). For odd primes p,q we have

(0)@)- oo

where ( ) 15 the Legendre symbol, ( ) = +1 according as x* = a(l) has a solution or not.

Proof 1. Let x be the quadratic character mod p, ¢ the quadratic character mod g,
g=9(1,%), and p* = g*> = x(—1)p. We have

(g-1)/2

g'=(p") g=v(p*)g modq

and also

(Zx 2’”’““”) Zx 1e?™MIP = g(q, ) = x(q)g mod g

k
(noting that x(k)? = x(k) and x = x). Hence (the numbers being +1 makes the
congruence mod ¢ an equality)

x(@) = ¥ (p") = ¢(x(=1)p) = »((=1)""V2p) = (=1L (p)
as desired (using x(—1) = (=1)P=D/2 (1) = (—1)@=/2), B

Proof 2. Here is another proof in a similar vein. By the above, K = Q((,) contains a
square root of p* = (—1)®~Y/2p (namely g). [Another way to see this is by noting that

p—1
— HI_CZ =p= Hl—cl

(}elvaluating at = 1) and combining the +i terms (1 —(;*)(1 — () = =, (1 — ¢)* so
that

(»—1)/2
p= (D" T 1-¢)?

i=1



where b = — lg’;_ll)/2 k. Let 2¢ = 1 mod p so that Cg = (Cgc)z to get a square root of p*.]
In any case, let 72 = p* and let o, be the automorphism of Q({,) induced by ¢, — .

Then 0,7 = £7. We have G = Gal(K/Q) = (Z/(p))* (in the obvious way) and H =

Gal(K/Q(7)) is the unige index two subgroup, i.e. the squares in (Z/(p))*. Hence

JT:(g)T
/ p

(£ depending on whether or not o, fixes 7). Let Q|g, so that o, is the Frobenius of Q.
In particular we have
o,7 =77 mod Q.

Thus

(g) T=o,m7=T71= (p*)(q_l)/27' mod
p

and (since 1 Z —1 mod Q)

() -rmrnme (),

2 Some Related Lemmata and a Few More Proofs

Lemma (Gauss’ lemma). Let p be an odd prime and (a,p) = 1. Then

(§)-ror

where n is the number of a,2a, . .., p%la greater than p/2 modulo p.

Proof. Evaluate
p R

Z=a-2a-3a... a mod p

-1

in two different ways. The obvious gives Z = aP~1/2.2.3.. 2. For the second, if

ka > p/2, write it as —(p — ka), and note that all of the ka are distinct (ka = la = k =1
since 0 < k,l < (p—1)/2). Hence Z = (—1)"-2-3----(p—1)/2 and the result follows. [

Lemma (Eisenstein’s lemma). For an odd prime p and (a,p) = 1

(g) = (=1)Zalen/p]

where the sum is over evenn =2,4,....,p— 1.



Proof. For each n considered, let an = gp + r(n) (quotient plus remainder as a function
of n). Multiplying all of the an together (modulo p) gives

oz Hn = Hcm = Hr(n) = H(—l)r(")r(n) = (—1)Zn () Hn (modulo p)

where we leave r(n) = (—1)"™ alone if r(n) is even and write it as 7(n) = —(p —r(n)) =
(—1)"™ if r(n) is odd. This holds because all of the (—1)"" are distinct modulo p, else

(=) ™an = (=1)"™am = m = £n

which is impossible for even 2 < m,n < p — 1 unless m = n.
Finally, considering an = gp+7(n) modulo 2, we see that gp = ¢ = |an/p| = r(n) (2)
and the result follows. O

Lemma (Zolotarev’s lemma). For p an odd prime, (a,p) = 1,

§)-

the sign of the permutation of 1,2,...,p — 1 induced by multiplication by a.

Proof. In a finite group G, m, has |G|/|g| disjoint cycles each of length |g|. 7, is even
unless there are an odd number of even cycles, i.e. |g| is even and |G|/|g| is odd. Let x
be a primitive root modulo p (i.e. {(x) = (Z/(p))*). Suppose a = 27 so that the order of

aisk=(p—1)/(j,p—1) and the index of (a) is i = (p — 1, 7). We have (;‘—;) =—1iff 5
is odd iff k is even and i is odd. O

We now present some proofs of quadratic reciprocity.

Proof (using the Gauss lemma). Here is a proof due to Eisenstein (using the Gauss lemma
above). First a trigonometric lemma.

Lemma. Let f(z) = 2isin(27z). Then for odd n we have

fnz) "y
r = 11 ek k).
k=1
Proof. For n odd and ( a primitive nth root of unity, we have
n—1 n—1 n—1 n—1
2=yt == ) =[] - ) =P (¢Fe = ¢ry) = [ (P = ¢TFy).
k=0 k=0 k=0 k=0

With ¢ = e?™/™ g = ™% y = ¢~2™* this becomes

n—1

k=0



The function f is 1-periodic so that

f(z+k/n) = f(z = (n—Fk)/n)

and as k runs from (n+1)/2 to n — 1, n — k runs from (n —1)/2 to 1. Thus

fnz)
= [[ fGe+k/m) ] fz—(n—-k)/n)

f(z) k=1 (n+1)/2
(n—1)/2
= [I fGe+E/m)fz-k/mn).
k=1

[

Now let n = g # p be an odd prime and z = [/p. Using the above and taking the
product over [ gives

(p—1)/2 (¢—1)/2 (p—1)/2

[[ II st wasim o= 11 Hat/p) l/p

The right-hand side is (%) as follows. Similar to what we noted in the proof of the Gauss

lemma, the collection of numbers

{la:lgagp%l},{il:lglgp%l}

are the same, and (—1)° = <%> where ¢ is the number of minus signs occuring (this is

the Gauss lemma). Because f is an odd 1-periodic function we see that
(p—1)/2 (al/p (a>
L fm) o \p)

To obtain quadratic reciprocity, we compare

(p—1)/2 (¢—-1)/2 (¢=1)/2 (p—1)/2
stk stk = (1) [T TI swassmsiassp = (%)

=1 k=1

recalling the fact that f is odd. Hence

()



Proof (using the Eisenstein lemma). Here is another proof due to Eisenstein (using the
Eisenstein lemma above). Consider lattice points strictly inside the rectangle with diag-
onal (0,0), (p,q) (and note that there are no lattice points on the diagonal itself). The
number of lattice points below the diagonal with even z-coordinate is ) |gn/p|. The
number of lattice points below the diagonal with even z-coordinate and p/2 < = < p
has the same parity as the number of lattice points above the diagonal with even x-
coordinate and p/2 < x < p. Reflecting these twice (about = = p/2,y = ¢/2) gives the
lattice points below the diagonal with odd z-coordinate and 0 < = < p/2. Hence the
parity of > [an/p] is the same as the number of total latice points below the diagonal
with 0 < < p/2. The same argument shows that the parity of > [pn/q| is the same
as the total number of total latice points above the diagonal with 0 < y < ¢/2. Hence

(2) (E) (D) (1) = (= 1) Eelon/al (1) lom/a

since the total number of latice points with 0 < xz < p/2 and 0 < y < ¢/2 is p;l%.

[
Proof (using the Zolotarev lemma). asdf O

3 A Proof Using Jacobi Sums

We begin with some preliminaries.

Definition (Jacobi Sum). Let x;,1 < ¢ < [ be characters mod p. The Jacobi sum is
defined as

Txt,-ox) = Y, xat).xlh).

tite+=1

If the Gauss sum is a finite field equivalent of the gamma function, then the Jacobi
sum is analogue of the beta function. Here is the property of J we will use.

Proposition. Let y;,1 < i < [ be characters mod p. If the x; are all nontrivial and
IL; xi is also nontrivial, then

J(X1,--x1) = —gi—i](iz;

Proof. We have

[To0x) = HZXi(ti)Cti => > TDutt)¢

i a Y. ti=a i
= Jo(x1,- - x1) + ZC“HXi(a)J(Xla e Xa)
a#0 i

= Jo(xas - x0) + T 0 ox)g(] [ ),



where Jo(X1, ..., X1) 205~ 1,—o [ I; Xa(ts), which we want to show is zero. We have

Jolxts--ox) =Y xals) D xalt) - xia(tio)

L1+t —1=—s
-1
= <Hx> (=D J (X1 xi-1) D (Hx) (s) =0,
i=1 s£0 \ i
using the fact that [, x; is nontrivial. O

Since ¢ is odd and x? = x is nontrivial, by the preceding proposition we have

JOG-x) =900 = (g()9(x) 7 = (x(-p) 2 =(=1)=2 =z p=2,

where we’ve used the fact that

p=90)900) =D _x@)XWCY =Y x(@)¢" > x(=y)¢¥ = x(—=1)g(x)g(x)-

Modulo ¢ the Jacobi sum is

p—1gqg—1 g—1

T ) = (C) TP = (—1) (g) mod g.

There is an action of the cyclic group of order ¢ on the the ¢g-tuples indexing the Jacobi
sum, and only one fixed point, x; = ¢ 'mod p, so that

T x) = x(a™) = ¥(@) = x(g) = (?> mod p

p

using the fact that x is real along the way. Hence

()= ()i

and quadratic reciprocity follows.

4 The Quadratic Character of 2 and —1

Tying up loose ends:

Proposition. for p an odd prime, we have



Proof. The first statement is trivial. For the second, we work over the cyclotomic field
Q(¢) where ¢® =1 is a primitive eigth root of unity. Then (¢ + ¢(7!)? = 2 and

et I (O S S S
2 2 = —Iv— 1 p 1 = = 1901 d .
_ 2\ _ e — 2\ _
If p=41 mod 8 we get (2—7> =1 and if p=+3 mod 8 we get (5) =—1.

p—1

Or (similarly), working in Z[i], we have (1 +1)? = 24, (2i) 2
mod p, and considering the various cases gives the result.

= (1+q)P ! = 11‘:5
5 Appendix: Sign of the Quadratic Gauss Sum

For no good reason, we find the sign of the quadratic Gauss sum (g(1,x) with x the
Legendre symbol). We have

g(1,x) =1+ Z o2miR/q _ Z 2miN/a _ 1 | QZ 2miR/g
R N R

since

0=1+ Z e2miR/a Z 2miN/q
R N

(here R and N are the quadratic residues and non-residues mod ¢). Also,

142 Z e27riR/q _ qzl e271'1':1:2/q
R =0

since x2 takes on each quadratic residue twice and 0 once. We have the following.

Proposition.
. (1+49)VN N =0(4)
— — 2miz? /N _ \/N N = 1(4)
S =S(N) x:Oe 0 N =2(4) -
ivVN N =3(4)

Proof. Consider the restiction of a continuous f : R — R to [0, 1]. We have f = f except
at x = 0,1 where f(0) = f(1) = —f(o);f(l) where f(z) = 3, (folf(t)e*%mtdg e2mine,
Repeating this for fi(z) = f(x + k) with A < k < B and summing the results gives

zB: felz) = zB: Z (/01 ft+ k)e‘%i”tdt) e2minT — zﬂ: (/AB f(t)e‘m"tdt) p2mine

k=A k=A n

Evaluating at x = 0 gives

Zf(k?) - w = Z (f 1iam)" (n).
k=4



We apply this to the function f(z) = e*™*/N with A = 0, B = N. This gives (noting

(f(0) + F(N))/2 = f(0) =1)
N
= 27riw2/N727rinxd
e
1
= NZ@’”N”Z/?/ ezm‘N(y,n/Q)zdy

1-n/2
_NZ —mNn2/2/ e?m'Ny2dy
—n/2
—n+1/2 o
_NZ/ QmNy dy+NZ NZ/ QmNy dy
n—1/2

:N(1+i_N)/ 2N gy

—0o0

1+i- " g :
_ N1/2+— (settlng N =1,5(1) =1 to find / ¢ dz = 1 ) .
— —o0 —
O
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