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Throughout, A is a commutatitve ring with identity 1 # 0 and we use the notation A% =
P,cg A for the free A-module with basis indexed by the set S. Our goal is to present a proof
of the following

Theorem (Lazard). An A-module M is flat if and only if M is a direct limit of finite rank
free A-modules.

Here is a simple example in abelian groups showing that the “directed” assumption is
necessary. If G is the colimit of the diagram

7—-2.7

2

Z

then G = Z3/((1,0,—2), (1,—2,0)) has torsion, and therefore is not a flat Z-module. We have
2(1,—1,—1) = (1,0,—2) + (1,—2,0) = 0 but (1, -1, —1) # 0 since if

(1,-1,—1) = a(1,0,-2) + b(1,-2,0), a,b € Z,

then 1 = 2a = 2b, impossible.
We first define the words in bold.

Definition 1. An A-module N is flat if whenever
M — M — M"
is an exact sequence of A-modules, then
M@N—->M@N-—M'®@N
15 also exact.

An condition equivalent to flatness is given by the following

Lemma 1 (Equational criterion for flatness, [E] corollary 6.5). M is a flat A-module if and
only if any relation Y ;" | fim; = 0, fi € A, m; € M, is “trivial”: there are m/; € M and

J
a;; € A such that
mi =Y _aiml, > aif;=0.
j i
[e., we can write 0 = Y71, fim; using zero coefficients, 3~;(3_; az; fiym; = >, 0-m} =0.]
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Proof. Suppose M is flat, >, fim; = 0 in M, and let I = (f;); C A be the ideal generated by
the coefficients. The exact sequence 0 — I — A remains exact after tensoring with M, so that
Yo fiomi=0inI®M. If ¢ : A" — I is defined by ¢(a1,...,a,) = >, a;f; and K is its kernel,

then the exact sequence 0 —» K — A" g I — 0 remains exact after tensoring with M, so there
is > kj@m; in K ® M such that ), k; @m) =3, e; @m;, (where {e;}; is the standard basis
for A™), since (¢ ® 1)(>_, e, ® m;) = 0. Each k; can be expressed as k;j = ) . aj;e; so that

Zei®(2aijm;-) :Zei@)mi cA"Q M =M™,

and m; = > a;;m] (the first condition above). Also, kj € K = ker(¢) so that ¢(k;) = 0 =
>, aijfi (the second condition above).

Conversely, suppose every relation in M is trivial. Let I = A be the inclusion of a finitely
generated ideal. [Flatness of M is equivalent to injectivity of I ® M — A ® M for any such I,
cf. [AM] chapter 2, exercise 26 using Tor or [R], corollary 6.143 using Baer’s criterion and the
fact that M is flat iff Homy(M,Q/Z) is injective.] If (. ® 1)(>, fi ® m;) = 0 € A® M then
>, fim; is a relation in M, hence trivial. Using the notation of the previous lemma, we have

Zf2®ml:z:fz Zam ZZfzazj ®m —0
i 7 j

and ¢ ® 1 is injective. O
A corollary of lemma 1 is the following flatness criterion that we will use below.

Corollary 1. M is a flat A-module if and only if whenever given a map A" s M anda finitely
generated N < ker(f), there is a factorization

Ao p

\ g
f

M
with F a finite rank free A-module and N < ker(h).

Proof. If N is generated by one element = = (f;);, f(xz) = >, fim; = 0, then M is flat iff this
relation is trivial m; = Zj aijm;, > ;aijfi = 0 by lemma 1. Take F' = A™, h(ay,...,an) =
>ij @ijaiej ({ej}; the standard basis), and g(a1,...,am) = >, a;m}. Then

fla"'vfn ZCL”fZGJ—O

(goh)(ai,...,an) =g Zaijaiej = Zaijaim; = Zaimi = f(ai,...,an).
.7 2 t
Now if N = N’ + Az’ and A s F' s M factors f with N" < ker(h’), then we can find F,
B, and g with h/(x) € ker(h”) such that the following commutes

Ar Mo M p

N

M
Taking h = h” o i/, we have N < ker(h) and f = go h. O



Definition 2. A poset (I, <) is directed if for any i,j € I there is k € I such thati,j <k. A
directed system of A-modules is a functor from I to the category of A-modules (i.e. for each
1 € I we associate an A-module M; and for each i < j we associate an A-module homomorphism
f;f : M; — M; such that whenever i < j < k, f]g o f; = f,é) The direct limit of a directed
system of A-modules is an A-module ligliel M; and maps p; : M; — hﬂz s M; that are universal
with respect to maps out of the directed system. That is to say, if N is any A-module with maps
q : M; — N commuting with the {f;}mg, then there is a unique map h : hﬂiel M; - N
commuting with {f;}, {p:i}, and {q;}. Rephrased yet again, maps out of the directed system
factor uniquely through the direct limit.

More concretely, a construction of the direct limit is (6916 I Mz) /N where N is the submod-

ule generated by {m; — f;(ml) imy; € My, i < jel}.

The following two lemmata are exercises in [AM] and together they show that the direct
limit of a directed system of flat A-modules is flat.

Lemma 2. If
{M}ier Aibier, {Mi}ier gidier, {M] }icr
is exact at each i, then
ling M/ L Ying M1; % iy M
il iel el
18 exact.

Proof. Exercise 19, chapter 2 of [AM]. O

Lemma 3. Tensor product commutes with direct limits, i.e.
(lim M;) @ N = lim(M; ® N).
iel el
Proof. Exercise 20, chapter 2 of [AM]. O
We do not necessarily need all of a directed system to determine the direct limit.

Definition 3. An induced sub-poset (J, <) of (I,<) (J is a subset of I and j1 < ja in J if and
only if 71 < jo in I) is cofinal in (I, <) if for any i € I there is a j € J such that i < j.

Lemma 4. If J is cofinal in the directed poset I and {M;};cr is a directed system of A-modules,
then lim,  M; = lim ., M;.

Proof. The maps M, — hﬂie[ M; induce a unique map ¢ : hﬂjej M; — hﬂie[ M;. By
cofinality, for each i € I, there is a j(i) € J such that ¢ < j (and we take j(j) = j for
j € J € I). This gives maps M; — M, — ligjeJ M; commuting with the maps between

{M,}ier hence induces a unique 1) : hﬂie[ M; — hﬂjej M;. Let af, o : M; — ligiel and 5]1,
Bj : M; — ligj6 J M; be the maps associated to the directed systems (the § maps are a subset
of the @ maps). Then the maps ¢, 1 just described give
Finally, we have

YodoB;=1oa;= ;) = b

$ot o =¢oBinaiy = 2 =

so that ¢, ¢ are inverse isomorphisms between the direct limits. O



Before proving the theorem, we have the following
Lemma 5. FEvery A-module M is a direct limit of finitely presented A-modules.

Proof. Take an exact sequence 0 — K — Al — M — 0 and let
A={(J,N):JCI finite, N C K N A” finitely generated},

partially ordered by (J',N') < (J,N) if J/ C J and N’ C N (A is clearly directed). For
A= (J,N) € A, define
M, := A’/N.

For k < A, there are obvious maps f{ : M, — M), making {M)} en a directed system of
A-modules. There are also the obvious maps ¢y : My — M inducing h : lig)\eA My — M. The
induced map h is surjective since every element of M is in the image of some ¢). For x lign)\E K
let ) € M) such that px(z)) = = ({pr}rea being the maps from the directed system into
the direct limit), cf. exercise 15, chapter 2 of [AM]. We have ¢y(z)) = (hopy)(zy) = 0. If
A= (J,N), we can enlarge J, N to obtain a u > A that witnesses the fact that ¢y(x)) =0, i.e.
T, = fl;\(ac)\) = 0. Hence we have

T =q\(7\) = qu(zy) =0
and h is injective as well. O

Proof of theorem (following [S]). Suppose M is a flat A-module. In the construction of lemma
5, take I = M x Z with A! 2y M defined by 1(m.) = m (the generator of the ith coordinate
gets mapped to the projection of i = (m,v) onto M). [The factor of Z in I guarantees extra
space we'll use later.] Let A = (J, N) € A (J C I finite and N < ker(f)N A finitely generated).

By corollary 1, the map M, 2 M (where M, = A’/N) factors through a finite rank free
A-module F

My F% M KA S F
qr = goh. We now realize this F as M), for some A < p, giving a cofinal subset of A consisting

of finite rank free A-modules.
Let {b1,...,b,} be a basis for F' and choose i1, ...,i, € I such that i; ¢ J and

q(1y) =gby), q: A" =M, g: F - M
(the factor of Z in I guaranteeing this possibility). Let J' = J U {i1,...,i,} and define a map

AT extending h and mapping 1;, to b;, with kernel N’. The following diagram commutes

AT R

b

AI?‘M

so that N’ < ker(g). The top map A7 — F is split (since it is a surjection onto a free module)
so that A7 = N'@ F and N’ is finitely generated as well. Hence y := (J', N') € A and A < p.

By lemma 5, M is the direct limit of a directed system of finite rank A-modules, proving
the theorem. O

There is a proof of a similar statment (M is flat iff M is a filtered colimit of a diagram of
free A-modules) in [E], A6.2.



Exercises

To be thorough, one should do the exercises referenced above: [AM] 2.15, 2.19, 2.20, 2.26 (which
were all presented in class).
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