Lazard's theorem (characterizing flatness)

Robert Hines

December 7, 2016

Throughout, A is a commutative ring with identity $1 \neq 0$ and we use the notation $A^S = \bigoplus_{s \in S} A$ for the free A-module with basis indexed by the set S. Our goal is to present a proof of the following

Theorem (Lazard). An A-module M is flat if and only if M is a direct limit of finite rank free A-modules.

Here is a simple example in abelian groups showing that the "directed" assumption is necessary. If G is the colimit of the diagram

$$\begin{array}{c} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \\ \stackrel{2}{\downarrow} \\ \mathbb{Z} \end{array}$$

then $G \cong \mathbb{Z}^3/((1, 0, -2), (1, -2, 0))$ has torsion, and therefore is not a flat \mathbb{Z} -module. We have 2(1, -1, -1) = (1, 0, -2) + (1, -2, 0) = 0 but $(1, -1, -1) \neq 0$ since if

$$(1, -1, -1) = a(1, 0, -2) + b(1, -2, 0), \ a, b \in \mathbb{Z},$$

then 1 = 2a = 2b, impossible.

We first define the words in **bold**.

Definition 1. An A-module N is flat if whenever

$$M' \to M \to M''$$

is an exact sequence of A-modules, then

$$M' \otimes N \to M \otimes N \to M'' \otimes N$$

is also exact.

An condition equivalent to flatness is given by the following

Lemma 1 (Equational criterion for flatness, [E] corollary 6.5). M is a flat A-module if and only if any relation $\sum_{i=1}^{n} f_i m_i = 0$, $f_i \in A$, $m_i \in M$, is "trivial": there are $m'_j \in M$ and $a_{ij} \in A$ such that

$$m_i = \sum_j a_{ij} m'_j, \ \sum_i a_{ij} f_i = 0.$$

[I.e., we can write $0 = \sum_{i=1}^{n} f_i m_i$ using zero coefficients, $\sum_j (\sum_i a_{ij} f_i) m'_j = \sum_j 0 \cdot m'_j = 0.$]

Proof. Suppose M is flat, $\sum_i f_i m_i = 0$ in M, and let $I = (f_i)_i \subseteq A$ be the ideal generated by the coefficients. The exact sequence $0 \to I \to A$ remains exact after tensoring with M, so that $\sum_i f_i \otimes m_i = 0$ in $I \otimes M$. If $\phi : A^n \to I$ is defined by $\phi(a_1, \ldots, a_n) = \sum_i a_i f_i$ and K is its kernel, then the exact sequence $0 \to K \to A^n \xrightarrow{\phi} I \to 0$ remains exact after tensoring with M, so there is $\sum_j k_j \otimes m'_i$ in $K \otimes M$ such that $\sum_j k_j \otimes m'_j = \sum_i e_i \otimes m_i$, (where $\{e_i\}_i$ is the standard basis for A^n), since $(\phi \otimes 1)(\sum_i e_i \otimes m_i) = 0$. Each k_j can be expressed as $k_j = \sum_i a_{ij}e_i$ so that

$$\sum_{i} e_i \otimes (\sum_{j} a_{ij} m'_j) = \sum_{i} e_i \otimes m_i \in A^n \otimes M \cong M^n,$$

and $m_i = \sum_j a_{ij} m'_j$ (the first condition above). Also, $k_j \in K = \ker(\phi)$ so that $\phi(k_j) = 0 = \sum_i a_{ij} f_i$ (the second condition above).

Conversely, suppose every relation in M is trivial. Let $I \xrightarrow{\iota} A$ be the inclusion of a finitely generated ideal. [Flatness of M is equivalent to injectivity of $I \otimes M \to A \otimes M$ for any such I, cf. [AM] chapter 2, exercise 26 using Tor or [R], corollary 6.143 using Baer's criterion and the fact that M is flat iff $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ is injective.] If $(\iota \otimes 1)(\sum_{i} f_{i} \otimes m_{i}) = 0 \in A \otimes M$ then $\sum_{i} f_{i}m_{i}$ is a relation in M, hence trivial. Using the notation of the previous lemma, we have

$$\sum_{i} f_i \otimes m_i = \sum_{i} f_i \otimes (\sum_{j} a_{ij} m'_j) = \sum_{j} (\sum_{i} f_i a_{ij}) \otimes m'_j = 0,$$

and $\iota \otimes 1$ is injective.

A corollary of lemma 1 is the following flatness criterion that we will use below.

Corollary 1. *M* is a flat *A*-module if and only if whenever given a map $A^n \xrightarrow{f} M$ and a finitely generated $N \leq \ker(f)$, there is a factorization

with F a finite rank free A-module and $N \leq \ker(h)$.

Proof. If N is generated by one element $x = (f_i)_i$, $f(x) = \sum_i f_i m_i = 0$, then M is flat iff this relation is trivial $m_i = \sum_j a_{ij} m'_j$, $\sum_i a_{ij} f_i = 0$ by lemma 1. Take $F = A^m$, $h(a_1, \ldots, a_n) = \sum_{i,j} a_{ij} a_i e_j$ ($\{e_j\}_j$ the standard basis), and $g(a_1, \ldots, a_m) = \sum_j a_i m'_j$. Then

$$h(f_1, \dots, f_n) = \sum_{i,j} a_{ij} f_i e_j = 0,$$

$$(g \circ h)(a_1, \dots, a_n) = g\left(\sum_{i,j} a_{ij} a_i e_j\right) = \sum_{i,j} a_{ij} a_i m'_j = \sum_i a_i m_i = f(a_1, \dots, a_n).$$

Now if N = N' + Ax' and $A^n \xrightarrow{h'} F' \xrightarrow{g'} M$ factors f with $N' \leq \ker(h')$, then we can find F, h'', and g with $h'(x) \in \ker(h'')$ such that the following commutes

Taking $h = h'' \circ h'$, we have $N \leq \ker(h)$ and $f = g \circ h$.

Definition 2. A poset (I, \leq) is directed if for any $i, j \in I$ there is $k \in I$ such that $i, j \leq k$. A directed system of A-modules is a functor from I to the category of A-modules (i.e. for each $i \in I$ we associate an A-module M_i and for each $i \leq j$ we associate an A-module homomorphism $f_i^i: M_i \to M_j$ such that whenever $i \leq j \leq k$, $f_k^j \circ f_j^i = f_k^i$. The direct limit of a directed system of A-modules is an A-module $\varinjlim_{i \in I} M_i$ and maps $p_i : M_i \to \varinjlim_{i \in I} M_i$ that are universal with respect to maps out of the directed system. That is to say, if N is any A-module with maps $q_i: M_i \to N$ commuting with the $\{f_j^i\}_{i,j \in I}$, then there is a unique map $h: \lim_{i \in I} M_i \to N$ commuting with $\{f_i^i\}$, $\{p_i\}$, and $\{q_i\}$. Rephrased yet again, maps out of the directed system factor uniquely through the direct limit.

More concretely, a construction of the direct limit is $(\bigoplus_{i \in I} M_i) / N$ where N is the submodule generated by $\{m_i - f_i^i(m_i) : m_i \in M_i, i \leq j \in I\}.$

The following two lemmata are exercises in [AM] and together they show that the direct limit of a directed system of flat A-modules is flat.

Lemma 2. If

$$\{M'_i\}_{i\in I} \xrightarrow{\{f_i\}_{i\in I}} \{M_i\}_{i\in I} \xrightarrow{\{g_i\}_{i\in I}} \{M''_i\}_{i\in I}$$

is exact at each i. then

$$\lim_{i \in I} M'_i \xrightarrow{f} \lim_{i \in I} M_i \xrightarrow{g} \lim_{i \in I} M''_i$$

is exact.

Proof. Exercise 19, chapter 2 of [AM].

Lemma 3. Tensor product commutes with direct limits, i.e.

$$(\varinjlim_{i\in I} M_i)\otimes N\cong \varinjlim_{i\in I} (M_i\otimes N)$$

Proof. Exercise 20, chapter 2 of [AM].

We do not necessarily need all of a directed system to determine the direct limit.

Definition 3. An induced sub-poset (J, \leq) of (I, \leq) (J is a subset of I and $j_1 \leq j_2$ in J if and only if $j_1 \leq j_2$ in I) is cofinal in (I, \leq) if for any $i \in I$ there is a $j \in J$ such that $i \leq j$.

Lemma 4. If J is cofinal in the directed poset I and $\{M_i\}_{i \in I}$ is a directed system of A-modules, then $\varinjlim_{i \in I} M_i \cong \varinjlim_{j \in J} M_j$.

Proof. The maps $M_j \to \lim_{i \in I} M_i$ induce a unique map $\phi : \lim_{i \in J} M_j \to \lim_{i \in I} M_i$. By cofinality, for each $i \in I$, there is a $j(i) \in J$ such that $i \leq j$ (and we take j(j) = j for $j \in J \subseteq I$). This gives maps $M_i \to M_{j(i)} \to \varinjlim_{j \in J} M_j$ commuting with the maps between $\{M_i\}_{i\in I}$ hence induces a unique $\psi: \varinjlim_{i\in I} M_i \to \varinjlim_{j\in J} M_j$. Let $\alpha_k^i, \alpha_i: M_i \to \varinjlim_{i\in I}$ and β_k^j , $\beta_j: M_j \to \varinjlim_{i \in J} M_j$ be the maps associated to the directed systems (the β maps are a subset of the α maps). Then the maps ϕ , ψ just described give

$$\phi \circ \beta_j = \alpha_j, \ \psi \circ \alpha_i = \beta_{j(i)} \alpha^i_{j(i)}$$

Finally, we have

$$\psi \circ \phi \circ \beta_j = \psi \circ \alpha_j = \beta_{j(j)} \alpha_{j(j)}^j = \beta_j,$$

$$\phi \circ \psi \circ \alpha_i = \phi \circ \beta_{j(i)} \alpha_{j(i)}^i = \alpha_{j(i)} \alpha_{j(i)}^i = \alpha_i,$$

so that ϕ , ψ are inverse isomorphisms between the direct limits.

Before proving the theorem, we have the following

Lemma 5. Every A-module M is a direct limit of finitely presented A-modules.

Proof. Take an exact sequence $0 \to K \to A^I \to M \to 0$ and let

$$\Lambda = \{ (J, N) : J \subseteq I \text{ finite}, N \subseteq K \cap A^J \text{ finitely generated} \},\$$

partially ordered by $(J', N') \leq (J, N)$ if $J' \subseteq J$ and $N' \subseteq N$ (Λ is clearly directed). For $\lambda = (J, N) \in \Lambda$, define

$$M_{\lambda} := A^J / N.$$

For $\kappa \leq \lambda$, there are obvious maps $f_{\lambda}^{\kappa} : M_{\kappa} \to M_{\lambda}$ making $\{M_{\lambda}\}_{\lambda \in \Lambda}$ a directed system of *A*-modules. There are also the obvious maps $q_{\lambda} : M_{\lambda} \to M$ inducing $h : \varinjlim_{\lambda \in \Lambda} M_{\lambda} \to M$. The induced map h is surjective since every element of M is in the image of some q_{λ} . For $x \varinjlim_{\lambda \in \Lambda}$, let $x_{\lambda} \in M_{\lambda}$ such that $p_{\lambda}(x_{\lambda}) = x$ ($\{p_{\lambda}\}_{\lambda \in \Lambda}$ being the maps from the directed system into the direct limit), cf. exercise 15, chapter 2 of [AM]. We have $q_{\lambda}(x_{\lambda}) = (h \circ p_{\lambda})(x_{\lambda}) = 0$. If $\lambda = (J, N)$, we can enlarge J, N to obtain a $\mu \geq \lambda$ that witnesses the fact that $q_{\lambda}(x_{\lambda}) = 0$, i.e. $x_{\mu} := f_{\mu}^{\lambda}(x_{\lambda}) = 0$. Hence we have

$$x = q_{\lambda}(x_{\lambda}) = q_{\mu}(x_{\mu}) = 0$$

and h is injective as well.

Proof of theorem (following [S]). Suppose M is a flat A-module. In the construction of lemma 5, take $I = M \times \mathbb{Z}$ with $A^I \xrightarrow{q} M$ defined by $1_{(m,\nu)} \mapsto m$ (the generator of the *i*th coordinate gets mapped to the projection of $i = (m, \nu)$ onto M). [The factor of \mathbb{Z} in I guarantees extra space we'll use later.] Let $\lambda = (J, N) \in \Lambda$ ($J \subset I$ finite and $N \leq \ker(f) \cap A^J$ finitely generated). By corollary 1, the map $M_{\lambda} \xrightarrow{q_{\lambda}} M$ (where $M_{\lambda} = A^J/N$) factors through a finite rank free A-module F

$$M_{\lambda} \xrightarrow{h} F \xrightarrow{g} M, \ h: A^J \to F,$$

 $q_{\lambda} = g \circ \bar{h}$. We now realize this F as M_{μ} for some $\lambda \leq \mu$, giving a cofinal subset of Λ consisting of finite rank free A-modules.

Let $\{b_1, \ldots, b_n\}$ be a basis for F and choose $i_1, \ldots, i_n \in I$ such that $i_l \notin J$ and

$$q(1_{i_l}) = g(b_l), \ q: A^I \to M, \ g: F \to M$$

(the factor of \mathbb{Z} in I guaranteeing this possibility). Let $J' = J \cup \{i_1, \ldots, i_n\}$ and define a map $A^{J'} \xrightarrow{\tilde{h}} F$ extending h and mapping 1_{i_l} to b_l , with kernel N'. The following diagram commutes

so that $N' \leq \ker(q)$. The top map $A^{J'} \to F$ is split (since it is a surjection onto a free module) so that $A^{J'} \cong N' \bigoplus F$ and N' is finitely generated as well. Hence $\mu := (J', N') \in \Lambda$ and $\lambda \leq \mu$.

By lemma 5, M is the direct limit of a directed system of finite rank A-modules, proving the theorem.

There is a proof of a similar statement (M is flat iff M is a filtered colimit of a diagram of free A-modules) in [E], A6.2.

Exercises

To be thorough, one should do the exercises referenced above: [AM] 2.15, 2.19, 2.20, 2.26 (which were all presented in class).

References

- [AM] M. F. Atiyah, I. G. MacDonald, Introduction to Commutative Algebra, Westview Press, 1969.
- [E] David Eisenbud, *Commutative Algebra with a View towards Algebraic Geometry*, Graduate Texts in Mathematics; v. 150, Springer, 2004.
- [R] Joseph Rotman, Advanced Modern Algebra (second edition), Graduate Studies in Mathematics; v. 114, AMS, 2010.
- [S] The Stacks Project, Tag 058C, http://stacks.math.columbia.edu/tag/058C