Exponential growth and decay

The initial value problem

$$
y^{\prime}=k y, y(0)=y_{0},
$$

describes exponential growth or decay (depending on the sign of the relative growth rate k). This equation is separable, and we have the solution

$$
y(x)=y_{0} e^{k x} .
$$

1. Radium 226 has a half-life of 1590 years. Let $m(t)$ denote the amount of radium after t years in a sample with $m(0)=100 \mathrm{~g}$. Answer the following questions:

- Find $m(t)$.
- How much of the sample is radium after 1000 years?
- How much time must pass until there are only 30 g of radium left in the sample?

We know that $m(t)=100 e^{k t} \mathrm{~g}$ (using $m(0)=100 \mathrm{~g}$), and the relative growth rate k can be found using the half-life:

$$
50=m(0) / 2=m(1590)=100 e^{1590 k}, k=\frac{-\ln 2}{1590} .
$$

It follows that after 1000 years

$$
m(1000)=100 e^{1000 k}=64.6655 \mathrm{~g} .
$$

We can also solve for t in the following

$$
m(t)=30=100 e^{k t}, t=\frac{1590 \ln (3 / 10)}{-\ln 2}=2761.77 \text { years }
$$

to find how long it takes until only 30 g of radium 226 remain in the sample.
2. Newton's law of cooling states that the rate of change of the temperature $T(t)$ of an object in a constant temperature environment of temperature T_{s} is proportional the the temperature difference:

$$
\frac{d T}{d t}=k\left(T-T_{s}\right), k, T_{s} \text { constants. }
$$

- Solve the differential equation above.
- Suppose a can of pop at 72° is put into a refrigerator whose temperature is 44° and that after 30 minutes, the temperature of the can is 61°. Find the temperature of the can $T(t)$ as a function of time.
- What is the temperature of the can after one hour?
- How long must you wait until the temperature of the can is 50° ?

Dividing by $(T-44)$ and integrating gives

$$
\int \frac{d T}{T-44}=\int k d t, T(t)=44+C e^{k t} .
$$

The initial condition $T(0)=72$ tells us that $C=72-44=28$. The information $T(1 / 2)=61(t$ in hours) gives k :

$$
61=T(1 / 2)=44+28 e^{k / 2}, k=2 \ln (17 / 28) .
$$

We can now determine information such as

$$
T(1)=44+28 e^{k}=54.32^{\circ},
$$

or solve for t in the following

$$
50=T(t)=44+28 e^{k t}, t=\frac{\ln (3 / 14)}{k}=1.54 \text { hours. }
$$

The logistic equation

The differential equation

$$
\frac{d P}{d t}=k P(1-P / M), P(0)=P_{0}
$$

is the logistic equation, a model of population growth that is controlled by the relative growth rate k and the carrying capacity M. This equation is separable, with solution

$$
P(t)=\frac{M}{1+\frac{M-P_{0}}{P_{0}} e^{-k t}} .
$$

1. Suppose 400 fish are in a pond whose carrying capacity is estimated as 10,000 fish, and that the population triples to 1200 fish in the next year.

- Assuming logistic growth, find the population of fish $P(t)$ as a function of time.
- How long does it take for the fish population to reach 5000 ?

We have $M=10000, P(0)=400$ and using the information $P(1)=1200(t$ in years $)$ we obtain $k=\ln 3$, so that

$$
P(t)=\frac{10000}{1+24 e^{-k t}} .
$$

With this model, it takes $t=2.68$ years for the population to reach 5000 .

