Center of mass (centroid)

Conisder a region in the plane bounded by two functions $f(x) \geq g(x)$, for $a \leq x \leq b$, which we assume to have uniform density ρ mass/area. Its moment around the x - and y-axes is given by
$M_{y}=\rho \int_{a}^{b} x(f(x)-g(x)) d x, M_{y}=\rho \int_{a}^{b} \frac{f(x)+g(x)}{2}(f(x)-g(x)) d x=\frac{\rho}{2} \int_{a}^{b}\left(f(x)^{2}-g(x)^{2}\right) d x$.
[The moment of a (point) mass about an axis is the mass times the distance to the axis, $\mu=m x$.]
In the above situation, the moment of a thin vertical rectangle of width $d x$ and height $f(x)-g(x)$ around the y-axis is given by the product of the distance x to the y-axis times the mass of the rectangle $\rho(f(x)-g(x)) d x$. [Draw a picture.]

In the above situation, the momen of a thin vertical rectangle of width $d x$ and height $f(x)-g(x)$ around the x-axis is given by the product of the distance from the center of mass of the rectangle to the x-axis, $\frac{1}{2}(f(x)+g(x))$, with the mass of the rectangle $\rho(f(x)-g(x)) d x$. [Draw a picture.]

The center of mass (\bar{x}, \bar{y}) of the lamina is

$$
(\bar{x}, \bar{y})=\left(\frac{M_{y}}{M}, \frac{M_{x}}{M}\right) .
$$

where M is the total mass of the lamina

$$
M=\rho \int_{a}^{b}(f(x)-g(x)) d x .
$$

Note that the centroid is independent of the mass density ρ (because it is uniform).

1. Find the centroid of the region bounded by

$$
y=x^{2}, y=\sqrt{x}
$$

2. Find the centroid of the region bounded by

$$
y=x^{2}, y=0,-1 \leq x \leq 1
$$

3. Find the centroid of the region bounded by

$$
y=\cos x, y=\sin x, \pi / 4 \leq x \leq 3 \pi / 4 .
$$

4. Find the centroid of the region bounded by

$$
y=1 / x^{3}, y=0,1 \leq x<\infty .
$$

Answers (I hope): 1. $(9 / 20,9 / 20), 2 .(0,3 / 10), 3 .(1+\pi / 4,1 / 2 \sqrt{2}), 4 .(2,1 / 5)$.

