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Topological dynamical systems

A dynamical system (X, ] ') consists of:

@ An infinite compact metric space X
@ A topological group |
@ A continuous group homomorphism

[ > Homeo(X), g+ (x> gx)



Integer systems

Given a homeomorphism ¢ : X — X we define an action of Z on X
by defining

n.x .= @"(x)foreveryn € Z,x € X.

Conversely, when I = Z, the system is generated by a single
homeomorphism ¢ : X — X given by

@(x) .= 1.x for every x € X.

Thus for a Z system, we denote (X, Z) by (X, @) where ¢ is the
generating homeomorphism.



Orbits

Let X be a compact metric space and ¢ : X — X a homeomorphism.
As with any of the dynamical systems you've already seen, we

would like to know about the orbits of points in (X, @).

Given a point x € X we denote its orbit by
orb (x) := {@"(x) | n € Z} .

Note that sometimes in the literature the orbit of x is defined to be
{@p"(x) | n € N}. Here we will refer to this set as the forward orbit of x.

Similarly, we have the backward orbit of x given by{e "(x) | n € N}.



N0t1ons Of recurrence

A pomt X E X is
e fixed if p(x) = x,
@ periodic if there exists n € Z such that ¢"(x) = x,
@ aperiodic if ¢"(x) # x for every n € Z\{0},

@ recurrent if for every open neighborhood U containing x there exists
n € Z\{0} such that ¢"(x) C U,

@ almost periodic if for every open neighborhood U there exists N € N
such that {(m,m+1,...m+N—-1}Nn{n>0]| ¢"(x) C U} # &,

o transitive if orb (x) is dense in X.



Silly examples

A very simple example of a dynamical system is (X, 1d).
There, every point is a fixed point (and a periodic point, and a
recurrent point, and almost periodic)

Another very simple example is to take X = {0,1,2,3,...,n}

and the map o(j) =j+ 1 mod n. Here, every point is clearly

periodic (and recurrent, and almost periodic, and even
transitive!)

Unfortunately, these are not particularly interesting: in the
first case, because nothing is happening, and in the second,

because X is a finite set.



Let X be an infinite compact metric space. We would like to

investigate dynamical systems that don’t have proper sub-
dynamical systems.

In particular, we cannot have either fixed or periodic points.

But we can try to ask for the next best thing: that ever point
is almost periodic.



Minimal dynamical systems

We say a topological dynamical system (X, 1) is minimal if
whenever £ C X is a non-empty closed subset satisfying |l £ C E,
then £ = X.

Since we are interested in Z actions generated by a
homeomorphism @ this means that there are no non-empty proper,
closed @-invariant subsets.

If (X, @) is minimal, then we call ¢ a minimal homeomorphism.
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The following is an easy outcome of the definition, but is
nevertheless quite useful.

PROPOSITION: Let (X, @) be a dynamical system. Then (X, @) is
minimal if and only if (X, @ ') is minimal.

PROOF. It suffices to prove only one direction. So suppose that (X, @)
is minimal. Let £ C X be a non-empty closed subset and suppose
that @ '(E) C E.Then E = (¢~ (E)) C @(E) so E = X. Thus

(X, @~ !) is minimal.



Orbits in minimal systems

PROPOSITION. Let (X, @) be a dynamical system. Then the following
are equivalent:

1. (X, ) is minimal.

2. Foreveryx € X, its orbit orb (x) = {¢"(x) | n € Z} is
dense in X. (That is, x is transitive.)

3. Forevery x € X, its forward orbit {¢p"(x) | n € N} is
dense in X.

4. For every x € X, its backward orbit {¢p " (x) | n € N}
is dense in X.



PrOOF. | = 2 Suppose that ¢ is minimal and let x € X. Then
E={¢p"(x) | n € Z} is anon-empty closed subset of X. Lety € E
and let (y,),.n C 1@"(x) | n € Z} be a sequence converging to y .
Then there is (m,,),.n C Z such that y, = ¢"(x) for everyn € N. It
follows that @(y) = lim @(¢"(x)) = lim @™ !(x) C E. Thus

n— oo n— Qo0

o) CE,soE=X.

That | — 3 is identical after replacing the set E with
F={¢p"(x)|ne N}
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We have 3 < 4 because ¢ is also minimal.

That 3,4 —> 2 is trivial.



3 = 1:Let E C X be anon-empty closed subset with @(£) C E.
Then for every x € E, we have {@"(x) | n € N} C E and hence
{p"(x) |ne N} =X C E.Thus E = X so (X, @) is minimal.

2 — 3:Letx € Xandlet U C X be anon-empty open set. Since
orbits are dense, ¢"(U),n € Z is an open cover of X. By
compactness of X, there exists N € N such that ¢"(U), - N<n <N
cover X. Since ¢ is a homeomorphism, we have @ (X) = X, which
means that " (U), — 2N < n < 0 cover X. In particular x € ¢"(U)
for somen < 0, so ¢ "(x) C U. Thus every non-empty open set

U C X is in the forward orbit of x, which is to say, {¢@"(x) | n € N} is
dense.




Return times and almost periodicity

Let (X, @) be a minimal dynamical system with X an infinite compact
metric space.

Let & C X be closed subset with non-empty interior.

For any x € E we define its first return time r(x) to £ to be the
number

rg(x) :=min{n >0 | ¢"(x) € £}



Return times and almost periodicity

Note that for any such set £ there are only finitely many return
times.

Indeed, at every point x € £, there is a small neighbourhood U, of x
such that rp(x) = rp(y) forevery y € U..

Since E is compact and {U, | x € E} cover E, there are
X, ..., X € £suchthat U, , ..., U, also cover L.

Thus for every x € E there is some | < j < kwith rg(x) = rg(x)



Return times and almost periodicity

After this observation, it is not hard to show that if (X, @) is a minimal
dynamical system with X an infinite compact metric space, then every
x € X is almost periodic:

@ for every open neighborhood U there exists NV € N such
that {m,m+1,... m+N—-1}Nn{n>0|¢"(x) cU} # P

Note that having every point almost periodic is not equivalent to
minimality.

It is true, however, that (orb w(x), P == (x)) is minimal whenever x is almost
Z

periodic.



Rotations of the circle
el e ot D e R

Then, for any d with 0 < 6 < 1, the map

pe ; Sl — Sl
defined by

pe(z) 8 eZm’é’Z

is a homeomorphism.

Note that we can also define p, as follows:

Identify S! >~ R/Z andlet py(z) = z+ 60 mod Z.



Rotations of the circle

a
Suppose that 0 = 5 e 0.

Then pg (z) = ™7 = ¢*™7 = 7 for every
7€ l Thus every point is periodic.

On the other hand, if @ & Q, there are no
periodic points.

Indeed, in this case (S, Pp) is minimal.

Idea: Show that the orbit of every point meets
every open arc/interval.



For @ € [0,1), define Tp : [0,1) — [0,1) by t — ¢t + & mod 1. For z € |0, 1) define the 6-coding of x to be the sequence
(x,) where

N :{1 if T;'(z) € [0,6),

0 else.

Let w be an infinite sequence of Os and 1s. The sequence w is Sturmian if for some x € |0, 1) and some irrational 6 € (0, 00)
, wis the 6-coding of x.

“Sturmian sequence generated by an irrational rotation
with 6 = 0.2882748715208621 and x = 0.078943143”

from https://commons.wikimedia.org/wiki/File:Sturmian-
sequence-from-irrational-rotation.gif



https://commons.wikimedia.org/wiki/File:Sturmian-sequence-from-irrational-rotation.gif
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Odometers

Fix a non-zero natural number n > 1 andlet X = {0,1,...,n — 1},
the set of bi-infinite sequences with entries in {0,...,n — 1}. Given
{0,...,n — 1} the discrete topology and X the product topology.

Then X is a non-empty, compact, metrisable, totally disconnected
and has no isolated points. That is, X is the Cantor set.



Odometers

We define a homeomorphism of X as follows.
Bije ¢ — ()cj)jEN is the sequence such that x; = n — |1 for every j € N, then

o @(x); =0forevery;j € N.

Otherwise, for x = (x]-) ieny let m > 0 be the least integer such that

x; = n — 1 for every j < m. Then

o ¢(x); =0 foreveryj < m,
@ gp(x)m =X 1, and

o ¢(x); = x; for every j > m.



Odometers

Every odometer is minimal.

To see this, let us consider again the 2-odometer (X = {0,11", @).

To show the map is minimal, it is enough to show that given an
arbitrary x € X, and any open set U C X, there is some j € N such

that ¢/(x) C U.
Or, equivalently, for any y € X we can move x arbitrarily close to y.
For example, if y is the sequence of all zeros, the further we move x,

the more times will come back to a sequence with more and more
zeros on the left.
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Odometers

Of course, the length of the sequences are infinite, so we never
actually return to the sequence of all zeros, despite coming close an
infinite number of times.

Odometers are examples of distal systems. (X, @) is distal if the
following holds:

For every x, y € X there exists 0 > 0 such that d(¢"(x), ¢"(y)) > o for
every n > 0.

Moreover, they are equicontinuous:

For every € > ( there exists § > 0 such that d(¢’/(x), »'(y)) < € for
every j € Z whenever d(x,y) < O.



Odometers

Let X be the Cantor set and ¢ : X — X a homeomorphism.
Suppose that (X, ¢) is minimal and equicontinuous.

Then (X, @) is conjugate to an odometer (Y, y).

There are, however, minimal Cantor systems which are not
conjugate to odometers.



QUESTION: Given an infinite compact metric space X, does X admit a
minimal homeomorphism®
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QUESTION: Given an infinite compact metric space X, does X admit a
minimal homeomorphism®

In general, no. There are many “no-go” results, such as fixed points
theorems.

For example, if X is a compact manifold with non-empty boundary,
then X does not admit a minimal homeomorphism.

More generally, a homeomorphism on any finite CW complex with
non-zero Kuler characteristic always has a periodic point. Hence
such a space cannot admit a minimal homeomorphism.



Let (X, @) be a topological dynamical system. Then X will
always admit minimal subsets. That is to say, there exists

Y C X closed, compact, such that (¥, ¢ |, ) is a minimal
dynamical system.

However, even if X is an interesting space, ¥ might not be.

For example, the orbit of any periodic point is a minimal
subset, but is finite.

In general we do not know how to characterise those compact
metric spaces X which do admit minimal homeomorphisms.

Often, such construction take an known dynamical system
and constructs a minimal homeomorphism along with the
space.
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'I‘HEOREME 1. Toute variété Mn compacte connexe qul admet une action C

m . \
localement libre effective de T1 admet un difféomorphisme de classe C (1sotoge a

1'identité) qui est minimal.

THéOR EME 3. Toute variete Mn admettant une action localement libre Coo

de T] admet un difféomorghisme COo strictement ergodique.




It follows from the work of Fathi and Herman, for example,

that any odd-dimensional sphere S d, with d > 3, admits a
minimal homeomorphism (in fact, diffeomorphism).

From this, in work of Deeley, Putnam and myself, we were
able to construct all sorts of bizarre spaces!

Theorem 1.5. Let S be a sphere with odd dimension d > 3, and let ¢ : S¢ — S¢

be a minimal diffeomorphism. Then there exist an infinite compact metric space
Z with covering dimension d or d — 1 and a mintmal homeomorphism ( : Z — 4
satisfying the following.

(1) Z is compact, connected, and homeomorphic to an inverse limit of compact
contractible metric spaces (Z,,d,)nenN-

(2) For any continuous generalized cohomology theory we have an isomorphism
H*(Z) = H*({pt}). In particular this holds for Cech cohomology and
K -theory.

(3) There is an almost one-to-one factor map q : Z — S? which induces a bijec-
tion between (-invariant Borel probability measures on Z and p-invariant
Borel probability measures on S¢.
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Further nonhomogeneous systems

In work with Deeley and Putnam, we further generalized
these further by using iterated function systems.

Theorem 1.5. Let (C,dc, F) be a compact, invertible iterated function system and
let (X, @) be a minimal homeomorphism of the Cantor set. There exists a minimal

extension, (X,p) of (X, ) with factor map © : (X,p) — (X, ) such that, for
each x in X, n~{z} is a single point or is homeomorphic to C. Moreover, both
possibilities occur.




Now we get strange spaces that look like a Cantor set from one
direction, and for example, the Sierpinski pyramid from another.




Things we didn’t discuss

@ HErgodic measures and the links to ergodic theory
@ Entropy for minimal systems

@ Notions such as mixing, weak mixing

@ Invariants for minimal dynamical systems

@ Links to other areas such as the theory of C*-algebras and
topological groupoids

...In other words, there’s much more to discover!
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