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Topological dynamical systems

A dynamical system  consists of:(X, Γ)

An infinite compact metric space 


A topological group 


A continuous group homomorphism 


             

X

Γ

Γ → Homeo(X), g ↦ (x ↦ gx)



Integer systems

Conversely, when , the system is generated by a single 
homeomorphism  given by 

Γ = ℤ
φ : X → X

Thus for a  system, we denote  by  where  is the 
generating homeomorphism.


ℤ (X, ℤ) (X, φ) φ

 for every .n . x := φn(x) n ∈ ℤ, x ∈ X

Given a homeomorphism  we define an action of  on  
by defining

φ : X → X ℤ X

 for every .φ(x) := 1.x x ∈ X



Orbits
Let  be a compact metric space and  a homeomorphism. 
As with any of the dynamical systems you’ve already seen, we 
would like to know about the orbits of points in .


Given a point  we denote its orbit by

X φ : X → X

(X, φ)

x ∈ X

orbφ(x) := {φn(x) ∣ n ∈ ℤ} .

Note that sometimes in the literature the orbit of  is defined to be 
. Here we will refer to this set as the forward orbit of .


Similarly, we have the backward orbit of  given by .

x
{φn(x) ∣ n ∈ ℕ} x

x {φ−n(x) ∣ n ∈ ℕ}



A point  isx ∈ X

fixed if ,


periodic if there exists  such that ,


aperiodic if  for every ,


recurrent if for every open neighborhood  containing  there exists 
 such that ,


almost periodic if for every open neighborhood  there exists  
such that ,


transitive if  is dense in .

φ(x) = x

n ∈ ℤ φn(x) = x

φn(x) ≠ x n ∈ ℤ∖{0}

U x
n ∈ ℤ∖{0} φn(x) ⊂ U

U N ∈ ℕ
{m, m + 1,…, m + N − 1} ∩ {n ≥ 0 ∣ φn(x) ⊂ U} ≠ ∅

orbφ(x) X

Notions of recurrence



A very simple example of a dynamical system is . 
There, every point is a fixed point (and a periodic point, and a 
recurrent point, and almost periodic)


Another very simple example is to take  
and the map . Here, every point is clearly 
periodic (and recurrent, and almost periodic, and even 
transitive!)


Unfortunately, these are not particularly interesting: in the 
first case, because nothing is happening, and in the second, 
because  is a finite set.

(X, id)

X = {0,1,2,3,…, n}
σ( j) = j + 1 mod n

X

Silly examples



Let  be an infinite compact metric space. We would like to 
investigate dynamical systems that don’t have proper sub-
dynamical systems.


In particular, we cannot have either fixed or periodic points.


But we can try to ask for the next best thing: that ever point 
is almost periodic.

X



We say a topological dynamical system  is minimal if 
whenever  is a non-empty closed subset satisfying , 
then 


Since we are interested in  actions generated by a 
homeomorphism  this means that there are no non-empty proper, 
closed -invariant subsets.


If  is minimal, then we call  a minimal homeomorphism.

(X, Γ)
E ⊂ X ΓE ⊂ E

E = X .

ℤ
φ

φ

(X, φ) φ

Minimal dynamical systems



The following is an easy outcome of the definition, but is 
nevertheless quite useful.


PROPOSITION: Let  be a dynamical system. Then  is 
minimal if and only if  is minimal.


PROOF. It suffices to prove only one direction. So suppose that  
is minimal. Let  be a non-empty closed subset and suppose 
that . Then  so . Thus 

 is minimal.

(X, φ) (X, φ)
(X, φ−1)

(X, φ)
E ⊂ X

φ−1(E) ⊂ E E = φ(φ−1(E)) ⊂ φ(E) E = X
(X, φ−1)

Minimality of φ−1



PROPOSITION. Let  be a dynamical system. Then the following 
are equivalent:

(X, φ)

1.  is minimal.


2. For every , its orbit  is 
dense in . (That is,  is transitive.) 


3. For every , its forward orbit  is 
dense in .


4. For every , its backward orbit  
is dense in .

(X, φ)

x ∈ X orbφ(x) = {φn(x) ∣ n ∈ ℤ}
X x

x ∈ X {φn(x) ∣ n ∈ ℕ}
X

x ∈ X {φ−n(x) ∣ n ∈ ℕ}
X

Orbits in minimal systems



PROOF.  Suppose that  is minimal and let . Then 
 is a non-empty closed subset of . Let  

and let  be a sequence converging to 
Then there is  such that  for every . It 
follows that  Thus 

, so 


That  is identical after replacing the set  with 
.


We have  because  is also minimal. 


That  is trivial.

1 ⟹ 2 φ x ∈ X
E = {φn(x) ∣ n ∈ ℤ} X y ∈ E

(yn)n∈ℕ ⊂ {φn(x) ∣ n ∈ ℤ} y .
(mn)n∈ℕ ⊂ ℤ yn = φmn(x) n ∈ ℕ

φ(y) = lim
n→∞

φ(φmn(x)) = lim
n→∞

φmn+1(x) ⊂ E .

φ(E) ⊂ E E = X .

1 ⟹ 3 E
F = {φn(x) ∣ n ∈ ℕ}

3 ⟺ 4 φ−1

3,4 ⟹ 2



: Let  be a non-empty closed subset with . 
Then for every , we have  and hence 

Thus  so  is minimal.


: Let  and let  be a non-empty open set. Since 
orbits are dense,  is an open cover of . By 
compactness of , there exists  such that ,  
cover . Since  is a homeomorphism, we have  , which 
means that  cover . In particular  
for some , so  Thus every non-empty open set

 is in the forward orbit of , which is to say,  is 
dense.

3 ⟹ 1 E ⊂ X φ(E) ⊂ E
x ∈ E {φn(x) ∣ n ∈ ℕ} ⊂ E

{φn(x) ∣ n ∈ ℕ} = X ⊂ E . E = X (X, φ)

2 ⟹ 3 x ∈ X U ⊂ X
φn(U), n ∈ ℤ X

X N ∈ ℕ φn(U) −N ≤ n ≤ N
X φ φ−N(X) = X

φn(U), − 2N ≤ n ≤ 0 X x ∈ φn(U)
n ≤ 0 φ−n(x) ⊂ U .

U ⊂ X x {φn(x) ∣ n ∈ ℕ}



Return times and almost periodicity

Let  be a minimal dynamical system with  an infinite  compact 
metric space.


Let  be closed subset with non-empty interior.


For any  we define its first return time  to  to be the 
number 


(X, φ) X

E ⊂ X

x ∈ E rE(x) E

rE(x) := min{n > 0 ∣ φn(x) ∈ E}



Return times and almost periodicity

Note that for any such set  there are only finitely many return 
times.


Indeed, at every point , there is a small neighbourhood  of  
such that  for every .


Since  is compact and  cover , there are 
 such that  also cover . 


Thus for every  there is some  with 

E

x ∈ E Ux x
rE(x) = rE(y) y ∈ Ux

E {Ux ∣ x ∈ E} E
x1, …, xk ∈ E Ux1

, …, Uxk
E

x ∈ E 1 ≤ j ≤ k rE(x) = rE(xj)



Return times and almost periodicity

After this observation, it is not hard to show that if  is a minimal 
dynamical system with  an infinite compact metric space, then every 

 is almost periodic:


(X, φ)
X

x ∈ X

for every open neighborhood  there exists  such 
that 

U N ∈ ℕ
{m, m + 1,…, m + N − 1} ∩ {n ≥ 0 ∣ φn(x) ⊂ U} ≠ ∅

Note that having every point almost periodic is not equivalent to 
minimality. 


It is true, however, that  is minimal whenever  is almost 
periodic.


(orbφ(x), φ |orbφ(x) ) x



Rotations of the circle
Let .


Then, for any  with , the map

S1 := {z ∈ ℂ ∣ |z | = 1}

θ 0 ≤ θ < 1

 ρθ : S1 → S1

defined by

ρθ(z) = e2πiθz
is a homeomorphism.

Note that we can also define  as follows:


Identify  and let .

ρθ

S1 ≅ ℝ/ℤ ρθ(z) = z + θ mod ℤ



Rotations of the circle

Suppose that .


Then  for every 
. Thus every point is periodic.


On the other hand, if , there are no 
periodic points.


Indeed, in this case  is minimal.


Idea: Show that the orbit of every point meets 
every open arc/interval.

θ =
a
b

∈ ℚ

ρb
θ (z) = e2πbiz = e2πiz = z

z ∈ S1

θ ∉ ℚ

(S1, ρθ)



“Sturmian sequence generated by an irrational rotation 
with  and ”


from   https://commons.wikimedia.org/wiki/File:Sturmian-
sequence-from-irrational-rotation.gif

θ = 0.2882748715208621 x = 0.078943143

https://commons.wikimedia.org/wiki/File:Sturmian-sequence-from-irrational-rotation.gif
https://commons.wikimedia.org/wiki/File:Sturmian-sequence-from-irrational-rotation.gif
https://commons.wikimedia.org/wiki/File:Sturmian-sequence-from-irrational-rotation.gif


Odometers

Fix a non-zero natural number   and let , 
the set of bi-infinite sequences with entries in . Given 

 the discrete topology and  the product topology.


Then  is a non-empty, compact, metrisable, totally disconnected 
and has no isolated points. That is,  is the Cantor set.

n > 1 X = {0,1,…, n − 1}ℕ

{0,…, n − 1}
{0,…, n − 1} X

X
X



We define a homeomorphism of  as follows.


If  is the sequence such that  for every , then


Otherwise, for , let  be the least integer such that 
 for every . Then 

X

x = (xj)j∈ℕ xj = n − 1 j ∈ ℕ

x = (xj)j∈ℕ m > 0
xj = n − 1 j < m

 for every , 


, and 


 for every .

φ(x)j = 0 j < m

φ(x)m = xm + 1

φ(x)j = xj j > m

  for every .φ(x)j = 0 j ∈ ℕ

Odometers



Every odometer is minimal.


To see this, let us consider again the -odometer .


To show the map is minimal, it is enough to show that given an 
arbitrary , and any open set , there is some  such 
that .


Or, equivalently, for any  we can move  arbitrarily close to .


For example, if  is the sequence of all zeros, the further we move , 
the more times will come back to a sequence with more and more 
zeros on the left.

2 (X = {0,1}ℕ, φ)

x ∈ X U ⊂ X j ∈ ℕ
φ j(x) ⊂ U

y ∈ X x y

y x

Odometers



  0 0 0 0 0 0 0 0 0

2-Odometer



  1 0 0 0 0 0 0 0 0

2-Odometer



  0 1 0 0 0 0 0 0 0

2-Odometer



  1 1 0 0 0 0 0 0 0

2-Odometer



  0 0 1 0 0 0 0 0 0

2-Odometer



  1 0 1 0 0 0 0 0 0

2-Odometer



  1 1 1 0 0 0 0 0 0

2-Odometer



  0 0 0 1 0 0 0 0 0

2-Odometer



  1 0 0 1 0 0 0 0 0



  1 1 0 1 0 0 0 0 0



  1 1 1 1 0 0 0 0 0



  0 0 0 0 1 0 0 0 0



  1 0 0 0 1 0 0 0 0



  1 1 0 0 1 0 0 0 0



  1 1 1 0 1 0 0 0 0



  1 1 1 1 1 0 0 0 0



  0 0 0 0 0 1 0 0 0



  1 0 0 0 0 1 0 0 0



  1 1 0 0 0 1 0 0 0



  1 1 1 0 0 1 0 0 0



  1 1 1 1 0 1 0 0 0



  1 1 1 1 1 1 0 0 0



  0 0 0 0 0 0 1 0 0



  1 0 0 0 0 0 1 0 0



  1 1 0 0 0 0 1 0 0



  1 1 1 0 0 0 1 0 0



  1 1 1 1 0 0 1 0 0



  1 1 1 1 1 0 1 0 0



  1 1 1 1 1 1 1 0 0



  0 0 0 0 0 0 0 1 0



  1 0 0 0 0 0 0 1 0



  1 1 0 0 0 0 0 1 0



  1 1 1 0 0 0 0 1 0



  1 1 1 1 0 0 0 1 0



  1 1 1 1 1 0 0 1 0



  1 1 1 1 1 1 0 1 0



  1 1 1 1 1 1 1 1 0



  0 0 0 0 0 0 0 0 1



  1 0 0 0 0 0 0 0 1



  1 1 0 0 0 0 0 0 1



  1 1 1 0 0 0 0 0 1



  1 1 1 1 0 0 0 0 1



  1 1 1 1 1 0 0 0 1



  1 1 1 1 1 1 0 0 1



  1 1 1 1 1 1 1 0 1



  1 1 1 1 1 1 1 1 1



  0 0 0 0 0 0 0 0 0



Of course, the length of the sequences are infinite, so we never 
actually return to the sequence of all zeros, despite coming close an 
infinite number of times.


Odometers are examples of distal systems.  is distal if the 
following holds:


For every  there exists  such that  for 
every .


Moreover, they are equicontinuous:


For every  there exists  such that  for 
every  whenever .

(X, φ)

x, y ∈ X δ > 0 d(φn(x), φn(y)) ≥ δ
n ≥ 0

ϵ > 0 δ > 0 d(φ j(x), φ j(y)) < ϵ
j ∈ ℤ d(x, y) < δ

Odometers



Let  be the Cantor set and  a homeomorphism.


Suppose that  is minimal and equicontinuous.


Then  is conjugate to an odometer .


There are, however, minimal Cantor systems which are not 
conjugate to odometers. 

X φ : X → X

(X, φ)

(X, φ) (Y, ψ)

Odometers



QUESTION: Given an infinite compact metric space , does  admit a 
minimal homeomorphism?

X X



QUESTION: Given an infinite compact metric space , does  admit a 
minimal homeomorphism?

X X

In general, no. There are many “no-go” results, such as fixed points 
theorems.



QUESTION: Given an infinite compact metric space , does  admit a 
minimal homeomorphism?

X X

In general, no. There are many “no-go” results, such as fixed points 
theorems.


For example, if  is a compact manifold with non-empty boundary, 
then  does not admit a minimal homeomorphism.

X
X



QUESTION: Given an infinite compact metric space , does  admit a 
minimal homeomorphism?

X X

In general, no. There are many “no-go” results, such as fixed points 
theorems.


For example, if  is a compact manifold with non-empty boundary, 
then  does not admit a minimal homeomorphism.


More generally, a homeomorphism on any finite CW complex with 
non-zero Euler characteristic always has a periodic point. Hence 
such a space cannot admit a minimal homeomorphism.


X
X



Let  be a topological dynamical system. Then  will 
always admit minimal subsets. That is to say, there exists 

 closed, compact, such that  is a minimal 
dynamical system.


However, even if  is an interesting space,  might not be. 
For example, the orbit of any periodic point is a minimal 
subset, but is finite.


In general we do not know how to characterise those compact 
metric spaces  which do admit minimal homeomorphisms.


Often, such construction take an known dynamical system 
and constructs a minimal homeomorphism along with the 
space.

(X, φ) X

Y ⊂ X (Y, φ |Y )

X Y

X





It follows from the work of Fathi and Herman, for example, 
that any odd-dimensional sphere , with , admits a 
minimal homeomorphism (in fact, diffeomorphism).


From this, in work of Deeley, Putnam and myself, we were 
able to construct all sorts of bizarre spaces!

Sd d ≥ 3



Fattening up Cantor



Fattening up Cantor



Fattening up 3-odometer by intervals

Floyd 1949

Gjerde—Johansen 1999



In work with Deeley and Putnam, we further generalized 
these further by using iterated function systems.


Further nonhomogeneous systems



Now we get strange spaces that look like a Cantor set from one 
direction, and for example, the Sierpinski pyramid from another.



Things we didn’t discuss

Ergodic measures and the links to ergodic theory


Entropy for minimal systems


Notions such as mixing, weak mixing


Invariants for minimal dynamical systems


Links to other areas such as the theory of C*-algebras and 
topological groupoids

...in other words, there’s much more to discover!






