C*-Algebras of Expansive Dynamical Systems

Andrew Stocker

CU Boulder

GPOTS May 12, 2021

Outline

- Motivation
- ② Expansive Dynamical systems
- Synchronizing Systems
- Results

Motivation

- Smale space C*-algebras are quite well understood (Putnam, Putnam-Spielberg, etc)
- C*-algebras associated to expansive dynamical systems are not as well understood (K. Thomsen)
- Goal is to extend Smale space techniques in the study of expansive dynamical systems.

Dynamical Systems

A dynamical system is (X, φ) where X is a compact metric space and $\varphi: X \to X$ is a homeomorphism.

Definitions:

- (X, φ) is *expansive* if there exists a constant $\varepsilon_X > 0$ such that $d(\varphi^n(x), \varphi^n(y)) \le \varepsilon_X$ for all $n \in \mathbb{Z}$ implies x = y.
- A point $x \in X$ is called **non-wandering** if for each neighborhood U of x there is an n > 0 such that $\varphi^n(U) \cap U \neq \emptyset$.
- (X, φ) is called *irreducible* if for every pair of open sets U and V there is an $n \in Z$ such that $\varphi^n(U) \cap V \neq \emptyset$.

Examples of Expansive Dynamical Systems (Shift Spaces)

Let \mathcal{A} be a finite set, consider the space $\mathcal{A}^{\mathbb{Z}} = \{(x_i)_{i \in \mathbb{Z}} \mid x_i \in \mathcal{A}\}$. The shift map $\sigma : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$ is defined by

$$\sigma(x)_i = x_{i+1}$$

A *shift space* is a closed subspace $X \subseteq A^{\mathbb{Z}}$ which is invariant under σ .

Shift spaces are expansive!

Examples of Expansive Dynamical Systems (Smale Spaces)

A *Smale Space* is a dynamical system that is hyperbolic in the sense that each point has a neighborhood which is homeomorphic to the product of its local expanding and contracting sets.



Map of Expansive Dynamical Systems

Smale Spaces	Finitely Presented	Synchronizing	Expansive Dynamical
	Systems	Systems	Systems
Shifts of Finite Type	Sofic Shifts	Synchronizing Shifts	Shift Spaces

C*-Algebras From Expansive Dynamical Systems

Following Thomsen, $x,y \in X$ are called *locally conjugate* if there exist open neighborhoods U and V of x and y respectively, and a homeomorphism $\gamma: U \to V$ such that $\gamma(x) = y$ and

$$\lim_{n\to\pm\infty}\sup_{z\in U}d(\varphi^n(z),\varphi^n(\gamma(z)))=0\,.$$

This is an equivalence relation! Denote by $R \subseteq X \times X$, however we topologize R with subbase

$$\{(z,\gamma(z))\mid z\in U\}$$

for every U, V, and γ as above.

C*-Algebras From Expansive Dynamical Systems

With this topology R is an étale equivalence relation, we construct the groupoid C^* -algebra

$$A = C_r^*(R)$$

called the *homoclinic algebra* of (X, φ) .

Remark: The **heteroclinic algebras** S and U are related C^* -algebras also constructed from an expansive dynamical system. For Smale spaces these are the same as the *stable* and *unstable* algebras constructed by Putnam. Note that the construction of these algebras requires periodic points to be dense!

Synchronizing Systems

Motivation: Describe a class of expansive systems with enough points that have local hyperbolic neighborhoods.

Remark: In the study of shift spaces, there is the concept of a synchronizing word, i.e. $w \in \mathcal{L}(X)$ such that if $uw, wv \in \mathcal{L}(X)$ then $uwv \in \mathcal{L}(X)$ where $\mathcal{L}(X)$ is the set of finite words appearing in elements X.

Definitions: Local *stable* and *unstable* sets of $x \in X$:

$$W^{s}(x,\varepsilon) = \{ y \in X \mid d(\varphi^{n}(x),\varphi^{n}(y)) \leq \varepsilon \text{ for all } n \geq 0 \}$$

$$W^{u}(x,\varepsilon) = \{ y \in X \mid d(\varphi^{-n}(x),\varphi^{-n}(y)) \leq \varepsilon \text{ for all } n \geq 0 \}$$

For $0 < \varepsilon \le \frac{\varepsilon_X}{2}$ the intersection $W^{\rm s}(x,\varepsilon) \cap W^{\rm u}(y,\varepsilon)$ consists of at most one point (by expansiveness!).

Synchronizing Systems

For $0 < \varepsilon \le \frac{\varepsilon_X}{2}$ define:

$$D_{\varepsilon} = \{(x,y) \in X \times X \mid W^{s}(x,\varepsilon) \cap W^{u}(y,\varepsilon) \neq \emptyset\}$$

and a map $[-,-]:D_{\varepsilon}\to X$ such that $[x,y]\in W^{s}(x,\varepsilon)\cap W^{u}(y,\varepsilon)$.

Notes:

- \bullet [-,-] is continuous
- D_{ε} contains $\Delta_X = \{(x,x) \mid x \in X\}$ and [x,x] = x.

A point $x \in X$ is called *synchronizing* if there exists $\delta_x > 0$ such that

$$W^{\mathsf{u}}(x,\delta_x) \times W^{\mathsf{s}}(x,\delta_x) \subseteq D_{\varepsilon}$$

and [-,-] restricted to $W^{\mathrm{u}}(x,\delta_x)\times W^{\mathrm{s}}(x,\delta_x)$ is a homeomorphism onto its image, which is a neighborhood of x.

Synchronizing Systems

An expansive dynamical system (X, φ) is called a *sychronizing system* if it is *irreducible* and there exists a synchronizing point $x \in X$.

Remarks:

- By irreducibility, synchronizing systems have a dense open set of synchronizing points.
- There exist expansive dynamical systems that are not synchronizing, e.g. minimal (every orbit is dense) expansive dynamical systems such as Toeplitz flows.
- Synchronizing shifts have been studied in symbolic dynamics.

Examples of a Synchronizing System (Even Shift)

Let $X \subseteq \{0,1\}^{\mathbb{Z}}$ be the set of all elements of $\{0,1\}^{\mathbb{Z}}$ which do not contain the word $10^{2k+1}1$ for any $k \ge 0$. This is a shift space called the *even shift*.

The even shift is what is called a sofic shift (not a Smale space!).

Consider the sequence of all zeros:

$$\overline{0} = \dots 00000 \dots \in X$$

This point is *not* synchronizing!

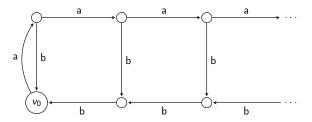
$$x = \dots 111000000 \dots$$

 $y = \dots 000000111 \dots$
 $[x, y] = \dots 111000111 \dots$

Every other element of the even shift is synchronizing.

Examples of a Synchronizing System $(a^n b^n$ -Shift)

Let $X \subseteq \{a, b\}^{\mathbb{Z}}$ be the closure of the set of bi-infinite paths on the following graph



This is a synchronizing system which is not finitely presented.

An element of X is synchronizing only if it is represented by a path that on the graph passing through v_0 .

Results

For a dynamical system (X, φ) the set of periodic points is defined as

$$Per(X,\varphi) = \{x \in X \mid \varphi^n(x) = x \text{ for some } n > 0\}$$

Theorem (Deeley, S.)

If (X, φ) is a synchronizing system then $Per(X, \varphi)$ is dense in X.

Theorem (Deeley, S.)

The homoclinic algebra of an expansive dynamical system is asymptotically commutative. That is, for each $a,b\in A$

$$\lim_{n\to\infty} ||\varphi^n(a)b - b\varphi^n(a)|| = 0.$$

Results

We can think of the K-theory of the C^* -algebras H, S, and U as being an obstruction to (X, φ) being a Smale space, finitely presented, etc.

- For an expansive dynamical system (X, φ) , if $S \otimes U$ is not Mortia equivalent to H then (X, φ) is not a Smale space.
 - For example, this is true for the even shift.
- For a shift space (X, σ) , if the rank of $K_0(H)$ is not finite then X cannot be a sofic shift.
 - The $a^n b^n$ -shift has infinite rank K-theory, and is not a sofic shift.

References

- K. Thomsen, C*-Algebras of Homoclinic and Heteroclinic Structure in Expansive Dynamical Systems
- D. Fried, Finitely Presented Dynamical Systems
- I. Putnam, C*-Algebras From Smale Spaces
- D. Ruelle, Thermodynamic Formalism

Thank you!