MATH 4140: Assignment 14

Chapter 22

- 1. Let G be a nonabelian group of order 39.
- (i) Use Theorem 22.11 to show that G has seven conjugacy classes.
- (ii) By considering the commutator subgroup, G', show that G has a normal subgroup of order 13.
- 2. Prove that every group of order 33 is abelian.
- 3. Let G be a nonabelian group of order 12.
- (i) Prove that G must have a normal subgroup of order 3 or 4.
- (ii) Give an example of a nonabelian group of order 12 with a normal subgroup of order 3.
- (iii) Give an example of a nonabelian group of order 12 with a normal subgroup of order 4.
 - 4. Let G be a nonabelian group of order 56.
- (i) Explain why G cannot have 1, 1, 1, 2, 7 as its character degrees.
- (ii) Show that G has at least four linear characters.
- (iii) Prove that there are no simple groups of order 56.
 - 5. Let G be the alternating group A_5 , and let $g \in G$ be a 5-cycle. Recall that the entries in the character table of G are all real numbers, and that there is an irreducible character χ of G for which $\chi(g)$ is not an integer.
- (i) Prove that g is conjugate to g^4 in G.
- (ii) Prove that g^2 is conjugate to g^3 in G.
- (iii) Use Theorem 22.16 to show that g is not conjugate to g^2 in G.