MATH 4140: Assignment 10

Chapters 17 and 18

1. Let G be the group given by the presentation

$$G = \langle c, d : c^4 = d^3 = 1, \ c^{-1}dc = d^{-1} \rangle.$$

You may assume without proof that G has order 12.

- (i) Show that there is a representation $\rho : G \to GL(1, \mathbb{C})$ satisfying $\rho(c) = (i)$ and $\rho(d) = (1)$.
- (ii) Use your answer to (i) to show that no two elements in the set $\{1, c, c^2, c^3, d, c^2d\}$ are conjugate, except possibly $\{1, d\}$ and $\{c^2, c^2d\}$.
- (iii) Show that there is a surjective homomorphism $\sigma : G \to S_3$ satisfying $\sigma(c) = (12)$ and $\sigma(d) = (123)$.
- (iv) Recall that S_3 has an irreducible character $\tilde{\chi}$ such that

$$\tilde{\chi}(1) = 2$$
, $\tilde{\chi}((12)) = 0$, and $\tilde{\chi}((123)) = -1$.

Show that this character lifts to a degree 2 irreducible character χ of G with the properties that $\chi(c) = 0$ and $\chi(d) = -1$. (This does not require any detailed calculations, just an explanation.)

- (v) Use the character χ to show that 1 is not conjugate to d, and that c^2 is not conjugate to c^2d .
- (vi) It turns out that $\{1, c, c^2, c^3, d, c^2d\}$ is a complete set of conjugacy class representatives of G. Prove that two rows of the character table of G are given as follows:

	1	c	c^2	c^3	d	c^2d
λ	1	i	-1	-i	1	-1
χ	2	0	2	0	-1	-1

(vii) By applying Proposition 17.14 repeatedly, using λ , construct the entire character table of G. (The book constructs the character table of G using different generators and a rather complicated argument. The complete table appears at the end of Chapter 18.)

[continued overleaf]

- 2. Let G be the group of order 12 whose character table was constructed in Question 1. Use the completed character table to answer the following questions.
- (i) Show that the derived subgroup (commutator subgroup), G', of G has order 3. Show that the conjugacy class containing d is $\{d, d^2\}$, and that $G' = \{1, d, d^2\}$.
- (ii) Show that the center, Z(G), of G is given by $\{1, c^2\}$. Explain how one can tell, using the rows of the character table, that Z(G) is cyclic.
- (iii) Show that G has a normal subgroup N of order 6.
- (iv) Use Proposition 17.5 to show that G has no proper nontrivial normal subgroups other than G', Z(G), and N.