MATH 4140: Assignment 3

Chapters 4 and 5

1. Let G be the cyclic group of order 4, given by the presentation

$$G = \langle a : a^4 = 1 \rangle.$$

Let F be either \mathbb{R} or \mathbb{C} . Let V be a 2-dimensional vector space over F with basis $\mathcal{B} = \{v_1, v_2\}$. It turns out that V can be made into a left FG-module in which the generator $a \in G$ acts as

$$a.v_1 = v_2$$
 and $a.v_2 = -v_1$.

Let $\rho: FG \to GL_2(F)$ be the representation of G corresponding to this module.

- (i) Calculate the matrix $\rho(a)$ (also known as $[a]_{\mathcal{B}}$).
- (ii) Use your answer to (i) to calculate the matrices $\rho(a^2)$, $\rho(a^3)$ and $\rho(a^4) = \rho(1)$. Hint: you should find that

$$\rho(a^3) = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}.$$

(iii) Use your answer to (ii) to express the six module elements

 $a^2.v_1, a^2.v_2, a^3.v_1, a^3.v_2, 1.v_1, 1.v_2$

as linear combinations of v_1 and v_2 .

- 2. Maintain the notation of Question 1 and set $F = \mathbb{R}$. Show that V is an irreducible FG-module. (Hint: consider the eigenvectors of $[a]_{\mathcal{B}}$.)
- 3. Maintain the notation of Question 1 and set $F = \mathbb{C}$. It turns out that the *FG*-module *V* has precisely two *FG*-submodules other than *V* itself and $\{0\}$.
- (i) Find both these submodules.
- (ii) Find a C-basis C of V for which the matrices [1]_C, [a]_C, [a²]_C, and [a³]_C are all diagonal matrices.