Cyclic homology of deformation quantizations over orbifolds

Markus Pflaum

Johann Wolfgang Goethe-Universität Frankfurt/Main

CMS Winter 2006 Meeting December 9-11, 2006

References

- N. NEUMAIER, M. PFLAUM, H. POSTHUMA and X. TANG: Homology of formal deformations of proper etale Lie groupoids, Journal f. d. Reine u. Angew. Mathematik 593, 117–168 (2006).
- M. PFLAUM, H. POSTHUMA and X. TANG: An algebraic index theorem for orbifolds, arXiv:math.KT/05075461, to appear in Advances in Math.

Definition

By a groupoid one understands a small category G with object set G_0 and morphism set G_1 such that all morphisms are invertible.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

By a groupoid one understands a small category G with object set G_0 and morphism set G_1 such that all morphisms are invertible.

The structure maps of a groupoid can be depicted in the diagram

$$\mathsf{G}_1 \times_{\mathsf{G}_0} \mathsf{G}_1 \xrightarrow{m} \mathsf{G}_1 \xrightarrow{i} \mathsf{G}_1 \xrightarrow{s} \mathsf{G}_0 \xrightarrow{u} \mathsf{G}_1,$$

where s and t are the source and target map, m is the multiplication resp. composition, i denotes the inverse and finally u the inclusion of objects by identity morphisms.

Definition

By a groupoid one understands a small category G with object set G_0 and morphism set G_1 such that all morphisms are invertible.

The structure maps of a groupoid can be depicted in the diagram

$$\mathsf{G}_1 \times_{\mathsf{G}_0} \mathsf{G}_1 \xrightarrow{m} \mathsf{G}_1 \xrightarrow{i} \mathsf{G}_1 \xrightarrow{s}_t \mathsf{G}_0 \xrightarrow{u} \mathsf{G}_1,$$

where s and t are the source and target map, m is the multiplication resp. composition, i denotes the inverse and finally u the inclusion of objects by identity morphisms.

If the groupoid carries additionally the structure of a (not necessarily Hausdorff) smooth manifold, such that s and t are submersions, then G is called a *Lie groupoid*.

Example

1. Every group Γ is a groupoid with object set \ast and morphism set given by $\Gamma.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example

- 1. Every group Γ is a groupoid with object set \ast and morphism set given by $\Gamma.$
- 2. For every manifold M there exists a natural groupoid structure on the cartesian product $M \times M$; one thus obtains the pair groupoid of M.

Example

- 1. Every group Γ is a groupoid with object set \ast and morphism set given by $\Gamma.$
- 2. For every manifold M there exists a natural groupoid structure on the cartesian product $M \times M$; one thus obtains the pair groupoid of M.
- 3. A proper smooth Lie group action $\Gamma \times M \to M$ gives rise to the transformation groupoid $\Gamma \ltimes M$.

Proper étale Lie groupoids and orbifolds

Definition

A Lie groupoid G is called *proper*, when the map $(s, t) : G_1 \rightarrow G_0 \times G_0$ is proper.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proper étale Lie groupoids and orbifolds

Definition

A Lie groupoid G is called *proper*, when the map $(s, t) : G_1 \rightarrow G_0 \times G_0$ is proper.

An *étale* groupoid is a Lie groupoid for which s and t are local diffeomorphisms.

Proper étale Lie groupoids and orbifolds

Definition

A Lie groupoid G is called *proper*, when the map $(s, t) : G_1 \rightarrow G_0 \times G_0$ is proper.

An *étale* groupoid is a Lie groupoid for which s and t are local diffeomorphisms.

Theorem

Every orbifold can be represented as the orbit space of a (Morita equivalence class of a) proper étale Lie groupoid. (MOERDIJK-PRONK)

G-sheaves and crossed product algebras

Definition

A G-sheaf ${\mathcal S}$ on an étale groupoid G is a sheaf ${\mathcal S}$ on G_0 with a right action of G.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

G-sheaves and crossed product algebras

Definition

A G-sheaf ${\mathcal S}$ on an étale groupoid G is a sheaf ${\mathcal S}$ on G_0 with a right action of G.

For every G-sheaf \mathcal{A} one defines the *crossed product algebra* $\mathcal{A} \rtimes G$ as the vector space $\Gamma_c(G_1, s^*\mathcal{A})$ together with the convolution product

$$[a_1 * a_2]_g = \sum_{g_1 g_2 = g} ([a_1]_{g_1} g_2) [a_2]_{g_2} \text{ for } a_1, a_2 \in \mathsf{\Gamma_c}(\mathsf{G}_1, s^*\mathcal{A}), \ g \in \mathsf{G}.$$

G-sheaves and crossed product algebras

Definition

A G-sheaf ${\mathcal S}$ on an étale groupoid G is a sheaf ${\mathcal S}$ on G_0 with a right action of G.

For every G-sheaf \mathcal{A} one defines the *crossed product algebra* $\mathcal{A} \rtimes G$ as the vector space $\Gamma_c(G_1, s^*\mathcal{A})$ together with the convolution product

$$[a_1 * a_2]_g = \sum_{g_1 g_2 = g} ([a_1]_{g_1} g_2) [a_2]_{g_2} \text{ for } a_1, a_2 \in \mathsf{\Gamma_c}(\mathsf{G}_1, s^*\mathcal{A}), \ g \in \mathsf{G}.$$

In the following, \mathcal{A} will denote the G-sheaf of smooth functions on G₀. Then $\mathcal{A} \rtimes G$ is the *convolution algebra* of the groupoid G.

Definition

A cyclic object in a category is a simplicial object (X_{\bullet}, d, s) together with automorphisms (cyclic permutations) $t_k : X_k \to X_k$ satisfying the identities

$$d_{i}t_{k+1} = \begin{cases} t_{k-1}d_{i-1} & \text{for } i \neq 0, \\ d_{k} & \text{for } i = 0, \end{cases}$$

$$s_{i}t_{k} = \begin{cases} t_{k+1}s_{i-1} & \text{for } i \neq 0, \\ t_{k+1}^{2}s_{k} & \text{for } i = 0, \end{cases}$$

$$t_{k}^{(k+1)} = 1.$$

Definition

A mixed complex (X_{\bullet}, b, B) in an abelian category is a graded object $(X_k)_{k \in \mathbb{N}}$ equipped with maps $b : X_k \to X_{k-1}$ of degree -1and $B : X_k \to X_{k+1}$ of degree +1 such that $b^2 = B^2 = bB + Bb = 0$.

Definition

A mixed complex (X_{\bullet}, b, B) in an abelian category is a graded object $(X_k)_{k \in \mathbb{N}}$ equipped with maps $b : X_k \to X_{k-1}$ of degree -1and $B : X_k \to X_{k+1}$ of degree +1 such that $b^2 = B^2 = bB + Bb = 0$.

Example

A cyclic object (X_{\bullet}, d, s, t) in an abelian category gives rise to a mixed complex by putting

$$b = \sum_{i=0}^{k} (-1)^{i} d_{i}, \ N = \sum_{i=0}^{k} (-1)^{ik} t_{k}^{i}, \ \text{and} \ B = (1 + (-1)^{k} t_{k}) s_{0} N.$$

A mixed complex gives rise to a first quadrant double complex $B_{\bullet,\bullet}(X)$

э

Definition

The Hochschild homology $HH_{\bullet}(X)$ of a mixed complex $X = (X_{\bullet}, b, B)$ is the homology of the (X_{\bullet}, b) -complex. The cyclic homology $HC_{\bullet}(X)$ is defined as the homology of the total complex associated to the double complex $B_{\bullet,\bullet}(X)$.

For every unital algebra A (over a field \Bbbk) there is a natural cyclic object $A_{\alpha}^{\natural} = (A_{\bullet}^{\natural}, d, s, t)$ given as follows.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For every unital algebra A (over a field \Bbbk) there is a natural cyclic object $A_{\alpha}^{\natural} = (A_{\bullet}^{\natural}, d, s, t)$ given as follows.

$$\blacktriangleright A_k^{\natural} := A^{\otimes (k+1)},$$

For every unital algebra A (over a field \Bbbk) there is a natural cyclic object $A^{\natural}_{\alpha} = (A^{\natural}_{\bullet}, d, s, t)$ given as follows.

$$A_k^{\natural} := A^{\otimes (k+1)},$$

$$d_i(a_0 \otimes \ldots \otimes a_k) =$$

$$\begin{cases} a_0 \otimes \ldots \otimes a_i a_{i+1} \otimes \ldots \otimes a_k, & \text{if } 0 \le i \le k-1, \\ a_k a_0 \otimes \ldots \otimes a_{k-1}, & \text{if } i = k, \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For every unital algebra A (over a field \Bbbk) there is a natural cyclic object $A^{\natural}_{\alpha} = (A^{\natural}_{\bullet}, d, s, t)$ given as follows.

$$A_k^{\natural} := A^{\otimes (k+1)},$$

$$d_i(a_0 \otimes \ldots \otimes a_k) =$$

$$\begin{cases} a_0 \otimes \ldots \otimes a_i a_{i+1} \otimes \ldots \otimes a_k, & \text{if } 0 \le i \le k-1, \\ a_k a_0 \otimes \ldots \otimes a_{k-1}, & \text{if } i = k, \end{cases}$$

 $\blacktriangleright \ s_i(a_0 \otimes \ldots \otimes a_{k+1}) = a_0 \otimes \ldots \otimes a_i \otimes 1 \otimes a_{i+1} \otimes \cdots \otimes a_k.$

For every unital algebra A (over a field \Bbbk) there is a natural cyclic object $A^{\natural}_{\alpha} = (A^{\natural}_{\bullet}, d, s, t)$ given as follows.

$$A_k^{\natural} := A^{\otimes (k+1)},$$

$$d_i(a_0 \otimes \ldots \otimes a_k) =$$

$$\begin{cases} a_0 \otimes \ldots \otimes a_i a_{i+1} \otimes \ldots \otimes a_k, & \text{if } 0 \le i \le k-1, \\ a_k a_0 \otimes \ldots \otimes a_{k-1}, & \text{if } i = k, \end{cases}$$

 $s_i(a_0 \otimes \ldots \otimes a_{k+1}) = a_0 \otimes \ldots \otimes a_i \otimes 1 \otimes a_{i+1} \otimes \cdots \otimes a_k.$ $t_k(a_0 \otimes \cdots \otimes a_k) = a_k \otimes a_0 \otimes \cdots \otimes a_{k-1}.$

For every unital algebra A (over a field \Bbbk) there is a natural cyclic object $A_{\alpha}^{\natural} = (A_{\bullet}^{\natural}, d, s, t)$ given as follows.

$$A_k^{\natural} := A^{\otimes (k+1)},$$

$$d_i(a_0 \otimes \ldots \otimes a_k) =$$

$$\begin{cases} a_0 \otimes \ldots \otimes a_i a_{i+1} \otimes \ldots \otimes a_k, & \text{if } 0 \le i \le k-1, \\ a_k a_0 \otimes \ldots \otimes a_{k-1}, & \text{if } i = k, \end{cases}$$

 $\blacktriangleright s_i(a_0 \otimes \ldots \otimes a_{k+1}) = a_0 \otimes \ldots \otimes a_i \otimes 1 \otimes a_{i+1} \otimes \cdots \otimes a_k.$

$$\blacktriangleright t_k(a_0\otimes\cdots\otimes a_k)=a_k\otimes a_0\otimes\cdots\otimes a_{k-1}.$$

The double complex $B_{\bullet,\bullet}(A)$ associated to the mixed complex $(A_{\bullet}^{\natural}, b, B)$ is called Connes' (b, B)-complex. In this case one denotes the homologies simply by $HH_{\bullet}(A)$, $HC_{\bullet}(A)$, $HP_{\bullet}(A)$.

Definition

Let $(A, [\Pi])$ be a noncommutative Poisson algebra, and $A[[\hbar]]$ the space of formal power series with coefficients in A.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

Let $(A, [\Pi])$ be a noncommutative Poisson algebra, and $A[[\hbar]]$ the space of formal power series with coefficients in A. A formal deformation quantization of $(A, [\Pi])$ is an associative product

$$\star: \mathcal{A}[[\hbar]] \times \mathcal{A}[[\hbar]] \to \mathcal{A}[[\hbar]], \ (a_1, a_2) \mapsto a_1 \star a_2 = \sum_{k=0}^{\infty} \hbar^k c_k(a_1, a_2)$$

satisfying the following properties:

Definition

Let $(A, [\Pi])$ be a noncommutative Poisson algebra, and $A[[\hbar]]$ the space of formal power series with coefficients in A. A formal deformation quantization of $(A, [\Pi])$ is an associative product

$$\star: \mathcal{A}[[\hbar]] \times \mathcal{A}[[\hbar]] \to \mathcal{A}[[\hbar]], \ (a_1, a_2) \mapsto a_1 \star a_2 = \sum_{k=0}^{\infty} \hbar^k c_k(a_1, a_2)$$

satisfying the following properties:

1. The maps $c_k : A[[\hbar]] \otimes A[[\hbar]] \to A[[\hbar]]$ are $\mathbb{C}[[\hbar]]$ -bilinear.

Definition

Let $(A, [\Pi])$ be a noncommutative Poisson algebra, and $A[[\hbar]]$ the space of formal power series with coefficients in A. A formal deformation quantization of $(A, [\Pi])$ is an associative product

$$\star: \mathcal{A}[[\hbar]] \times \mathcal{A}[[\hbar]] \to \mathcal{A}[[\hbar]], \ (a_1, a_2) \mapsto a_1 \star a_2 = \sum_{k=0}^{\infty} \hbar^k c_k(a_1, a_2)$$

satisfying the following properties:

1. The maps $c_k : A[[\hbar]] \otimes A[[\hbar]] \to A[[\hbar]]$ are $\mathbb{C}[[\hbar]]$ -bilinear.

2. One has $c_0(a_1, a_2) = a_1 \cdot a_2$ for all $a_1, a_2 \in A$.

Definition

Let $(A, [\Pi])$ be a noncommutative Poisson algebra, and $A[[\hbar]]$ the space of formal power series with coefficients in A. A formal deformation quantization of $(A, [\Pi])$ is an associative product

$$\star: \mathcal{A}[[\hbar]] \times \mathcal{A}[[\hbar]] \to \mathcal{A}[[\hbar]], \ (a_1, a_2) \mapsto a_1 \star a_2 = \sum_{k=0}^{\infty} \hbar^k c_k(a_1, a_2)$$

satisfying the following properties:

- 1. The maps $c_k : A[[\hbar]] \otimes A[[\hbar]] \rightarrow A[[\hbar]]$ are $\mathbb{C}[[\hbar]]$ -bilinear.
- 2. One has $c_0(a_1, a_2) = a_1 \cdot a_2$ for all $a_1, a_2 \in A$.
- 3. For some representative $\Pi \in Z^2(A, A)$ of the Poisson structure and all $a_1, a_2 \in A$ one has

$$a_1 \star a_2 - c_0(a_1, a_2) - \frac{i}{2}\hbar\Pi(a_1, a_2) \in \hbar^2 A[[\hbar]].$$

Example

Let G be a proper étale Lie groupoid with a G-invariant symplectic structure ω_0 . Then the following existence results for deformation quantizations hold true.

Example

Let G be a proper étale Lie groupoid with a G-invariant symplectic structure ω_0 . Then the following existence results for deformation quantizations hold true.

1. There exists a G-invariant (differential) star product on \mathcal{A} , the sheaf of smooth functions on G₀ (FEDOSOV).

Example

Let G be a proper étale Lie groupoid with a G-invariant symplectic structure ω_0 . Then the following existence results for deformation quantizations hold true.

- 1. There exists a G-invariant (differential) star product on \mathcal{A} , the sheaf of smooth functions on G₀ (FEDOSOV).
- With A^{[[ħ]]} denoting the corresponding deformed G-sheaf, the crossed product algebra A^{[[ħ]]} ⋊ G is a deformation quantization of A ⋊ G (TANG).

Example

Let G be a proper étale Lie groupoid with a G-invariant symplectic structure ω_0 . Then the following existence results for deformation quantizations hold true.

- 1. There exists a G-invariant (differential) star product on \mathcal{A} , the sheaf of smooth functions on G₀ (FEDOSOV).
- With A^{[[ħ]]} denoting the corresponding deformed G-sheaf, the crossed product algebra A^{[[ħ]]} ⋊ G is a deformation quantization of A ⋊ G (TANG).
- 3. The invariant algebra $(\mathcal{A}^{[[\hbar]]})^{G}$ is deformation quantization of the sheaf \mathcal{A}^{G} of smooth functions on the symplectic orbifold $X = G_0/G$ (M.P.).

Hochschild and cyclic homology of deformations of the convolution algebra

Theorem

Let G be a proper étale Lie groupoid representing a symplectic orbifold X of dimension 2n. Then the Hochschild homology of the deformed convolution algebra $\mathbb{A}^{((\hbar))} \rtimes G$ is given by

$$HH_{ullet}(\mathbb{A}^{((\hbar))}\rtimes \mathsf{G})\cong H^{2n-ullet}_{\mathrm{orb},\mathrm{c}}\left(X,\mathbb{C}((\hbar))
ight),$$

and the cyclic homology of $\mathbb{A}^{((\hbar))}\rtimes \mathsf{G}$ by

$$HC_{\bullet}(\mathbb{A}^{((\hbar))} \rtimes \mathsf{G}) = \bigoplus_{k \geq 0} H^{2n+2k-\bullet}_{{}_{\mathrm{orb},\mathrm{c}}}(X,\mathbb{C}((\hbar))).$$

(NEUMAIER-PFLAUM-POSTHUMA-TANG)

Hochschild and cyclic cohomology of deformations of the convolution algebra

Theorem

The Hochschild and cyclic cohomology of $\mathbb{A}^{\hbar}\rtimes \mathsf{G}$ are given by

$$HH^{\bullet}(\mathbb{A}^{((\hbar))} \rtimes \mathsf{G}) \cong H^{\bullet}_{\mathrm{orb}}(X, \mathbb{C}((\hbar))),$$
$$HC^{\bullet}(\mathbb{A}^{((\hbar))} \rtimes \mathsf{G}) \cong \bigoplus_{k \ge 0} H^{\bullet-2k}_{\mathrm{orb}}(X, \mathbb{C}((\hbar))).$$

Furthermore, the pairing between homology and cohomology is given by Poincaré duality for orbifolds. (NEUMAIER-PFLAUM-POSTHUMA-TANG)

The algebraic index theorem for orbifolds

Theorem

Let G be a proper étale Lie groupoid representing a symplectic orbifold X. Let E and F be G-vector bundles which are isomorphic outside a compact subset of X.

The algebraic index theorem for orbifolds

Theorem

Let G be a proper étale Lie groupoid representing a symplectic orbifold X. Let E and F be G-vector bundles which are isomorphic outside a compact subset of X. Then the following formula holds for the index of [E] - [F]:

$$\operatorname{Tr}_{*}([E] - [F]) = \\ = \int_{\tilde{X}} \frac{1}{m} \frac{\operatorname{Ch}_{\theta}\left(\frac{R^{E}}{2\pi i} - \frac{R^{F}}{2\pi i}\right)}{\det\left(1 - \theta^{-1}\exp\left(-\frac{R^{\perp}}{2\pi i}\right)\right)} \hat{A}\left(\frac{R^{T}}{2\pi i}\right) \exp\left(-\frac{\iota^{*}\Omega}{2\pi i\hbar}\right).$$

(PFLAUM-POSTHUMA-TANG)

The Kawasaki index theorem

As a consequence of the algebraic index theorem for orbifolds one obtains

Theorem

Given an elliptic operator D on a reduced compact orbifold X, one has

$$\mathsf{index}(D) = \int_{\widetilde{T^*X}} \frac{1}{m} \frac{\mathsf{Ch}_{\theta}\left(\frac{\sigma(D)}{2\pi i}\right)}{\det\left(1 - \theta^{-1}\exp\left(-\frac{R^{\perp}}{2\pi i}\right)\right)} \hat{A}\left(\frac{R^{\mathsf{T}}}{2\pi i}\right),$$

where $\sigma(D)$ is the symbol of D. (KAWASAKI)