Cyclic homology of deformation quantizations over orbifolds

Markus Pflaum
Johann Wolfgang Goethe-Universität Frankfurt/Main

CMS Winter 2006 Meeting
December 9-11, 2006

References

目 N. Neumaier, M. Pflaum, H. Posthuma and X. Tang: Homology of formal deformations of proper etale Lie groupoids, Journal f. d. Reine u. Angew. Mathematik 593, 117-168 (2006).
國 M. Pflaum, H. Posthuma and X. Tang:
An algebraic index theorem for orbifolds, arXiv:math.KT/05075461, to appear in Advances in Math.

Groupoids

Definition
By a groupoid one understands a small category G with object set G_{0} and morphism set G_{1} such that all morphisms are invertible.

Groupoids

Definition

By a groupoid one understands a small category G with object set G_{0} and morphism set G_{1} such that all morphisms are invertible.

The structure maps of a groupoid can be depicted in the diagram

$$
\mathrm{G}_{1} \times \times_{0} \mathrm{G}_{1} \xrightarrow{m} \mathrm{G}_{1} \xrightarrow{i} \mathrm{G}_{1} \underset{t}{\stackrel{s}{\rightrightarrows}} \mathrm{G}_{0} \xrightarrow{u} \mathrm{G}_{1},
$$

where s and t are the source and target map, m is the multiplication resp. composition, i denotes the inverse and finally u the inclusion of objects by identity morphisms.

Groupoids

Definition

By a groupoid one understands a small category G with object set G_{0} and morphism set G_{1} such that all morphisms are invertible.

The structure maps of a groupoid can be depicted in the diagram

$$
\mathrm{G}_{1} \times \times_{0} \mathrm{G}_{1} \xrightarrow{m} \mathrm{G}_{1} \xrightarrow{i} \mathrm{G}_{1} \underset{t}{\stackrel{s}{\rightrightarrows}} \mathrm{G}_{0} \xrightarrow{u} \mathrm{G}_{1},
$$

where s and t are the source and target map, m is the multiplication resp. composition, i denotes the inverse and finally u the inclusion of objects by identity morphisms.

If the groupoid carries additionally the structure of a (not necessarily Hausdorff) smooth manifold, such that s and t are submersions, then G is called a Lie groupoid.

Groupoids

Example

1. Every group Γ is a groupoid with object set $*$ and morphism set given by Γ.

Groupoids

Example

1. Every group Γ is a groupoid with object set $*$ and morphism set given by Γ.
2. For every manifold M there exists a natural groupoid structure on the cartesian product $M \times M$; one thus obtains the pair groupoid of M.

Groupoids

Example

1. Every group Γ is a groupoid with object set $*$ and morphism set given by Γ.
2. For every manifold M there exists a natural groupoid structure on the cartesian product $M \times M$; one thus obtains the pair groupoid of M.
3. A proper smooth Lie group action $\Gamma \times M \rightarrow M$ gives rise to the transformation groupoid $\Gamma \ltimes M$.

Proper étale Lie groupoids and orbifolds

Definition
A Lie groupoid G is called proper, when the map
$(s, t): G_{1} \rightarrow G_{0} \times G_{0}$ is proper.

Proper étale Lie groupoids and orbifolds

Definition
A Lie groupoid G is called proper, when the map
$(s, t): G_{1} \rightarrow G_{0} \times G_{0}$ is proper.
An étale groupoid is a Lie groupoid for which s and t are local diffeomorphisms.

Proper étale Lie groupoids and orbifolds

Definition
A Lie groupoid G is called proper, when the map
$(s, t): G_{1} \rightarrow G_{0} \times G_{0}$ is proper.
An étale groupoid is a Lie groupoid for which s and t are local diffeomorphisms.

Theorem
Every orbifold can be represented as the orbit space of a (Morita equivalence class of a) proper étale Lie groupoid.
(Moerdijk-Pronk)

G-sheaves and crossed product algebras

Definition
A G-sheaf \mathcal{S} on an étale groupoid G is a sheaf \mathcal{S} on G_{0} with a right action of G.

G-sheaves and crossed product algebras

Definition
A G-sheaf \mathcal{S} on an étale groupoid G is a sheaf \mathcal{S} on G_{0} with a right action of G.

For every G-sheaf \mathcal{A} one defines the crossed product algebra $\mathcal{A} \rtimes \mathrm{G}$ as the vector space $\Gamma_{c}\left(G_{1}, s^{*} \mathcal{A}\right)$ together with the convolution product
$\left[a_{1} * a_{2}\right]_{g}=\sum_{g_{1} g_{2}=g}\left(\left[a_{1}\right]_{g_{1}} g_{2}\right)\left[a_{2}\right]_{g_{2}}$ for $a_{1}, a_{2} \in \Gamma_{\mathrm{c}}\left(\mathrm{G}_{1}, s^{*} \mathcal{A}\right), g \in G$.

G-sheaves and crossed product algebras

Definition

A G-sheaf \mathcal{S} on an étale groupoid G is a sheaf \mathcal{S} on G_{0} with a right action of G.

For every G-sheaf \mathcal{A} one defines the crossed product algebra $\mathcal{A} \rtimes \mathrm{G}$ as the vector space $\Gamma_{c}\left(G_{1}, s^{*} \mathcal{A}\right)$ together with the convolution product
$\left[a_{1} * a_{2}\right]_{g}=\sum_{g_{1} g_{2}=g}\left(\left[a_{1}\right]_{g_{1}} g_{2}\right)\left[a_{2}\right]_{g_{2}}$ for $a_{1}, a_{2} \in \Gamma_{\mathrm{c}}\left(\mathrm{G}_{1}, s^{*} \mathcal{A}\right), g \in \mathrm{G}$.
In the following, \mathcal{A} will denote the G-sheaf of smooth functions on G_{0}. Then $\mathcal{A} \rtimes \mathrm{G}$ is the convolution algebra of the groupoid G .

Tools from noncommutative geometry

Definition

A cyclic object in a category is a simplicial object $\left(X_{\bullet}, d, s\right)$ together with automorphisms (cyclic permutations) $t_{k}: X_{k} \rightarrow X_{k}$ satisfying the identities

$$
\begin{aligned}
d_{i} t_{k+1} & = \begin{cases}t_{k-1} d_{i-1} & \text { for } i \neq 0 \\
d_{k} & \text { for } i=0\end{cases} \\
s_{i} t_{k} & = \begin{cases}t_{k+1} s_{i-1} & \text { for } i \neq 0 \\
t_{k+1}^{2} s_{k} & \text { for } i=0\end{cases} \\
t_{k}^{(k+1)} & =1
\end{aligned}
$$

Tools from noncommutative geometry

Definition

A mixed complex $\left(X_{\bullet}, b, B\right)$ in an abelian category is a graded object $\left(X_{k}\right)_{k \in \mathbb{N}}$ equipped with maps $b: X_{k} \rightarrow X_{k-1}$ of degree -1 and $B: X_{k} \rightarrow X_{k+1}$ of degree +1 such that $b^{2}=B^{2}=b B+B b=0$.

Tools from noncommutative geometry

Definition

A mixed complex $\left(X_{\bullet}, b, B\right)$ in an abelian category is a graded object $\left(X_{k}\right)_{k \in \mathbb{N}}$ equipped with maps $b: X_{k} \rightarrow X_{k-1}$ of degree -1 and $B: X_{k} \rightarrow X_{k+1}$ of degree +1 such that $b^{2}=B^{2}=b B+B b=0$.

Example

A cyclic object $\left(X_{\bullet}, d, s, t\right)$ in an abelian category gives rise to a mixed complex by putting

$$
b=\sum_{i=0}^{k}(-1)^{i} d_{i}, N=\sum_{i=0}^{k}(-1)^{i k} t_{k}^{i}, \text { and } B=\left(1+(-1)^{k} t_{k}\right) s_{0} N
$$

Tools from noncommutative geometry

A mixed complex gives rise to a first quadrant double complex $B_{\bullet, \bullet}(X)$

Tools from noncommutative geometry

Definition

The Hochschild homology $\mathrm{HH}_{0}(X)$ of a mixed complex $X=\left(X_{\mathbf{0}}, b, B\right)$ is the homology of the $\left(X_{\mathbf{0}}, b\right)$-complex. The cyclic homology $H C_{0}(X)$ is defined as the homology of the total complex associated to the double complex $B_{\mathbf{0}, 0}(X)$.

Tools from noncommutative geometry

For every unital algebra A (over a field \mathbb{k}) there is a natural cyclic object $A_{\alpha}^{\natural}=\left(A_{0}^{\natural}, d, s, t\right)$ given as follows.

Tools from noncommutative geometry

For every unital algebra A (over a field \mathbb{k}) there is a natural cyclic object $A_{\alpha}^{\natural}=\left(A_{0}^{\natural}, d, s, t\right)$ given as follows.

- $A_{k}^{\natural}:=A^{\otimes(k+1)}$,

Tools from noncommutative geometry

For every unital algebra A (over a field \mathbb{k}) there is a natural cyclic object $A_{\alpha}^{\natural}=\left(A_{0}^{\natural}, d, s, t\right)$ given as follows.

- $A_{k}^{\natural}:=A^{\otimes(k+1)}$,
- $d_{i}\left(a_{0} \otimes \ldots \otimes a_{k}\right)=$

$$
\begin{cases}a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{k}, & \text { if } 0 \leq i \leq k-1, \\ a_{k} a_{0} \otimes \ldots \otimes a_{k-1}, & \text { if } i=k,\end{cases}
$$

Tools from noncommutative geometry

For every unital algebra A (over a field \mathbb{k}) there is a natural cyclic object $A_{\alpha}^{\natural}=\left(A_{0}^{\natural}, d, s, t\right)$ given as follows.

- $A_{k}^{\natural}:=A^{\otimes(k+1)}$,
- $d_{i}\left(a_{0} \otimes \ldots \otimes a_{k}\right)=$

$$
\begin{cases}a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{k}, & \text { if } 0 \leq i \leq k-1, \\ a_{k} a_{0} \otimes \ldots \otimes a_{k-1}, & \text { if } i=k,\end{cases}
$$

- $s_{i}\left(a_{0} \otimes \ldots \otimes a_{k+1}\right)=a_{0} \otimes \ldots \otimes a_{i} \otimes 1 \otimes a_{i+1} \otimes \cdots \otimes a_{k}$.

Tools from noncommutative geometry

For every unital algebra A (over a field \mathbb{k}) there is a natural cyclic object $A_{\alpha}^{\natural}=\left(A_{0}^{\natural}, d, s, t\right)$ given as follows.

- $A_{k}^{\natural}:=A^{\otimes(k+1)}$,
- $d_{i}\left(a_{0} \otimes \ldots \otimes a_{k}\right)=$

$$
\begin{cases}a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{k}, & \text { if } 0 \leq i \leq k-1, \\ a_{k} a_{0} \otimes \ldots \otimes a_{k-1}, & \text { if } i=k,\end{cases}
$$

- $s_{i}\left(a_{0} \otimes \ldots \otimes a_{k+1}\right)=a_{0} \otimes \ldots \otimes a_{i} \otimes 1 \otimes a_{i+1} \otimes \cdots \otimes a_{k}$.
- $t_{k}\left(a_{0} \otimes \cdots \otimes a_{k}\right)=a_{k} \otimes a_{0} \otimes \cdots \otimes a_{k-1}$.

Tools from noncommutative geometry

For every unital algebra A (over a field \mathbb{k}) there is a natural cyclic object $A_{\alpha}^{\natural}=\left(A_{0}^{\natural}, d, s, t\right)$ given as follows.

- $A_{k}^{\natural}:=A^{\otimes(k+1)}$,
- $d_{i}\left(a_{0} \otimes \ldots \otimes a_{k}\right)=$

$$
\begin{cases}a_{0} \otimes \ldots \otimes a_{i} a_{i+1} \otimes \ldots \otimes a_{k}, & \text { if } 0 \leq i \leq k-1, \\ a_{k} a_{0} \otimes \ldots \otimes a_{k-1}, & \text { if } i=k\end{cases}
$$

- $s_{i}\left(a_{0} \otimes \ldots \otimes a_{k+1}\right)=a_{0} \otimes \ldots \otimes a_{i} \otimes 1 \otimes a_{i+1} \otimes \cdots \otimes a_{k}$.
- $t_{k}\left(a_{0} \otimes \cdots \otimes a_{k}\right)=a_{k} \otimes a_{0} \otimes \cdots \otimes a_{k-1}$.

The double complex $B_{\bullet, \bullet}(A)$ associated to the mixed complex $\left(A_{0}^{\natural}, b, B\right)$ is called Connes' (b, B)-complex. In this case one denotes the homologies simply by $H_{\bullet}(A), H C_{\bullet}(A), H P_{\bullet}(A)$.

Deformation quantization

Definition
Let $(A,[\Pi])$ be a noncommutative Poisson algebra, and $A[[\hbar]]$ the space of formal power series with coefficients in A.

Deformation quantization

Definition

Let $(A,[\Pi])$ be a noncommutative Poisson algebra, and $A[[\hbar]]$ the space of formal power series with coefficients in A. A formal deformation quantization of $(A,[\Pi])$ is an associative product

$$
\star: A[[\hbar]] \times A[[\hbar]] \rightarrow A[[\hbar]],\left(a_{1}, a_{2}\right) \mapsto a_{1} \star a_{2}=\sum_{k=0}^{\infty} \hbar^{k} c_{k}\left(a_{1}, a_{2}\right)
$$

satisfying the following properties:

Deformation quantization

Definition

Let $(A,[\Pi])$ be a noncommutative Poisson algebra, and $A[[\hbar]]$ the space of formal power series with coefficients in A. A formal deformation quantization of $(A,[\Pi])$ is an associative product

$$
\star: A[[\hbar]] \times A[[\hbar]] \rightarrow A[[\hbar]],\left(a_{1}, a_{2}\right) \mapsto a_{1} \star a_{2}=\sum_{k=0}^{\infty} \hbar^{k} c_{k}\left(a_{1}, a_{2}\right)
$$

satisfying the following properties:

1. The maps $c_{k}: A[[\hbar]] \otimes A[[\hbar]] \rightarrow A[[\hbar]]$ are $\mathbb{C}[[\hbar]]$-bilinear.

Deformation quantization

Definition

Let $(A,[\Pi])$ be a noncommutative Poisson algebra, and $A[[\hbar]]$ the space of formal power series with coefficients in A. A formal deformation quantization of $(A,[\Pi])$ is an associative product

$$
\star: A[[\hbar]] \times A[[\hbar]] \rightarrow A[[\hbar]],\left(a_{1}, a_{2}\right) \mapsto a_{1} \star a_{2}=\sum_{k=0}^{\infty} \hbar^{k} c_{k}\left(a_{1}, a_{2}\right)
$$

satisfying the following properties:

1. The maps $c_{k}: A[[\hbar]] \otimes A[[\hbar]] \rightarrow A[[\hbar]]$ are $\mathbb{C}[[\hbar]]$-bilinear.
2. One has $c_{0}\left(a_{1}, a_{2}\right)=a_{1} \cdot a_{2}$ for all $a_{1}, a_{2} \in A$.

Deformation quantization

Definition

Let $(A,[\Pi])$ be a noncommutative Poisson algebra, and $A[[\hbar]]$ the space of formal power series with coefficients in A. A formal deformation quantization of $(A,[\Pi])$ is an associative product

$$
\star: A[[\hbar]] \times A[[\hbar]] \rightarrow A[[\hbar]],\left(a_{1}, a_{2}\right) \mapsto a_{1} \star a_{2}=\sum_{k=0}^{\infty} \hbar^{k} c_{k}\left(a_{1}, a_{2}\right)
$$

satisfying the following properties:

1. The maps $c_{k}: A[[\hbar]] \otimes A[[\hbar]] \rightarrow A[[\hbar]]$ are $\mathbb{C}[[\hbar]]$-bilinear.
2. One has $c_{0}\left(a_{1}, a_{2}\right)=a_{1} \cdot a_{2}$ for all $a_{1}, a_{2} \in A$.
3. For some representative $\Pi \in Z^{2}(A, A)$ of the Poisson structure and all $a_{1}, a_{2} \in A$ one has

$$
a_{1} \star a_{2}-c_{0}\left(a_{1}, a_{2}\right)-\frac{i}{2} \hbar \Pi\left(a_{1}, a_{2}\right) \in \hbar^{2} A[[\hbar]] .
$$

Deformation quantization

Example

Let G be a proper étale Lie groupoid with a G-invariant symplectic structure ω_{0}. Then the following existence results for deformation quantizations hold true.

Deformation quantization

Example

Let G be a proper étale Lie groupoid with a G-invariant symplectic structure ω_{0}. Then the following existence results for deformation quantizations hold true.

1. There exists a G-invariant (differential) star product on \mathcal{A}, the sheaf of smooth functions on G_{0} (Fedosov).

Deformation quantization

Example

Let G be a proper étale Lie groupoid with a G-invariant symplectic structure ω_{0}. Then the following existence results for deformation quantizations hold true.

1. There exists a G-invariant (differential) star product on \mathcal{A}, the sheaf of smooth functions on G_{0} (Fedosov).
2. With $\mathcal{A}^{[[\hbar]]}$ denoting the corresponding deformed G-sheaf, the crossed product algebra $\mathcal{A}^{[[\hbar]]} \rtimes \mathrm{G}$ is a deformation quantization of $\mathcal{A} \rtimes \mathrm{G}$ (TANG).

Deformation quantization

Example

Let G be a proper étale Lie groupoid with a G-invariant symplectic structure ω_{0}. Then the following existence results for deformation quantizations hold true.

1. There exists a G-invariant (differential) star product on \mathcal{A}, the sheaf of smooth functions on G_{0} (FEDOSOV).
2. With $\mathcal{A}^{[[k]]}$ denoting the corresponding deformed G-sheaf, the crossed product algebra $\mathcal{A}^{[\hbar \hbar]]} \rtimes \mathrm{G}$ is a deformation quantization of $\mathcal{A} \rtimes \mathrm{G}$ (TANG).
3. The invariant algebra $\left(\mathcal{A}^{[[\hbar]]}\right)^{\mathrm{G}}$ is deformation quantization of the sheaf \mathcal{A}^{G} of smooth functions on the symplectic orbifold $X=\mathrm{G}_{0} / \mathrm{G}$ (M.P.).

Hochschild and cyclic homology of deformations of the

 convolution algebraTheorem
Let G be a proper étale Lie groupoid representing a symplectic orbifold X of dimension $2 n$. Then the Hochschild homology of the deformed convolution algebra $\mathbb{A}^{((\hbar))} \rtimes \mathrm{G}$ is given by

$$
H_{\bullet}\left(\mathbb{A}^{((\hbar))} \rtimes \mathrm{G}\right) \cong H_{\text {orb }, \mathrm{c}}^{2 n-\bullet}(X, \mathbb{C}((\hbar))),
$$

and the cyclic homology of $\left.\mathbb{A}^{(}(\hbar)\right) \rtimes \mathrm{G}$ by

$$
H C_{\bullet}\left(\mathbb{A}^{((\hbar))} \rtimes G\right)=\bigoplus_{k \geq 0} H_{\text {orb }, \mathrm{c}}^{2 n+2 k-\bullet}(X, \mathbb{C}((\hbar))) .
$$

(Neumaier-Pflaum-Posthuma-Tang)

Hochschild and cyclic cohomology of deformations of the

 convolution algebraTheorem
The Hochschild and cyclic cohomology of $\mathbb{A}^{\hbar} \rtimes G$ are given by

$$
\begin{aligned}
& H H^{\bullet}\left(\mathbb{A}^{((\hbar))} \rtimes \mathrm{G}\right) \cong H_{\text {orb }}^{\bullet}(X, \mathbb{C}((\hbar))), \\
& H C^{\bullet}\left(\mathbb{A}^{((\hbar))} \rtimes \mathrm{G}\right) \cong \bigoplus_{k \geq 0} H_{\text {orb }}^{\bullet-2 k}(X, \mathbb{C}((\hbar))) .
\end{aligned}
$$

Furthermore, the pairing between homology and cohomology is given by Poincaré duality for orbifolds.
(Neumaier-Pflaum-Posthuma-Tang)

The algebraic index theorem for orbifolds

Theorem
Let G be a proper étale Lie groupoid representing a symplectic orbifold X. Let E and F be G-vector bundles which are isomorphic outside a compact subset of X.

The algebraic index theorem for orbifolds

Theorem
Let G be a proper étale Lie groupoid representing a symplectic orbifold X. Let E and F be G-vector bundles which are isomorphic outside a compact subset of X. Then the following formula holds for the index of $[E]-[F]$:

$$
\begin{aligned}
& \operatorname{Tr}_{*}([E]-[F])= \\
& \quad=\int_{\tilde{x}} \frac{1}{m} \frac{\operatorname{Ch}_{\theta}\left(\frac{R^{E}}{2 \pi i}-\frac{R^{F}}{2 \pi i}\right)}{\operatorname{det}\left(1-\theta^{-1} \exp \left(-\frac{R^{\perp}}{2 \pi i}\right)\right)} \hat{A}\left(\frac{R^{T}}{2 \pi i}\right) \exp \left(-\frac{\iota^{*} \Omega}{2 \pi i \hbar}\right) .
\end{aligned}
$$

(Pflaum-Posthuma-Tang)

The Kawasaki index theorem

As a consequence of the algebraic index theorem for orbifolds one obtains

Theorem
Given an elliptic operator D on a reduced compact orbifold X, one has

$$
\operatorname{index}(D)=\int_{\widetilde{T^{*} X}} \frac{1}{m} \frac{\mathrm{Ch}_{\theta}\left(\frac{\sigma(D)}{2 \pi i}\right)}{\operatorname{det}\left(1-\theta^{-1} \exp \left(-\frac{R^{\perp}}{2 \pi i}\right)\right)} \hat{A}\left(\frac{R^{T}}{2 \pi i}\right)
$$

where $\sigma(D)$ is the symbol of D.
(KAWASAKI)

