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Groupoids

Definition
By a groupoid one understands a small category G with object set
G0 and morphism set G1 such that all morphisms are invertible.

The structure maps of a groupoid can be depicted in the diagram

G1 ×G0 G1
m→ G1

i→ G1

s
⇒
t

G0
u→ G1,

where s and t are the source and target map, m is the
multiplication resp. composition, i denotes the inverse and finally u
the inclusion of objects by identity morphisms.

If the groupoid carries additionally the structure of a (not
necessarily Hausdorff) smooth manifold, such that s and t are
submersions, then G is called a Lie groupoid.
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Groupoids

Example

1. Every group Γ is a groupoid with object set ∗ and morphism
set given by Γ.

2. For every manifold M there exists a natural groupoid structure
on the cartesian product M ×M; one thus obtains the pair
groupoid of M.

3. A proper smooth Lie group action Γ×M → M gives rise to
the transformation groupoid Γ n M.
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Proper étale Lie groupoids and orbifolds

Definition
A Lie groupoid G is called proper, when the map
(s, t) : G1 → G0 × G0 is proper.

An étale groupoid is a Lie groupoid for which s and t are local
diffeomorphisms.

Theorem
Every orbifold can be represented as the orbit space of a (Morita
equivalence class of a) proper étale Lie groupoid.
(Moerdijk–Pronk)
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G-sheaves and crossed product algebras

Definition
A G-sheaf S on an étale groupoid G is a sheaf S on G0 with a
right action of G.

For every G-sheaf A one defines the crossed product algebra Ao G
as the vector space Γc(G1, s

∗A) together with the convolution
product

[a1 ∗ a2]g =
∑

g1 g2=g

(
[a1]g1g2

)
[a2]g2 for a1, a2 ∈ Γc(G1, s

∗A), g ∈ G.

In the following, A will denote the G-sheaf of smooth functions on
G0. Then Ao G is the convolution algebra of the groupoid G.
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Tools from noncommutative geometry

Definition
A cyclic object in a category is a simplicial object (X•, d , s)
together with automorphisms (cyclic permutations) tk : Xk → Xk

satisfying the identities

di tk+1 =

{
tk−1di−1 for i 6= 0,

dk for i = 0,

si tk =

{
tk+1si−1 for i 6= 0,

t2
k+1sk for i = 0,

t
(k+1)
k = 1.



Tools from noncommutative geometry

Definition
A mixed complex (X•, b,B) in an abelian category is a graded
object (Xk)k∈N equipped with maps b : Xk → Xk−1 of degree −1
and B : Xk → Xk+1 of degree +1 such that
b2 = B2 = bB + Bb = 0.

Example

A cyclic object (X•, d , s, t) in an abelian category gives rise to a
mixed complex by putting

b =
k∑

i=0

(−1)idi , N =
k∑

i=0

(−1)ikt i
k , and B = (1 + (−1)ktk)s0N.
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Tools from noncommutative geometry
A mixed complex gives rise to a first quadrant double complex
B•,•(X )
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Tools from noncommutative geometry

Definition
The Hochschild homology HH•(X ) of a mixed complex
X = (X•, b,B) is the homology of the (X•, b)-complex. The cyclic
homology HC•(X ) is defined as the homology of the total complex
associated to the double complex B•,•(X ).



Tools from noncommutative geometry

For every unital algebra A (over a field k) there is a natural cyclic

object A\
α = (A\

•, d , s, t) given as follows.

I A\
k := A⊗(k+1),

I di (a0 ⊗ . . .⊗ ak) ={
a0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ ak , if 0 ≤ i ≤ k − 1,

aka0 ⊗ . . .⊗ ak−1, if i = k,

I si (a0 ⊗ . . .⊗ ak+1) = a0 ⊗ . . .⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ ak .

I tk(a0 ⊗ · · · ⊗ ak) = ak ⊗ a0 ⊗ · · · ⊗ ak−1.

The double complex B•,•(A) associated to the mixed complex(
A\
•, b,B

)
is called Connes’ (b,B)-complex. In this case one

denotes the homologies simply by HH•(A), HC•(A), HP•(A).
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Deformation quantization

Definition
Let (A, [Π]) be a noncommutative Poisson algebra, and A[[~]] the
space of formal power series with coefficients in A.

A formal
deformation quantization of (A, [Π]) is an associative product

? : A[[~]]× A[[~]] → A[[~]], (a1, a2) 7→ a1 ? a2 =
∞∑

k=0

~kck(a1, a2)

satisfying the following properties:

1. The maps ck : A[[~]]⊗ A[[~]] → A[[~]] are C[[~]]-bilinear.

2. One has c0(a1, a2) = a1 · a2 for all a1, a2 ∈ A.

3. For some representative Π ∈ Z 2(A,A) of the Poisson structure
and all a1, a2 ∈ A one has

a1 ? a2 − c0(a1, a2)−
i

2
~Π(a1, a2) ∈ ~2A[[~]].
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Deformation quantization

Example

Let G be a proper étale Lie groupoid with a G-invariant symplectic
structure ω0. Then the following existence results for deformation
quantizations hold true.

1. There exists a G-invariant (differential) star product on A, the
sheaf of smooth functions on G0 (Fedosov).

2. With A[[~]] denoting the corresponding deformed G-sheaf, the
crossed product algebra A[[~]] o G is a deformation
quantization of Ao G (Tang).

3. The invariant algebra
(
A[[~]]

)G
is deformation quantization of

the sheaf AG of smooth functions on the symplectic orbifold
X = G0/G (M.P.).
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Hochschild and cyclic homology of deformations of the
convolution algebra

Theorem
Let G be a proper étale Lie groupoid representing a symplectic
orbifold X of dimension 2n. Then the Hochschild homology of the
deformed convolution algebra A((~)) o G is given by

HH•(A((~)) o G) ∼= H2n−•
orb,c (X , C((~))) ,

and the cyclic homology of A((~)) o G by

HC•(A((~)) o G) =
⊕
k≥0

H2n+2k−•
orb,c (X , C((~))).

(Neumaier–Pflaum–Posthuma–Tang)



Hochschild and cyclic cohomology of deformations of the
convolution algebra

Theorem
The Hochschild and cyclic cohomology of A~ o G are given by

HH•(A((~)) o G) ∼= H•
orb(X , C((~))),

HC •(A((~)) o G) ∼=
⊕
k≥0

H•−2k
orb (X , C((~))).

Furthermore, the pairing between homology and cohomology is
given by Poincaré duality for orbifolds.
(Neumaier–Pflaum–Posthuma–Tang)



The algebraic index theorem for orbifolds

Theorem
Let G be a proper étale Lie groupoid representing a symplectic
orbifold X . Let E and F be G-vector bundles which are isomorphic
outside a compact subset of X .

Then the following formula holds
for the index of [E ]− [F ]:

Tr∗([E ]− [F ]) =

=

∫
X̃

1

m

Chθ

(
RE

2πi −
RF

2πi

)
det

(
1− θ−1 exp

(
− R⊥

2πi

)) Â
(RT

2πi

)
exp

(
− ι∗Ω

2πi~

)
.

(Pflaum–Posthuma–Tang)
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The Kawasaki index theorem

As a consequence of the algebraic index theorem for orbifolds one
obtains

Theorem
Given an elliptic operator D on a reduced compact orbifold X , one
has

index(D) =

∫
T̃∗X

1

m

Chθ

(σ(D)
2πi

)
det

(
1− θ−1 exp

(
− R⊥

2πi

)) Â
(RT

2πi

)
,

where σ(D) is the symbol of D.
(Kawasaki)


