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0.1. Category theory

1.1. Introduction

The language of categories is not strictly necessary to understand the basics of commutative
algebra or topology. Nonetheless, it is extremely convenient, powerful and actually will become
indispensible for advanced topics such as “homological algebra” or “homotopy theory”. Moreover,
category theory will clarify many of the constructions made in the future when we can freely
use terms like “universal property” or “adjoint functor”. As a result, we begin this book with an
introduction to category theory. The interested reader can pursue further study in Mac Lane
(1998) or Kashiwara & Schapira (2006).

For the beginning, the reader is advised not to take the present chapter too seriously; skipping
it for the moment to the following chapters and returning here as a reference could be quite
reasonable.

1.2. Objects, morphisms, and categories

1.2.1. Definitions and first examples

1.2.2 Categories are supposed to be places where mathematical objects live. Intuitively, to any
given type of structure (e.g. groups, rings, etc.), there should be a category of objects with that
structure. These are not, of course, the only type of categories, but they will be the primary
ones of concern to us in this book.

The basic idea of a category is that there should be objects, and that one should be able to map
between objects. These mappings could be functions, and they often are, but they don’t have
to be. Next, one has to be able to compose mappings, and associativity and unit conditions are
required. Nothing else is required.

1.2.3 Definition A (locally small) category C consists of:

• a collection of sets called objects,

• for each pair of objects X,Y a set MorCpX,Y q of morphisms from X to Y such that for
every quadruple of objects X,X 1, Y, Y 1 the morphism sets MorCpX,Y q and MorCpX

1, Y 1q
are disjoint whenever pX,Y q ‰ pX 1, Y 1q,

• for every object X an identity morphism idX P MorCpX,Xq, and
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0.1. Category theory 1.2. Objects, morphisms, and categories

• for every triple X,Y, Z of objects a composition law

˝pX,Y,Zq : MorCpX,Y q ˆMorCpY,Zq Ñ MorCpX,Zq, pf, gq Ñ g ˝ f.

It is further required that these data fulfill the following two axioms:

(Cat1) The composition law is associative which means that for every quadrupel of objects
X,Y, Z,W and all f P MorCpX,Y q, g P MorCpY, Zq and h P MorCpZ,W q the relation

h ˝ pg ˝ fq “ ph ˝ gq ˝ f

holds true.

(Cat2) The composition law is unital with units given by the identity morphism. This means
that for each pair of objects X,Y and every morphism f P MorCpX,Y q the relation

idY ˝ f “ f ˝ idX “ f

holds true.

1.2.4 Remarks (a) In practice, a category C will often be the storehouse for mathematical
objects such as groups, Lie algebras, rings, manifolds, etc., in which case the corresponding
morphisms will be (induced by) ordinary functions preserving the underlying structure of the
objects of the category. More precisely, the objects of such categories are structured sets that
means ordered pairs pX, Sq, where X is a set, called the (underlying) space, and S is the so-called
structure on X; see (Bourbaki, 2004, Chap. IV) for the theory of structures, and (Moschovakis,
2006, 4.30) for structured sets. A topology on a setX, a group operation plus an identity element,
a sheaf of rings on a topological space X, a manifold structure, a σ-algebra with a measure, or
(compatible) combinations of these all form examples of a structure on the space X. Morphisms
between two structured sets pX, Sq and pY,Tq of the same type - meaning the structures are
both topologies, or both group operations with identity elements, and so on - are then functions
f : X Ñ Y preserving the structures S and T. For example, the structure preserving maps are
the continuous functions if the structures are topologies and they are homomorphisms when the
structures are group operations with identities. There is one - luckily curable - caveat with that
concept. Consider for example the category of topological spaces, and consider the set R of real
numbers. There are many topologies on R, so let us pick for example the euclidean topology TR
and the discrete topology PpRq (recall that PpY q denotes the powerset of a set Y ). In the category
of topological spaces one then has pR,TRq ‰ pR,PpRqq. The identity map idR now is continuous
from pR,TRq to pR,TRq and continuous from pR,PpRqq to pR,TRq (but not vice versa). Hence, idR
would be regarded as a morphism both from pR,TRq to pR,TRq and from pR,PpRqq to pR,TRq

in violation of the requirement that MorCpX,Y q X MorCpX
1, Y 1q “ H for pX,Y q ‰ pX 1, Y 1q.

This deficiency can be healed by a slight modification of the notion of a morphism between
structured sets. Let f : X Ñ Y be a structure preserving map between the underlying spaces
of two structured sets pX, Sq and pY,Tq. The function f then can be understood as a triple
pX,Y,Γf q, where Γf denotes the graph of the function. Now we replace the domain X in this
triple by the structured set pX, Sq, and the range Y by the structured set pY,Tq, and obtain the
triple

`

pX, Sq, pY,Tq,Γf
˘

. We shortly denote this new triple by f : pX, Sq Ñ pY,Tq and call it the
morphism from pX, Sq to pY,Tq induced by the map f : X Ñ Y . In other words, f : X Ñ Y has
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0.1. Category theory 1.2. Objects, morphisms, and categories

been enriched by the structures on X and Y to give the morphism f : pX, Sq Ñ pY,Tq. Often
one still writes f : X Ñ Y for the resulting morphism, as long as it is clear that it is regarded
as a morphism in a category of structured sets.

(b) Even when the category under consideration does not come from one of structured sets and
structure preserving maps, we shall write f : X Ñ Y to denote an element of MorCpX,Y q. More-
over, if the context indicates which underlying category is meant, we usually write MorpX,Y q
instead of MorCpX,Y q. Likewise, and as already practiced in the preceding definition, we abbre-
viate ˝pX,Y,Zq by ˝ because this keeps notation clear and will not lead to confusion.

(c) A morphism f of a category C uniquely determines a pair of objects pX,Y q such that f P
MorCpX,Y q. One calls X the source or domain of f , and Y the target, range or codomain of f .

(d) Unless stated differently, categories in this book are assumed to be locally small which means
that the collection of morphisms between two objects forms a set, or in other words, using
language by (Bourbaki, 2004, Chap. II), that the relation of being a morphism between two
given objects is collectivizing.

Here is a simple list of examples.

1.2.5 Examples (Categories of structured sets) (a) Sets as objects together with functions
between them as morphisms form a category which is denoted by Ens.

(b) Groups together with (group) homomorphisms as morphisms form a category denoted by
Grp.

(c) Topological spaces and continuous maps between them form the category Top.

(d) Given a field k, the vector spaces over k together with the k-linear maps between them as
morphisms form a category which we denote by Vectk.

(e) The objects of the category LieAlgk are the Lie algebras over the field k, its morphisms are
Lie algebras homomorphisms, i.e. k-linear maps which preserve the Lie brackets.

1.2.6 Example This example is slightly more subtle. Here the category has objects consisting
of topological spaces, but the morphisms between two topological spaces X,Y are the homotopy
classes of continuous maps X Ñ Y . Since composition respects homotopy classes, the com-
position of homotopy classes of maps is well-defined. The identity morphisms in this category
are obviously the homotopy classes of the identity maps. The resulting category is called the
homotopy category of topological spaces and is denoted by hTop. See Section 3.1 for further
details.

1.2.7 Remark In general, the objects of a category do not have to form a set; they can be too
large for that. For instance, the collection of objects in Ens does not form a set.

1.2.8 Definition A category is called small if the collection of objects is a set.

The standard examples of categories are the ones above: structured sets together with structure-
preserving maps betwen them. Nonetheless, one can easily give other examples that are not of
this form.
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0.1. Category theory 1.2. Objects, morphisms, and categories

1.2.9 Example (Groups as categories) Let G be a group. Then we can make a category BG
where the objects just consist of one element ˚ and the maps ˚ Ñ ˚ are the elements g P G. The
identity is the identity of G and composition is multiplication in the group.

In this case, the category does not represent much of a class of objects, but instead we think of
the composition law as the key thing. So a group is a special kind of (small) category.

1.2.10 Example (Monoids as categories) A monoid is precisely a category with one object.
Recall that a monoid is a set together with an associative and unital multiplication (but which
need not have inverses).

1.2.11 Example (Posets as categories) Let pP,ďq be a partially ordered set (i.e. a poset).
Then P can be regarded as a (small) category, where the objects are the elements p P P , and

MorP pp, qq “

#

tpp, qqu, if p ď q,

H, otherwise.

The composition pq, rq ˝ pp, qq of two arrows pq, rq and pp, qq, where p ď q ď r, is defined as the
arrow pp, rq. The identity morphism of an object p P P is the pair pp, pq.

1.2.12 Remark There is, however, a major difference between category theory and set theory.
There is nothing in the language of categories that lets one look inside an object. We think
of vector spaces having elements, spaces having points, etc. By contrast, categories treat these
kinds of things as invisible. There is nothing “inside” of an object X P C; the only way to
understand X is to understand the ways one can map into and out of X. Even if one is working
with a category of “structured sets,” the underlying set of an object in this category is not part of
the categorical data. However, there are instances in which the “underlying set” can be recovered
as a Mor-set.

1.2.13 Example In the category Top of topological spaces, one can in fact recover the “under-
lying set” of a topological space via the Mor-sets. Namely, for each topological space X, the
points of X are the same thing as the mappings from a one-point space into X. That is, we have

X “ MorTopp1, Xq,

or more precisely
X “ MorTop

`

p1, tH, 1uq, pX,Tq
˘

,

where 1 denotes the one-point space tHu, tH, 1u the discrete topology on 1, and T is the topology
on X.

Later we will say that the functor assigning to each space its underlying set is corepresentable.

1.2.14 Example Let Ab be the category of abelian groups and group homomorphisms. Again,
the claim is that using only this category, one can recover the underlying set of a given abelian
group A. This is because the elements of A can be canonically identified with morphisms ZÑ A
(based on where 1 P Z maps).
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1.2.15 Definition We say that C is a subcategory of the category D if the collection of objects
of C is a subclass of the collection of objects of D, and if whenever X,Y are objects of C, we have

MorCpX,Y q Ă MorDpX,Y q

with the laws of composition in C induced by that in D.

C is called a full subcategory if MorCpX,Y q “ MorDpX,Y q whenever X,Y are objects of C.

1.2.16 Example The category of abelian groups is a full subcategory of the category of groups.

The language of commutative diagrams

While the language of categories is, of course, purely algebraic, it will be convenient for psy-
chological reasons to visualize categorical arguments through diagrams. We shall introduce this
notation here.

Let C be a category, and let X,Y be objects in C. If f P MorpX,Y q, we shall sometimes write
f as an arrow

f : X Ñ Y

or
X

f
Ñ Y

as if f were an actual function. If X f
Ñ Y and Y g

Ñ Z are morphisms, composition g˝f : X Ñ Z
can be visualized by the picture

X
f
Ñ Y

g
Ñ Z.

Finally, when we work with several objects, we shall often draw collections of morphisms into
diagrams, where arrows indicate morphisms between two objects.

1.2.17 Convention A diagram will be said to commute if whenever one goes from one object
in the diagram to another by following the arrows in the right order, one obtains the same
morphism. For instance, the commutativity of the diagram

X W

Y Z

f

f 1

g

g1

is equivalent to the assertion that

g ˝ f 1 “ g1 ˝ f P MorpX,Zq .

As an example, the assertion that the associative law holds in a category C can be stated as
follows. For every quadruple X,Y, Z,W P C, the following diagram (of sets) commutes:

MorpX,Y q ˆMorpY, Zq ˆMorpZ,W q //

��

MorpX,Zq ˆMorpZ,W q

��
MorpX,Y q ˆMorpY,W q //MorpX,W q.
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0.1. Category theory 1.2. Objects, morphisms, and categories

Here the maps are all given by the composition laws in C. For instance, the downward map
to the left is the product of the identity on MorpX,Y q with the composition law MorpY,Zq ˆ
MorpZ,W q Ñ MorpY,W q.

Isomorphisms

Classically, one can define an isomorphism of groups as a bijection that preserves the group
structure. This does not generalize well to categories, as we do not have a notion of “bijection,”
as there is no way (in general) to talk about the “underlying set” of an object. Moreover,
this definition does not generalize well to topological spaces: there, an isomorphism should
not just be a bijection, but something which preserves the topology (in a strong sense), i.e. a
homeomorphism.

Thus we make:

1.2.18 Definition An isomorphism between objects X,Y in a category C is a morphism f :
X Ñ Y such that there exists g : Y Ñ X with

g ˝ f “ idX and f ˝ g “ idY .

Such a g is called an inverse to f . An isomorphism of the form f : X Ñ X that means an
isomorphisms where the source and target coincide is called an automorphism (of X).

1.2.19 Lemma The inverse of an isomorphism f : X Ñ Y in a category C is uniquely deter-
mined.

Proof. It is easy to check that the inverse g is unique. Indeed, suppose g, g1 both were inverses
to f . Then

g1 “ g1 ˝ idY “ g1 ˝ pf ˝ gq “ pg1 ˝ fq ˝ g “ idX ˝ g “ g.

1.2.20 Remark The above notion of an isomorphism is more correct than the idea of being
one-to-one and onto. For instance, a bijection, even a continuous one, of topological spaces is
not necessarily a homeomorphism, i.e. an isomorphism in the category of topological spaces.

1.2.21 Example It is easy to check that an isomorphism in the category Grp is an isomorphism
of groups, that an isomorphism in the category Ens is a bijection, and so on.

1.2.22 Remarks (a) We are supposed to be able to identify isomorphic objects. In the cate-
gorical sense, this means mapping into X should be the same as mapping into Y , if X,Y are
isomorphic, via an isomorphism f : X Ñ Y . Indeed, let Z be another object of C. Then we can
define a map

f˚ : MorCpZ,Xq Ñ MorCpZ, Y q

given by post-composition with f . This is a bijection if f is an isomorphism (the inverse is given
by postcomposition with the inverse to f). Similarly, one can easily see that mapping out of X
is essentially the same as mapping out of Y . Anything in general category theory that is true
for X should be true for Y (as general category theory can only try to understand X in terms
of morphisms into or out of it!).
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(b) The relation “X,Y are isomorphic” is an equivalence relation on the class of objects of a
category C.

(c) Let P be a partially ordered set, and make P into a category as in Example 1.2.11. Then P
is a poset if and only if two isomorphic objects are equal.

1.2.23 Definition A groupoid is a category where every morphism is an isomorphism.

1.2.24 Remark If G is a groupoid and x an object of G, the set Gx :“ MorGpx, xq is a group.
It is called the isotropy group of G at x. A group is essentially the same as a groupoid with one
object.

1.2.25 Example Let X be a topological space, and let π1pXq be the category defined as follows:
the objects are elements of X, and morphisms x Ñ y (for x, y P X) are homotopy classes of
maps γ : r0, 1s Ñ X (i.e. paths) that send 0 ÞÑ x and 1 ÞÑ y. Composition of maps is given by
concatenation of paths. Because one is working with homotopy classes of paths, composition is
associative, indeed. The identity at x P X is given by the constant path εx : r0, 1s Ñ X, t ÞÑ x.
The inverse of a path γ in X is obtained by “going the path backwards” which means by the
path γ´ : r0, 1s Ñ X, t ÞÑ γp1 ´ tq. The groupoid π1pXq is called the fundamental groupoid of
X. Note that Morπ1pXqpx, xq is the fundamental group π1pX,xq. For details and proofs of this
example see (Brown, 2006, Chap. 6).

Monomorphisms and epimorphisms

Besides isomorphisms, one can also charaterize monomorphisms and epimorphisms in a purely
categorical setting. That is what we wish to do now. In categories where there is an underlying
set the notions of injectivity and surjectivity makes sense but in category theory, one does not
in a sense have “access” to the internal structure of objects. In this light, we make the following
definition.

1.2.26 Definition A morphism f : X Ñ Y is a monomorphism if for any two morphisms
g1 : X 1 Ñ X and g2 : X 1 Ñ X the relation fg1 “ fg2 implies g1 “ g2. A morphism f : X Ñ Y
is an epimorphism if for any two maps g1 : Y Ñ Y 1 and g2 : Y Ñ Y 1 the equality g1f “ g2f
implies g1 “ g2.

So f : X Ñ Y is a monomorphism if and only if whenever X 1 is another object in C, the map

f˚ : MorCpX
1, Xq Ñ MorCpX

1, Y q, g ÞÑ f ˝ g

is an injection (of sets). Similarly, f : X Ñ Y is an epimorphisms if and only if for every object
Y 1 in C the map

f˚ : MorCpY, Y
1q Ñ MorCpX,Y

1q, g ÞÑ g ˝ f

is injective. Note that neither of these statements makes any reference to surjections of sets.

1.2.27 Proposition The composite of two monomorphisms is a monomorphism, as is the com-
posite of two epimorphisms.
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0.1. Category theory 1.3. Functors

Proof. Assume that f : X Ñ Y and g : Y Ñ Z are both monomorphisms in a category C. Let
h1, h2 : X 1 Ñ X be two morphisms in C and assume that pg˝fq˝h1 “ pg˝fq˝h2. By associativity
of composition the equality g ˝ pf ˝ h1q “ g ˝ pf ˝ h2q follows, hence f ˝ h1 “ f ˝ h2 since g is a
monomorphism. But then h1 “ h2 since f is a monomorphism. So g ˝ f is a monomorphism as
well.

Now assume that f : X Ñ Y and g : Y Ñ Z are epimorphisms. Let h1, h2 : Z Ñ Z 1 be
morphisms in C such that h1 ˝ pg ˝fq “ h2 ˝ pg ˝fq. By associativity of composition ph1 ˝gq ˝f “
ph2˝gq˝f , hence h1˝g “ h2˝g since f is an epimorphism. So h1 “ h2 since g is an epimorphism.
This proves that g ˝ f is an epimorphism, too, and the proof is finished.

1.3. Functors

A functor is a way of mapping from one category to another: each object is sent to another
object, and each morphism is sent to another morphism. We shall study many functors in the
sequel: localization, the tensor product, Mor, and fancier ones like Tor,Ext, and local cohomology
functors. The main benefit of a functor is that it doesn’t simply send objects to other objects,
but also morphisms to morphisms: this allows one to get new commutative diagrams from old
ones. This will turn out to be a powerful tool.

Covariant functors

Let C,D be categories. If C,D are categories of structured sets (of possibly different types), there
may be a way to associate objects in D to objects in C. For instance, to every group G we
can associate its group ring ZrGs; to each topological space we can associate its singular chain
complex, and so on. In many cases, given a map between objects in C preserving the relevant
structure, there will be an induced map on the corresponding objects in D. It is from here that
we define a functor.

1.3.1 Definition A functor F : C Ñ D consists of a function F : C Ñ D (that is, a rule that
assigns to each object in C an object of D) and, for each pair X,Y P C, a map F : MorCpX,Y q Ñ
MorDpFX,FY q, which preserves the identity maps and composition.

In detail, the last two conditions state the following.

(Func1) If X P C, then F pidXq is the identity morphism idF pXq : F pXq Ñ F pXq.

(Func2) If X f
Ñ Y

g
Ñ Z are morphisms in C, then F pg ˝ fq “ F pgq ˝ F pfq as morphisms

F pXq Ñ F pZq. Alternatively, we can say that F preserves commutative diagrams.

In the last statement of the definition, note that if

X
h

  

f // Y

g

��
Z

9
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is a commutative diagram in C, then the diagram obtained by applying the functor F , namely

F pXq
F phq

##

F pfq // F pY q

F pgq

��
F pZq

also commutes. It follows that applying F to more complicated commutative diagrams also yields
new commutative diagrams.

Let us give a few examples of functors.

1.3.2 Example There is a functor from Ens Ñ Ab sending a set S to the free abelian group
ZrSs “ ZpSq on the set. For the definition of a free abelian group, or more generally a free
R-module over a ring R, see Definition 2.8.1.

1.3.3 Example Let X be a topological space. Then to it we can associate the set π0pXq of
connected components of X.

Recall that the continuous image of a connected set is connected, so if f : X Ñ Y is a continuous
map and X 1 Ă X connected, fpX 1q is contained in a connected component of Y . It follows that
π0 is a functor Top Ñ Ens. In fact, it is a functor on the homotopy category as well, because
homotopic maps induce the same maps on π0.

1.3.4 Example Fix n P N. There is a functor from TopÑ Ab (categories of topological spaces
and abelian groups) sending a space X to its n-th singular homology group HnpXq. We know
that given a map of spaces f : X Ñ Y , we get a map of abelian groups f˚ : HnpXq Ñ HnpY q.
See (Dold, 1995, Sec. VI. 7) or (Hatcher, 2002, Chap. 2), for instance.

We shall often need to compose functors. For instance, we will want to see, for instance, that
the tensor product (to be defined later, see Section 4.3) is associative, which is really a statement
about composing functors. The following (mostly self-explanatory) definition elucidates this.

1.3.5 Definition If C,D,E are categories, and F : C Ñ D, G : D Ñ E are covariant functors,
then one defines the composite functor

G ˝ F : CÑ E

as the functor which sends an object X of C to the object GpF pXqq of E. Similarly, a morphism
f : X Ñ Y is sent to GpF pfqq : GpF pXqq Ñ GpF pY qq.

The composite functor G ˝ F is well-defined. To see this observe that for an object X of C the
identity morphism idX is mapped to

G ˝ F pidXq “ GpF pidXqq “ GpidF pXqq “ idGpF pXqq.

Moreover, if f : X Ñ Y and g : Y Ñ Z are morphisms in C, then

G ˝ F pg ˝ fq “GpF pg ˝ fqq “ GpF pfq ˝ F pfqq “ GpF pgqq ˝GpF pfqq “

“
`

pG ˝ F qpgq
˘

˝
`

pG ˝ F qpfq
˘

,

hence conditions (Func1) and (Func2) are both fulfilled for G ˝ F .

10
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1.3.6 Example (Category of categories) In fact, because we can compose functors, there
is a category of categories. Let Cat have as objects the small categories and as morphisms the
functors between them. Composition is defined as in Definition 1.3.5.

1.3.7 Example (Group actions) Fix a group G. Let us understand what a functor BG Ñ Ens
is. Here BG is the category of Example 1.2.9. The unique object ˚ of BG goes to some set X. For
each element g P G, we get a morphism g : ˚ Ñ ˚ and thus a map ϕg : X Ñ X. This is supposed
to preserve the composition law (which in G is just multiplication), as well as identities. That
means that the following diagram commutes for each g, h P G:

X X

X .

ϕh

ϕgh
ϕg

Moreover, if e P G is the identity, then ϕe “ idX . So a functor BG Ñ Ens is just a left G-action
on a set X.

1.3.8 Example (Forgetful functors) An important example of functors is given by the fol-
lowing. Let C be a “category of structured sets”, see Remark 1.2.4 (a) . Then, there is a functor
U : CÑ Ens that sends a structured set to the underlying set. For instance, there is the functor
from groups to sets that forgets the group structure or the functor from topological spaces to
sets that associates to a topological space its underlying set. More generally, suppose given two
categories C, D, such that C can be regarded as “structured objects in D”. Then there is a functor
U : CÑ D that forgets the structure. Such functors are called forgetful functors.

Contravariant functors

Sometimes what we have described above are called covariant functors. Indeed, we shall also be
interested in similar objects that reverse the arrows, such as duality functors:

1.3.9 Definition A contravariant functor C
F
Ñ D (between categories C and D) is similar data

as in Definition 1.3.1 except that a morphism X
f
Ñ Y now goes to a morphism F pY q

F pfq
ÝÑ F pXq.

Composites are required to be preserved, albeit in the other direction. In other words, one
requires (Func1) to hold true and

(Func 2)˝ If X f
Ñ Y and Y

g
Ñ Z are morphisms, then F pg ˝ fq “ F pfq ˝ F pgq as morphisms

F pZq Ñ F pXq.

We shall sometimes say just “functor” for covariant functor. When we are dealing with a con-
travariant functor, we will always say the word “contravariant.”

A contravariant functor also preserves commutative diagrams, except that the arrows have to be
reversed. For instance, if F : CÑ D is contravariant and the diagram

A

��

// C

B

>>

11



0.1. Category theory 1.3. Functors

is commutative in C, then the diagram

F pAq F pCqoo

{{
F pBq

OO

commutes in D.

1.3.10 Remark One can, of course, compose contravariant functors as in Definition 1.3.5. But
the composition of two contravariant functors will be covariant. So there is no “category of
categories” where the morphisms between categories are contravariant functors.

Similarly as in Example 1.3.7, we have:

1.3.11 Example A contravariant functor from BG (defined as in Example 1.2.9) to Ens corre-
sponds to a set with a right G-action.

1.3.12 Example (Singular cohomology) In algebraic topology, one encounters contravariant
functors on the homotopy category of topological spaces via the singular cohomology functors
X ÞÑ HnpX;Zq, see (Dold, 1995, Sec. VI. 7). Given a continuous map f : X Ñ Y , there is a
homomorphism of groups

f˚ : HnpY ;Zq Ñ HnpX;Zq .

1.3.13 Example (Duality for vector spaces) On the category Vectk of vector spaces over a
field k, we have the contravariant functor

V ÞÑ V _

sending a vector space V to its dual V _ :“ HompV,kq :“ MorVectkpV,kq. Given a linear map
f : V ÑW of vector spaces, there is the induced map

f_ : W_ Ñ V _, µ ÞÑ µ ˝ f

which is called the transpose of f .

1.3.14 Example If we map BG Ñ BG sending ˚ ÞÑ ˚ and g ÞÑ g´1, we get a contravariant
functor.

We now give a useful (linguistic) device for translating between covariance and contravariance.

1.3.15 Definition (The opposite category) Let C be a category. Define the opposite cate-
gory Cop of C to have the same objects as C but such that the morphisms between X,Y in Cop

are those between Y and X in C.

There is a contravariant functor CÑ Cop. In fact, contravariant functors out of C are the same
as covariant functors out of Cop.

As a result, when results are often stated for both covariant and contravariant functors, for
instance, we can often reduce to the covariant case by using the opposite category.

1.3.16 Remark A map that is an isomorphism in C corresponds to an isomorphism in Cop.

12



0.1. Category theory 1.4. Natural transformations

Functors and isomorphisms

Now we want to prove a simple and intuitive fact: if isomorphisms allow one to say that one
object in a category is “essentially the same” as another, functors should be expected to preserve
this.

1.3.17 Proposition If f : X Ñ Y is an isomorphism in C, and F : C Ñ D a functor, then
F pfq : FX Ñ FY is an isomorphism.

The proof is quite straightforward, though there is an important point here. Note that the
analogous result holds for contravariant functors too.

Proof. If we have maps f : X Ñ Y and g : Y Ñ X such that the composites both ways are
identities, then we can apply the functor F to this, and we find that since

f ˝ g “ idY , g ˝ f “ idX ,

it must hold that
F pfq ˝ F pgq “ idF pY q, F pgq ˝ F pfq “ idF pXq.

We have used the fact that functors preserve composition and identities. This implies that F pfq
is an isomorphism, with inverse F pgq.

1.3.18 Remark Categories have a way of making things so general that they are trivial. Hence,
this material is called general abstract nonsense. Moreover, there is another philosophical point
about category theory to be made here: often, it is the definitions, and not the proofs, that mat-
ter. For instance, what matters here is not the theorem, but the definition of an isomorphism. It
is a categorical one, and much more general than the usual notion via injectivity and surjectivity.

1.3.19 Examples (a) As a simple example, t0, 1u and I :“ r0, 1s are not isomorphic in the
homotopy category of topological spaces (i.e. are not homotopy equivalent) because π0pr0, 1sq “
tr0Isu while π0pt0, 1uq has two elements, namely (the equivalence classes of) the constant maps
0I and 1I mapping I to 0 and 1, respectively.

(b) More generally, the higher homotopy group functors πn, see Hatcher (2002), can be used to
show that the n-sphere Sn is not homotopy equivalent to a point. For then πnpSn, ˚q would be
trivial, and it is not.

1.4. Natural transformations

Definition and some examples

1.4.1 There is room, nevertheless, for something else. Instead of having something that sends
objects to other objects, one could have something that sends an object to a map. This leads us
to the following.

1.4.2 Definition Suppose F,G : C Ñ D are functors. A natural transformation η : F Ñ G
consists of the following data:

13



0.1. Category theory 1.4. Natural transformations

(NTrans) For each object X in C, one has been given a morphism ηX : FX Ñ GX in D such
that for every morphism f : X Ñ Y in C the diagram

FX

ηX
��

F pfq // FY

ηY
��

GX
Gpfq

// GY

commutes.

If ηX is an isomorphism for each object X, then we shall say that η is a natural isomorphism.

It is similarly possible to define the notion of a natural transformation between contravariant
functors.

When we say that things are “natural” in the future, we will mean that the transformation
between functors is natural in this sense. We shall use this language to state theorems conve-
niently.

1.4.3 Example (The double dual) Here is the canonical example of “naturality.” Let Vecfdk
be the category of finite-dimensional vector spaces over a given field k, char k “ 0. Let us further
restrict the category such that the only morphisms are the isomorphisms of vector spaces. Denote
the resulting category by C. For each object V of C, we know that there is an isomorphism

V » V _ “ MorkpV,kq,

because both have the same dimension.

Moreover, the maps V ÞÑ V and V ÞÑ V _ can both be extended to covariant functors on C.
(Note that the dual _ was defined as a contravariant functor in Example 1.3.13.) The first is
the identity functor. For the second, if f : V Ñ W is an isomorphism, then there is induced
a transpose map f_ : W_ Ñ V _ (defined by sending a map W Ñ k to the precomposition
V

f
ÑW Ñ k), which is an isomorphism. We can take its inverse. So we have two functors from

C to itself, the identity and the “ inverse dual”, and we know that V » V _ for each V (though
we have not chosen any particular set of isomorphisms).

However, the isomorphism V » V _ cannot be made natural. That is, there is no way of choosing
isomorphisms

TV : V » V _

such that, whenever f : V Ñ W is an isomorphism of vector spaces, the following diagram
commutes:

V W

V _ W_.

f

TV TW

pf_q´1

14
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Indeed, fix d ą 1, and choose V “ kd. Identify V _ with kd, and so the map TV can be identified
with a d ˆ d matrix A with coefficients in k. The requirement is that for each invertible d ˆ d
matrix B, we have

pBtq´1A “ AB,

by considering the above diagram with V “W “ kd, and f corresponding to the matrix B. This
is impossible unless A “ 0, by elementary linear algebra. Namely let B “ cId, where c P kzt0u
and Id is the identity matrix on kd. Then check that detpA´ λIdq “ 0 holds true if and only if
0 “ detBtpA´λIdqB “ detpA´λc2dIdq. But this means that if A has eigenvalue λ, then A has
also the eigenvalues λc2d for all c P kzt0u. Since A can have at most d different eigenvalues, this
implies that A has 0 as its only eigenvalue which means A “ 0.

Nonetheless, it is possible to choose for every finite dimensional k-vector space V a natural
isomorphism

V » V __ .

To do this, given V , recall that V __ is the collection of linear maps V _ Ñ k. To give a linear
map V Ñ V __ is thus the same as giving functions lV pvq : V _ Ñ k, v P V such that lV pvq is
linear in v. We can do this by letting lV pvq be “evaluation at” v. That is, lV pvq sends a linear
functional µ : V Ñ k to µpvq P k.

First let us check that lV : V Ñ V __, v ÞÑ lV pvq is linear by computing for v, w P V , c P k, and
µ P V _:

lV pv ` wqpµq “ µpv ` wq “ µpvq ` µpwq “ lV pvqpµq ` lV pwqpµq “
`

lV pvq ` lV pwq
˘

pµq,

lV pcvqpµq “ µpcvq “ c µpvq “ c lV pvqpµq .

The linear map lV : V Ñ V __ has trivial kernel since for each v P V zt0u there exists a linear map
µ : V Ñ k such that µpvq ‰ 0. Because V is finite dimensional, lV therefore is an isomorphism
of vector spaces.

Finally, V Ñ V __ is natural in V . To verify this observe first that for f : V Ñ W linear, the
map f__ : V __ ÑW__ is defined by

% ÞÑ
´

W_ Q µ ÞÑ f__p%qpµq “ %pf˚µq “ %pµ ˝ fq P k
¯

.

Now the diagram

V W

V __ W__

f

lV lW

f__

commutes, since one has for v P V and µ PW_:
`

f__ ˝ lV
˘

pvqpµq “
`

f__plV pvqq
˘

pµq “ lV pvqpµ ˝ fq “ µpfpvqq “ lW pfpvqqpµq “
`

lW ˝ f
˘

pµq .

In case V is an arbitrary, possibly infinite dimensional vector space, the natural transformation
lV : V Ñ V __ can still be defined, but need not always be an isomorphism.
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0.1. Category theory 1.4. Natural transformations

1.4.4 Example Suppose there are two functors BG Ñ Ens, i.e. two G-sets X and Y . Denote
by ϕ : G Ñ MorpX,Xq and ψ : G Ñ MorpY, Y q the corresponding left G-actions. A natural
transformation between them then is a G-equivariant map F : X Ñ Y which means that the
following diagram commutes for all g P G:

X Y

X Y .

F

ϕg ψg

F

1.4.5 Natural transformations can be composed. Suppose given functors F,G,H : C Ñ D, a
natural transformation T : F Ñ G, and a natural transformation U : G Ñ H. Then, for each
X P C, we have maps TX : FX Ñ GX,UX : GX Ñ HY . We can compose U with T to get a
natural transformation U ˝ T : F Ñ H.

In fact, we can thus define a category of functors FuncpC,Dq (at least if C,D are small). The
objects of this category are the functors F : CÑ D. The morphisms are natural transformations
between functors. Composition of morphisms is as above.

Equivalences of categories

Often we want to say that two categories C,D are “essentially the same.” One way of formulating
this precisely is to say that C,D are isomorphic in the category of categories. Unwinding the
definitions, this means that there exist functors

F : CÑ D, G : DÑ C

such that F ˝G “ idD, G ˝ F “ idC. This notion, of isomorphism of categories, is generally far
too restrictive.

For instance, we could consider the category of all finite-dimensional vector spaces over a given
field k, and we could consider the full subcategory of vector spaces of the form kn. Clearly both
categories encode essentially the same mathematics, in some sense, but they are not isomorphic:
one has a countable set of objects, while the other has an uncountable set of objects. Thus, we
need a more refined way of saying that two categories are “essentially the same.”

1.4.6 Definition Two categories C,D are called equivalent if there are functors

F : CÑ D, G : DÑ C

and natural isomorphisms
FG » idD, GF » idC.

For instance, the category of all vector spaces of the form kn is equivalent to the category of
all finite-dimensional vector spaces. One functor is the inclusion from vector spaces of the form
kn; the other functor maps a finite-dimensional vector space V to kdimV . Defining the second
functor properly is, however, a little more subtle. The next criterion will be useful.
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1.4.7 Definition A covariant functor F : CÑ D is called fully faithful if for each pair of objects
X,Y P C the map F : MorCpX,Y q Ñ MorDpFX,FY q is a bijection. The functor F is called
essentially surjective if every object of D is isomorphic to an object of the form FX for some
object X of C.

1.4.8 Example So, for instance, the inclusion of a full subcategory is fully faithful (by defini-
tion). The forgetful functor from groups to sets is not fully faithful, because not all functions
between groups are automatically homomorphisms.

1.4.9 Theorem A functor F : C Ñ D between categories C and D induces an equivalence of
categories if and only if it is fully faithful and essentially surjective.

Proof. Let us first show that the condition is sufficient, and assume that F is fully faithful
and essentially surjective. By essentially surjectivity we can then fix for any Y P ObpDq
some XY P ObpCq and an isomorphism τY : Y Ñ F pXq. The fact that F is fully faithful
means that for any g P MorDpY1, Y2q, there exists a unique fg P MorCpXY1 , XY2q satisfying
F pfgq “ τY2 ˝ g ˝ τ

´1
Y1

. So define G : D Ñ C by GpY q “ XY and Gpgq “ fg. To verify that G is
a functor, first note that on an identity morphism we have F pidXY q “ τY ˝ idY ˝ τ

´1
Y so it must

be that GpidY q “ idXY . Next consider the composition of morphisms: Y1
g1
ÝÑ Y2

g2
ÝÑ Y3. Since

F pfg2 ˝fg1q “ F pfg2q ˝F pfg1q “ pτY3 ˝g2 ˝ τ
´1
Y2
q ˝ pτY2 ˝g1 ˝ τ

´1
Y1
q “ τY3 ˝ pg2 ˝g1q ˝ τ

´1
Y1
“ F pfg2˝g1q

we have that Gpg2 ˝ g1q “ Gpg2q ˝Gpg1q implying G is indeed a functor.

Now take a morphism Y1
g
ÝÑ Y2 in order to check commutativity of the diagram in D from

Definition 1. Using the τY ’s that are already defined makes commutativity clear; the bottom of
the diagram can be expanded by recalling that Gpgq is defined so that pF ˝Gqpgq “ τY2 ˝ g ˝ τ

´1
Y1

.

Y1 Y2

pF ˝GqpY1q Y1 Y2 pF ˝GqpY2q

g

id
Y1

τ
Y1

τ
Y2

τ´1
Y1

pF˝Gqpgq

g τ
Y2

For commutativity of the diagram in C, we must first define ηX ’s. For X P ObpCq we already
have an isomorphism τF pXq : F pXq Ñ pF ˝ G ˝ F qpXq. Since F is fully faithful, we may take
ηX P MorCpX, pG ˝F qpXqq to be the morphism satisfying F pηXq “ τF pXq. Note that taking η´1

X

satisfying F pη´1
X q “ τ´1

F pXq gives η
´1
X ˝ ηX “ idX and ηX ˝ η´1

X “ idpG˝F qpXq implying ηX is an

isomorphism. So take some morphism X1
f
ÝÑ X2 and apply F to the diagram in C from Definition

1. Again to make commutativity clear the bottom is expanded by recalling that pG ˝ F qpfq is

17
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defined so that pF ˝G ˝ F qpfq “ τF pX2q ˝ F pgq ˝ τ
´1
F pX1q

“ F pηX2q ˝ F pgq ˝ F pηX1q
´1.

F pX1q F pX2q

pF ˝G ˝ F qpX1q F pX1q F pX2q pF ˝G ˝ F qpX2q

F pfq

id
F pX1q

F pη
X1
q F pη

X2
q

F pη
X1
q´1

pF˝G˝F qpfq

F pfq F pη
X2
q

But F is faithful, so F ppG˝F qpfq˝ηX1q “ F pηX2 ˝fq implies pG˝F qpfq˝ηX1 “ ηX2 ˝f as desired.

Next we show the condition to be necessary. So suppose that F induces an equivalence of
categories and let G be its quasi-inverse. For any Y P ObpDq the isomorphism τY : Y Ñ

pF ˝GqpY q shows that F is essentially surjective. To see that F is faithful suppose F pf1q “ F pf2q

for some f1, f2 P MorCpX1, X2q. Then commutativity of the diagram in C from Definition
1 gives f1 “ η´1

X2
˝ pG ˝ F qpf1q ˝ ηX1 “ η´1

X2
˝ pG ˝ F qpf2q ˝ ηX1 “ f2. Note here that an

analogous argument shows that G is faithful as well. Finally, take some X1, X2 P ObpCq and
g P MorDpF pX1q, F pX2qq. Set f “ η´1

X2
˝ Gpgq ˝ ηX1 . Using the diagram in C from Definition 1

again, we see that pG˝F qpfq “ ηX2 ˝f ˝η
´1
X1

which is Gpgq by definition of f . Since G is faithful,
it must be that F pfq “ g implying F is full and completing the proof.

1.4.10 Remark In the proof of the preceding theorem a strong version of the axiom of choice
has been assumed. That is, we have assumed that for every class of nonempty sets there is choice
function C on this class satisfying Cpxq P x for each set x. This axiom is an extension of the
Neumann-Bernays-Godel (NGB) axioms which, unlike the Zermelo-Fraenkel (ZF) axioms, make
a distinction between a set and a proper class. Just as the consistency of (ZF) is independent of
the truth or falsity of the axiom of choice for sets, the consistency of (NGB) is independent of
the truth or falsity of the strong axiom of choice. For our purposes the axiom was required in
order to simultaneously select objects and morphisms in one category corresponding to those in
another category; the collections of eligible objects and morphisms may be proper classes.

1.5. Various universal constructions

Now that we have introduced the idea of a category and showed that a functor takes isomorphisms
to isomorphisms, we shall take various steps to characterize objects in terms of maps (the most
complete of which is the Yoneda lemma, ??). In general category theory, this is generally all
we can do, since this is all the data we are given. We shall describe objects satisfying certain
“universal properties” here.

As motivation, we first discuss the concept of the “product” in terms of a universal property.

18
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Products and coproducts

1.5.1 Recall that if we have two sets X and Y , the (cartesian) product X ˆ Y is the set of
all pairs px, yq where x P X and y P Y . The product is also equipped with natural projections
p1 : X ˆY Ñ X and p2 : X ˆY Ñ Y that take px, yq to x and y respectively. Thus any element
of XˆY is uniquely determined by where it projects to on X and Y . In fact, this is the case more
generally; if we have an index set J and a family of sets pXjqjPJ , then the product X “

ś

jPJ Xj

of pXjqjPJ consist of all functional graphs x Ă J ˆ
´

Ť

jPJ

Xj

¯

with domain J such that xpjq P Xj

for all j P J ; see (Bourbaki, 2004, II. §5.3). An element x P X therefore is determined uniquely
by where the projections pjpxq :“ xj :“ xpjq land in Xj .

To get into the categorical spirit, we should speak not of elements of X but of maps or better
morphisms to X. Here is the general observation: if we have any other set Y with maps fj :
Y Ñ Xj for all j P J then there is a unique map f : Y Ñ X “

ś

jPJ Xj such that pj ˝ f “ fj
for all j P J . The map f is given by sending y P Y to the element fpyq :“ pfjpyqqjPJ . This leads
to the following characterization of a product using only “mapping properties.”

1.5.2 Definition Let pXjqjPJ be a family of objects in some category C. Then an object X of
C equipped with morphisms pj : X Ñ Xj , j P J , called (canonical) projections is said to be the
product of the objects Xj , j P J , if the following universal property holds:

(Prod) Let Y be any other object in C with a family of maps fj : Y Ñ Xj , j P J . Then there is
a unique morphism f : Y Ñ X such that pj ˝ f “ fj for all j P J or in other words such
that the diagram

Y

X Xj

f
fj

pj

commutes for every j P J .

One usually denotes the uniquely determined map f : Y Ñ Y by pfjqjPJ or pf1, . . . , fnq when
J “ t1, . . . , nu and calls it the pairing of f1 and f2 in the special case where J “ t1, 2u. The
product of the family pXjqjPJ is denoted

ś

jPJ Xj .

1.5.3 Remarks (a) Proposition 1.5.5 below tells that the product of a family pXjqjPJ of objects
of C is unique up to unique isomorphism. This observation justifies our agreement to denote the
product of pXjqjPJ by a unique symbol.

(b) Rephrasing the defining property of the product, to map into X “
ś

jPJ Xj is the same
as mapping into all the Xj at once. Note that, however, the product need not exist! More
abstractly, the meaning of condition (Prod) can be expressed equivalently by the existence of a
natural isomorphism of contravariant functors

Mor
´

´,
ź

jPJ

Xj

¯

»
ź

jPJ

Morp´, Xjq
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0.1. Category theory 1.5. Various universal constructions

which associates to every object Y of C the bijection
`

ppjq˚
˘

jPJ
: Mor

´

Y,
ź

jPJ

Xj

¯

Ñ
ź

jPJ

MorpY,Xjq, f ÞÑ
`

pj ˝ f
˘

jPJ
.

Note that this observation shows that products in the category of sets are really fundamental to
the idea of products in any category.

1.5.4 Example One of the benefits of the preceding definition is that an actual category is not
specified; thus when we take C to be Ens, we recover the cartesian product of sets by 1.5.1, but
if we take C to be Grp or Top, we achieve the regular notion of the product of groups, see ??,
respectively of topological spaces, see ??.

The categorical product is not unique, but it is as close to being so as possible.

1.5.5 Proposition (Uniqueness of products) Any two products of a family pXjqjPJ of ob-
jects in C are isomorphic by a unique isomorphism commuting with the projections.

1.5.6 Remark This is a special case of a general “abstract nonsense” type result that we shall
see many more of in the sequel. The precise statement is the following: let X be a product of
the family pXjqjPJ with projections pj : X Ñ Xj , and let Y be a product of them too, with
projections qj : Y Ñ Xj . Then the claim is that there is a unique isomorphism

f : X Ñ Y

such that the diagram below commutes for each j P J :

X Y

Xj .

pj

f

qj
(1.5.1)

Proof of the Proposition. Indeed, note that the projections pj : X Ñ Xj and the fact that
mapping into Y is the same as mapping into all the Xj give a unique map f : X Ñ Y making
the diagram (1.5.1) commute for every j P J . The same reasoning (applied to the qj : Y Ñ Xj)
gives a map g : Y Ñ X making the diagram

Y X

Xj

qj

g

pj
(1.5.2)

commute for every j P J . By piecing the two diagrams together, it follows that the composite
g ˝ f makes the diagrams

X X

Xj

pj

g˝f

pj
(1.5.3)

commute, too. But the identity idX : X Ñ X also would make (1.5.3) commute for every j P J ,
so the uniqueness assertion in the definition of the product shows that g ˝ f “ idX . Similarly,
f ˝ g “ idY . We are done.
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1.5.7 Example Let P be a poset, and make P into a category as in Example 1.2.11. Fix
p, q P P . The product of p, q then is the greatest lower bound of tp, qu (if it exists). This claim
holds more generally for arbitrary subsets of P . In particular, consider the poset of subsets of a
given set S. Then the product in this category corresponds to the intersection of subsets.

1.5.8 If we reverse the arrows in the above construction, the universal property obtained (known
as the “coproduct”) characterizes disjoint unions in the category of sets and free products in the
category of groups. That is, to map out of a coproduct of objects pXjqjPJ is the same as mapping
out of each of these. Let us make this precise.

1.5.9 Definition Let pXjqjPJ be a family of objects in a category C. Then an object X P C
together with morphisms ij : Xj Ñ X called (canonical) injections is said to be the coproduct
of the objects Xj , j P J , if the following universal property holds:

(Coprod) Let Y be any other object in C with a family of maps gj : Xj Ñ Y , j P J . Then there
is a unique morphism g : X Ñ Y such that g ˝ ij “ gj for all j P J or in other words
such that the diagram

Xj X

Y

ij

gj g

commutes for every j P J .

One usually writes x gj yjPJ or, when J “ t1, . . . , nu, x g1, . . . , gn y for the uniquely determined
map g : X Ñ Y . Sometimes the notation pgjqjPJ respectively pg1, . . . , gnq is used. In the special
case where J “ t1, 2u, g “ x g1, g2 y is called the copairing of g1 and g2. The coproduct of the
family pXjqjPJ is denoted

š

jPJ Xj .

1.5.10 Remarks (a) Despite the name indicates otherwise, the canonical injections ij : Xj Ñ

X, j P J of a coproduct of a family pXjqjPJ need not be injective when the underlying category
consist of structered sets and maps between them. In general, the canonical injections even need
not be monomorphisms.

(b) Like for the product, the use of a particular symbol for the coproduct of a family pXjqjPJ is
justified by the fact that that coproduct are uniquely determined up to unique isomorphism, see
Proposition 1.5.11.

(c) Analogously as for products, condition (Coprod) can be expressed equivalently by requiring
that there exists a natural isomorphism of covariant functors

Mor
´

ž

jPJ

Xj ,´
¯

»
ź

jPJ

MorpXj ,´q

which associates to every object Y of C the bijection

`

pijq
˚
˘

jPJ
: Mor

´

ź

jPJ

Xj , Y
¯

Ñ
ź

jPJ

MorpXj , Y q, g ÞÑ
`

g ˝ ij
˘

jPJ
.

21



0.1. Category theory 1.5. Various universal constructions

1.5.11 Proposition (Uniqueness of coproducts) The coproduct of a family pXjqjPJ of ob-
jects in C is uniquely determined up to unique isomorphisms commuting with the canonical in-
jections.

Proof. Dually to the product case we have to show that for a coproduct X of the family pXjqjPJ

with canonical injections ij : Xj Ñ X and another coproduct Y with canonical injections
kj : Xj Ñ Y there is a unique isomorphism

f : X Ñ Y

such that the diagram below commutes for each j P J :

Xj

X Y .

ij kj

f

(1.5.4)

By the universal property of X together with the canonical injections ij there exists a morphisms
f making the diagram 1.5.4 commute. Likewise, by the universal property of Y together with the
canonical injections kj there exists a morphisms g such that the following diagram commutes:

Xj

Y X .

kj ij

g

(1.5.5)

Combining Diagrams 1.5.4 and 1.5.5 gives rise to the following commutative diagram:

Xj

Y X .

ij ij

g˝f

(1.5.6)

Since replacing g˝f by the identity morphism idX in this diagram results in another commutative
diagram, the universal property of the coproduct X entails g ˝ f “ idX . By switching f and g
one obtains f ˝ g “ idY , and the claim follows.

1.5.12 Examples (a) The coproduct in the category of sets is the disjoint union of sets. More
precisely, let pXiqjPJ be a family of sets. Recall that the disjoint union of pXiqjPJ is defined to
be the set

ğ

jPJ

Xj :“
ď

jPJ

Xj ˆ tju “
!

px, jq P
´

ď

jPJ

Xj

¯

ˆ J | x P Xj

)

.

Define the canonical injections ij : Xj Ñ
Ů

iPJ Xi by ijpxq “ px, jq for x P Xj . Note that the ij are
injective maps when the underlying category is Ens, but that need not hold for other categories.
By construction, the image of ij coincides with Xj ˆ tju. Moreover Impijq X Impij1q “ H if
j ‰ j1, so the name disjoint union for the set

Ů

jPJ Xj is justified. Now, if pgjqjPJ is a family
of maps gj : Xj Ñ Y , then define g :

Ů

jPJ Xj Ñ Y by gpx, jq :“ gjpxq for j P J and x P Xj .
By construction, gj “ g ˝ iJ for every j P J . Since

Ů

jPJ Xj is the union of the images of the
canonical injections, g is uniquely determined. The claim folows.
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(b) The coproduct in the category of groups is given by the free product of groups, see ??. In the
category of abelian groups, though, the coproduct of a family pAjqjPJ of abelian groups coincides
with the direct sum A :“

À

jPJ Aj , see ??.

The product and coproduct are, if they exist, functorial in the following sense.

1.5.13 Proposition Let pXjqjPJ and pYjqjPJ be families of objects in a category C, and pfjqjPJ
a family of morphisms fj : Xj Ñ Yj.

(i) If the products of both pXjqjPJ and pYjqjPJ exist in C, then there is a unique morphism
f :

ś

jPJ Xj Ñ
ś

jPJ Yj, which usually will be denoted
ś

jPJ fj, such that the diagram

ś

iPJ Xi
ś

iPJ Yi

Xj Yj

f

pj qj

fj

commutes for every j P J . Hereby, the pj and qj are the canonical projections of
ś

jPJ Xj

and
ś

jPJ Yj, respectively. If pZjqjPJ is a third family of objects in C for which the product
ś

jPJ Zj exists and if pgjqjPJ is a family of morphisms gj : Yj Ñ Zj, then

ź

jPJ

`

gj ˝ fj
˘

“

´

ź

jPJ

gj

¯

˝

´

ź

jPJ

fj

¯

.

Moreover,
ź

jPJ

idXj “ idś

jPJ Xj
.

(ii) If the coproducts of both pXjqjPJ and pYjqjPJ exist in C, then there is a unique morphism
f :

š

jPJ Xj Ñ
š

jPJ Yj, which usually will be denoted
š

jPJ fj, such that the diagram

Xj Yj

š

iPJ Xi
š

iPJ Yi

fj

ij kj

f

commutes for every j P J . Hereby, the ij and kj are the canonical injections of
š

jPJ Xj

and
š

jPJ Yj, respectively. If pZjqjPJ is a third family of objects in C for which the coproduct
š

jPJ Zj exists and if pgjqjPJ is a family of morphisms gj : Yj Ñ Zj, then

ž

jPJ

`

gj ˝ fj
˘

“

´

ž

jPJ

gj

¯

˝

´

ž

jPJ

fj

¯

.

Finally,
ž

jPJ

idXj “ idš

jPJ Xj
.
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Proof. We only show the claim in the product case; the proof in the coproduct case is completely
dual.

The existence of f :
ś

jPJ Xj Ñ
ś

jPJ Yj follows by the universal property of the product
ś

jPJ Yj .
Let rj : Z Ñ Zj , j P J be the canonical projections of the product Z :“

ś

jPJ Zj . Then, for all
j P J ,

rj ˝
ź

iPJ

`

gi ˝ fi
˘

“ gj ˝ fj ˝ pj “ gj ˝ qj ˝
´

ź

iPJ

fi

¯

“ rj ˝
´

ź

iPJ

gi

¯

˝

´

ź

iPJ

fi

¯

,

which entails
ź

jPJ

`

gj ˝ fj
˘

“

´

ź

jPJ

gj

¯

˝

´

ź

jPJ

fj

¯

by the universal property of the product Z. Denoting by X the product
ś

jPJ Xj , the equality
ź

jPJ

idXj “ idX

holds true, since pj ˝ idX “ idXj ˝ pj for all j P J . So the claim is proved.

We shall, in this section, further investigate the notion of “universality”.

Initial and terminal objects

We now introduce another example of universality, which is simpler but also more abstract than
the products and coproducts introduced in the previous section.

1.5.14 Definition Let C be a category. An initial object in C is an object X of C with the
property that MorCpX,Y q has exactly one element for every object Y of C.

1.5.15 Remark So there is a unique morphism out of an initial object X of C into an object
Y of that category. Note that this idea is faithful to the categorical spirit of describing objects
in terms of their mapping properties.

1.5.16 Examples (a) If C is the category of sets, then the empty set H is an initial object.
There is a unique map from the empty set into any other set X; one has to make no decisions
about where elements are to map from when constructing a map HÑ X. The resulting map is
unique and is the empty map HÑ X with domain H, range X, and graph H “ HˆX.

(b) In the category of groups, the group t1u consisting of one element, namely the neutral
element, is an initial object.

Note that the initial object in Grp is not that in Ens. This should not be too surprising, because
H cannot be a group.

(c) Let P be a poset, and make it into a category as in Example 1.2.11. Then it is easy to see
that an initial object of P is the smallest object in P (if it exists). Note that this is equivalently
the product of all the objects in P . In general, the initial object of a category is not the product
of all objects in C (this does not even make sense for a large category).
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1.5.17 There is a dual notion, called a terminal object, where every object can map into it in
precisely one way.

1.5.18 Definition A terminal object in a category C is an object Y of C such that MorCpX,Y q
has exactly one element for every object X of C.

1.5.19 Remark Note that an initial object in C is the same as a terminal object in Cop, and
vice versa. As a result, it suffices to prove results about initial objects, and the corresponding
results for terminal objects will follow formally.

But there is a fundamental difference between initial and terminal objects. Initial objects are
characterized by how one maps out of them, while terminal objects are characterized by how
one maps into them.

1.5.20 Example Any one point set is a terminal object in Ens.

The important point about the next result is the conceptual framework it entails.

1.5.21 Proposition (Uniqueness of initial and terminal objects) Any two initial (re-
spectively terminal) objects in a category C are isomorphic by a unique isomorphism.

Proof. The proof is easy. Assume that Y, Y 1 are both initial or both terminal objects. Then
MorpY, Y 1q and MorpY 1, Y q are one-point sets. So there are unique morphisms f : Y Ñ Y 1,
g : Y 1 Ñ Y , whose composites must be the identities: we know that MorpY, Y q and MorpY 1, Y 1q
are one-point sets, too, so the composites have no other choice than to be the identities. This
means that the maps f : Y Ñ Y 1 and g : Y 1 Ñ Y are isomorphisms.

1.5.22 Remark There is a philosophical point to be made here. We have characterized an object
uniquely in terms of mapping properties. More precisely, we have characterized it “uniquely up to
unique isomorphism”, which is really the best one can do in mathematics. Often in a categorical
setting one encounters the following situation: two structured sets represent two objects in a
category and these objects are isomorphic up to unique isomorphism, but the underlying sets
are different.

Note also that the argument was essentially similar to that of Proposition 1.5.5.

In fact, we could interpret Proposition 1.5.5 as a special case of Proposition 1.5.21. If C is a
category and pXjqjPJ is a family of objects in C, then we can define a category D as follows. An
object of D is the data of an object Y P C and morphisms fj : Y Ñ Xj for all j P J . A morphism
between objects

`

Y, pfj : Y Ñ XjqjPJ
˘

and
`

Z, pgj : Z Ñ XjqjPJ
˘

is a map Y Ñ Z making the
obvious diagrams commute. Then a product

ś

jPJ Xj in C is the same thing as a terminal object
in D, as one easily checks from the definitions.

Pushouts and pullbacks

Now we are going to talk about more examples of universal constructions, which can all be
phrased via initial or terminal objects in some category. This, therefore, is the proof for the
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uniqueness up to unique isomorphism of everything we will do in this section. Later we will
present these in more generality.

Like always in this chapter C denotes a category.

1.5.23 Definition Suppose we have objects A,B,C,X of C. A commutative square in C

A B

C X

is called cocartesian or a pushout square (and X is called the pushout of AÑ B and AÑ C) if
it satisfies the following universal property.

(Cocar) Given a commutative diagram
A //

��

B

��
C // Y

there is a unique map X Ñ Y making the following diagram commute.

A B

C X

Y

Sometimes pushouts are also called fibered coproducts. We shall also write X “ C \A B.

1.5.24 Remark In other words, to map out of X “ C\AB into some object Y is to give maps
B Ñ Y and C Ñ Y whose restrictions to A are the same.

The next few examples will rely on notions to be introduced later.

1.5.25 Example The following is a pushout square in the category of abelian groups:

Z{2 //

��

Z{4

��
Z{6 // Z{12

In the category of groups, the pushout is actually SL2pZq, though we do not prove it. The point
is that the property of a square’s being a pushout is actually dependent on the category.

In general, to construct a pushout of abelian groups C\AB, one constructs the direct sum C‘B
and quotients by the subgroup generated by pa, aq (where a P A is identified with its image in
C ‘B). We shall discuss this later, more thoroughly, for modules over a ring.
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1.5.26 Example Let R be a commutative ring and let S and Q be two commutative R-algebras.
In other words, suppose we have two maps of rings s : R Ñ S and q : R Ñ Q. Then we can fit
this information together into a pushout square:

R S

Q X

It turns out that the pushout in this case is the tensor product of algebras S bR Q (see Sec-
tion 4.3 for the construction). This is particularly important in algebraic geometry as the dual
construction will give the correct notion of “products” in the category of “schemes” over a field.

1.5.27 Proposition If the pushout of the diagram

A

��

// B

C

in C exists, it is unique up to unique isomorphism.

Proof. We can prove this in two ways. One is to suppose that there were two pushout squares:

A

��

// B

��
C // X

A

��

// B

��
C // X 1

Then there are unique maps f : X Ñ X 1, g : X 1 Ñ X from the universal property. In detail,
these maps fit into commutative diagrams

A

��

// B

��

��

C //

''

X
f

  
X 1

A

��

// B

��

��

C //

((

X 1

g

  
X

Then g ˝ f and f ˝ g are the identities of X,X 1 again by uniqueness of the map in the definition
of the pushout.

Alternatively, we can phrase pushouts in terms of initial objects. We could consider the category
of all diagrams as above,

A

��

// B

��
C // D

,

where A Ñ B,A Ñ C are fixed and D varies. The morphisms in this category of diagrams
consist of commutative diagrams. Then the initial object in this category is the pushout, as one
easily checks.
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1.5.28 Often when studying categorical constructions, one can create a kind of “dual” construc-
tion by reversing the direction of the arrows. This is exactly the relationship between the pushout
construction and the pullback construction to be described below.

1.5.29 Definition So suppose we have two morphisms AÑ C and B Ñ C, forming a diagram

B

A C .

A commutative square in C

Y B

A C

is called cartesian or a pullback square (and Y is called the pullback or fibered product of AÑ C
and B Ñ C) if it satisfies the following universal property:

(Car) Given a commutative diagram

Y 1 B

A C

there is a unique map Y 1 Ñ Y making the following diagram commute:

Y 1

Y B

A C .

We shall also write Y “ B ˆC A.

1.5.30 Example In the category Ens of sets, if we have sets A,B,C with maps f : A Ñ C
and g : B Ñ C, then the fibered product A ˆC B consists of pairs pa, bq P A ˆ B such that
fpaq “ gpbq.

The next example requires prerequisites not developed yet and may be omitted without loss of
continuity.
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1.5.31 Example As said above, the fact that the tensor product of algebras is a pushout in the
category of commutative R-algebras allows for the correct notion of the “product” of schemes. We
now elaborate on this example: naively one would think that we could pick the underlying space
of the product scheme to just be the topological product of two Zariski topologies. However, it
is an easy exercise to check that the product of two Zariski topologies in general is not Zariski!
This motivates the need for a different concept.

Suppose we have a field k and two k-algebras A and B and let X “ SpecpAqand Y “ SpecpBq
be the affine k-schemes corresponding to A and B. Consider the following pullback diagram:

X ˆSpecpkq Y

��

// X

��
Y // Specpkq

Now, since Spec is a contravariant functor, the arrows in this pullback diagram have been flipped;
so in fact, XˆSpecpkqY is actually SpecpAbkBq. This construction is motivated by the following
example: let A “ krxs and B “ krys. Then SpecpAq and SpecpBq are both affine lines Aid

k

so we want a suitable notion of product that makes the product of SpecpAq and SpecpBq the
affine plane. The pullback construction is the correct one since SpecpAq ˆSpecpkq SpecpBq “
SpecpAbk Bq “ Specpkrx, ysq “ A2

k.

1.5.32 Remark
to be added: fill in details The notion of “monomorphism” can be detected using only the notions
of fibered product and isomorphism. To see this, suppose i : X Ñ Y is a monomorphism. Show
that the diagonal

X Ñ X ˆY X

is an isomorphism. (The diagonal map is such that the two projections to X both give the
identity.) Conversely, show that if i : X Ñ Y is any morphism such that the above diagonal map
is an isomorphism, then i is a monomorphism.

Deduce the following consequence: if F : C Ñ D is a functor that commutes with fibered
products, then F takes monomorphisms to monomorphisms.

Diagram schemes and diagrams

1.5.33 When defining pushouts the initially given objects and morphisms have an underlying
“diagram scheme” which can be depicted as follows.

‚ ‚

‚

(1.5.7)

As we will explain, not only pushouts but also further “colimits” defined by a universal property
such as coproducts or coequalizers have an underyling diagram scheme which, up to isomor-
phism, uniquely characterizes the pushout, coproduct or coequalizer, respectively. Likewise,
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diagram schemes underly and characterize universal limit constructions like pullbacks, products
and equalizers. Let us now describe precisely what diagram schemes are.

1.5.34 Definition A diagram scheme Σ consists of two sets I, A and two maps s : AÑ I and
t : A Ñ I. The elements of I are called indices or vertices, the elements of A arrows. For an
arrow a P A one calls spaq the source of a and tpaq its target. The diagram scheme Σ is called
finite if both I and A are finite sets. We sometimes denote a diagram scheme as a quadruple
Σ “ pI, A, s, tq.

If Σ “ pI, A, s, tq and Ω “ pJ,B, σ, τq are both diagram schemes, a morphism of diagram schemes
from Σ to Ω consist of a pair pϕ, fq of maps ϕ : I Ñ J and f : A Ñ B such that the following
two diagrams commute.

A B

I J

f

s σ

ϕ

A B

I J

f

t τ

ϕ

1.5.35 Remark Using language from graph theory and mathematical physics, a diagram scheme
is nothing else than a directed pseudograph (Harary, 1969, Chap. 2) or a quiver (Savage, 2006).

1.5.36 Example Finite diagram schemes are often represented by pictures as the one in Fig. (1.5.7)
above. Further examples of graphically represented diagram schemes are the following. In paren-
theses we mention when a particular diagram scheme leads to one of the standard universal
objects.

(a) (product and coproduct)

‚ ‚ ‚ . . . ‚

(b) (equalizer and coequalizer)

‚ ‚

(c)

‚ ‚ ‚

‚

(d)

‚ ‚ ‚

1.5.37 Given a diagram scheme Σ “ pI, A, s, tq the identity idΣ :“ pidI , idAq is obviously a
morphism of diagram schemes. Moreover, if pϕ, fq and pψ, gq are a morphisms of diagram schemes
from Σ “ pI, A, s, tq to Ω “ pJ,B, σ, τq and from Ω “ pJ,B, σ, τq to Ξ “ pK,C, α, βq, respectively,
then pψ, gq ˝ pϕ, fq :“ pψ ˝ ϕ, g ˝ fq is a morphism of diagram schemes from Σ “ pI, A, s, tq to
Ξ “ pK,C, α, βq as one checks by commutativity of the following two diagrams.
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A B C

I J K

f

s σ

g

α

ϕ ψ

A B C

I J K

f

t τ

g

β

ϕ ψ

Since composition of functions is associative we therefore obtain a category denoted DSch and
called the category of diagram schemes.

1.5.38 Example Each small category can be regarded as a diagram scheme. Actually, one has
a forgetful functor U from the category Cat of small categories to the category DSch of diagram
schemes which associates to each small category C the diagram scheme UpCq having as index set
the set of objects of C and as arrow set the set of morphisms. The source and target maps of
UpCq are the same as in C.

1.5.39 Definition Let Σ be a diagram scheme and C a category. By a diagram in C of type
or shape Σ one understands a map D which assigns to each index i P I an object Dpiq of C
and to each arrow a P A a morphism Dpaq P MorC

`

Dpspaqq, Dptpaqq
˘

. We will use the notation
D : Σ Ñ C or D : I Ñ C to express that D is a diagram in the category C of type Σ “ pI, A, s, tq.

1.5.40 Remark If the category C is small, a diagram in C of type Σ is the same thing as a
morphism of diagram schemes Σ Ñ UpCq.

1.5.41 If D : Σ Ñ C is a diagram defined on a diagram scheme Σ “ pI, A, s, tq and F : CÑ D a
covariant functor, then the composition F ˝D : Σ Ñ D is defined as the diagram which associates
to each index i P I the object F pDpiqq and to each arrow a P A the morphism F pDpaqq. So in
other words diagrams in C can be left composed with functors defined on C. Similarly, diagrams
defined on a diagram scheme Σ can be right composed with morphisms of diagram schemes
having Σ as target.

1.5.42 Theorem Let Σ “ pI, A, s, tq be a diagram scheme. Then there exists a small category
PΣ together with a morphism of diagram schemes pι, eq : Σ Ñ PΣ such that the following universal
property holds true.

(FCat) For each category C and diagram D : Σ Ñ C there exists a unique (covariant) functor
D : PΣ Ñ C such that the following diagram of diagrams and functors commutes.

Σ C

PΣ

D

pι,eq
D

Proof. Let i, j be elements of the index set I. A path from i to j of length n P N in the diagram
scheme Σ then is defined as an n` 1-tuple p “ pan, . . . , a1, iq with ak P A for all k P r1, nsN such
that the following conditions hold true:

(i) If n ě 1, then spa1q “ i, spanq “ j and spak`1q “ tpakq for all k P r1, n´ 1sN.

(ii) If i ‰ j, then there are no paths of length n “ 0.
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(iii) If i “ j, then there is exactly one path of length n “ 0, namely piq :“ tiu. It is called the
identity path at x.

The index i is called the source or origin of the path p, the index j is target or end. A path
having the same source and target is called closed or a loop. The small category PΣ associated
to the diagram scheme Σ is now defined as the category having object set I and morphism
sets MorPΣ

pi, jq for i, j P I consisting of all paths in Σ from i to j. Composition of paths
pbm, . . . , b1, jq P MorPΣ

pj, kq and pan, . . . , a1, iq P MorPΣ
pi, jq for i, j, k P I is defined as

pbm, . . . , b1, jq ˝ pan, . . . , a1, iq :“

$

’

’

’

’

&

’

’

’

’

%

pbm, . . . , b1, an, . . . , a1, iq if m,n ě 1,

pan, . . . , a1, iq if k “ j, m “ 0 and n ě 1,

pbm, . . . , b1, jq if j “ i, n “ 0 and m ě 1,

piq if k “ j “ i, m “ n “ 0.

By definition, the identity path at i serves as identity morphism at i. Associativity of the
composition ˝ is straightforward, so PΣ is a category indeed. We call it the category of paths in
Σ.

There is a canonical embedding pι, eq of Σ into PΣ which is the identity map on I that is ι “ idI
and which maps an arrow a P A to the path epaq “

`

a, spaq
˘

P MorPΣ

`

spaq, tpaq
˘

.

Now let D : Σ Ñ C be a diagram. We define the extension D : PΣ Ñ C by putting Dpiq :“ Dpiq
for all i P I and, for every path p “ pan, . . . , a1, iq in Σ,

Dppq :“

#

Dpanq ˝ . . . ˝Dpanq if n ě 1,

idDpiq if n “ 0.

Then D is a functor, indeed, since for every path q “ pbm, . . . , b1, jq P MorPΣ
pj, kq composable

with p “ pan, . . . , a1, iq P MorPΣ
pi, jq the equality

Dpqq ˝Dppq “

$

’

’

’

’

&

’

’

’

’

%

Dpbmq ˝ . . . ˝Dpb1q ˝Dpanq ˝ . . . ˝Dpa1q if m,n ě 1,

Dpanq ˝ . . . ˝Dpa1q if k “ j, m “ 0 and n ě 1,

Dpbmq ˝ . . . ˝Dpb1q if j “ i, n “ 0 and m ě 1,

idDpiq if k “ j “ i, m “ n “ 0

holds true and since the the right hand side of this equality coincides with Dpq ˝ pq by definition
of q ˝ p.

Since for every arrow a in Σ the relation D
`

epaq
˘

“ D
`

a, spaq
˘

“ Dpaq holds true, the diagram
in the universal property (FCat) commutes.

It remains to show that D is uniquely determined. But that is immediate after one observes that
for any functor rD : PΣ Ñ C fulfilling rD ˝ pι, eq “ D the identities rD

`

piq
˘

“ idDpiq “ D
`

piq
˘

and
rDppq “ Dpanq ˝ . . . ˝Dpa1q “ Dppq hold true for every path p “ pan, . . . , a1, iq in Σ of positive
length.

32



0.1. Category theory 1.5. Various universal constructions

1.5.43 Remark The category PΣ constructed in the theorem will be called the path category
or the free category generated by the diagram scheme Σ. By its universal property, diagrams in
C of type Σ are in bijective correspondence with functors from the path category PΣ to C. One
therefore generalizes the notion of a diagram in C as follows.

1.5.44 Definition Let J be a small category and C an arbitrary category. By a diagram in C of
type or shape J one understands a (covariant) functor D : JÑ C. The category J is also termed
the index category of the diagram D.

Colimits

1.5.45 We now want to generalize the pushout. Start with a small category J which we will
regard as our index category. Recall that smallness means that the objects of J form a set.
Initially, one is supposed to picture J as the path category generated by something like the
diagram scheme

‚ ‚

‚

or the diagram scheme:

‚ ‚

Later we will see examples where J can be a more general not necessarily free category. The
construction of a colimit which we now formulate will work in either case. It will specialize to
the pushout when J is generated by the first diagram scheme above.

So we will look at functors
F : JÑ C ,

which in the case of the three-element diagram scheme will just correspond to diagrams:

A B

C

We will call a cocone on F an object X of C equipped with a family ϕ “ pϕjqjPJ of morphisms
ϕj : Fj Ñ X such that for all morphisms iÑ j P J the following diagram commutes.
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Fi

X

Fj

ϕi

F piÑjq

ϕj

We will write ϕ : F Ñ X, F ϕ
Ñ X or briefly F Ñ X to denote that X (together with the family

ϕ) is a cocone on F .

An example would be a cocone on the three-element category above. Then this is just a com-
mutative diagram

A B

C X

which can be reduced to a commutative diagram

A B

C X

with the understanding that the diagonal arrow is the composition of two composable outer
arrows. There are two such compositions and they result in the same arrow when the diagram
commutes.

1.5.46 Definition The colimit of the diagram F : J Ñ C, written as colimF or colimI F or
lim
ÝÑI

F , if it exists, is a cocone F ϕ
Ñ X with the property that if F ψ

Ñ Y is any other cocone,
then there is a unique morphism f : X Ñ Y making the diagram

X

F

Y

f

ψ

ϕ
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commute. More precisely, this means that for each j P J the following diagram commutes.

X

Fj

Y

f

ψj

ϕj

(1.5.8)

We could form a category CoconepF q where the objects are the cocones F ϕ
Ñ X, and the

morphisms from F
ϕ
Ñ X to F

ψ
Ñ Y are the maps f : X Ñ Y that make all the obvious

diagrams commute that is all diagrams of the form (1.5.8). In this case, it is easy to see that a
colimit of the diagram is just an initial object in CoconepF q.

In any case, we see:

1.5.47 Proposition The colimit colimJ F of a diagram F : J Ñ C, if it exists, is unique up to
unique isomorphism.

Motivated by the above remarks which introduced cocones and colimits, Definition 1.5.23 can
now be recast as follows.

1.5.48 Definition Let the index category J be generated by the diagram scheme:

‚ ‚

‚

Then the colimit of a functor F : JÑ C is called the pushout of F .

Let us go through some further examples. We already looked at pushouts.

1.5.49 Examples (a) Consider the index category J visualized by the following diagram scheme:

‚ ‚ ‚ ‚

So J consists of four objects with no non-identity morphisms. A functor F : J Ñ Ens is just a
list of four sets A,B,C,D. The colimit then is the disjoint union A\B \ C \D. Its universal
property is described by the fact that to map out of the disjoint union is the same thing as
mapping out of each piece.

(b) Suppose we had the same index category J but the functor F took values in the category of
abelian groups. Then F corresponds, again, to a list of four abelian groups. The colimit is the
direct sum. The direct sum is characterized by the same universal property.
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(c) Still working with the same index category J suppose the functor F took its values in the
category of groups. Then the colimit is the free product of the four groups.

(d) Finally assume that C is the category of commutative rings with unit. Then the colimit of a
functor F : JÑ C is the tensor product of the four commutative rings.

Coproducts can also be reformulated within the concept of colimits of functors.

1.5.50 Definition When J is the index category with underlying diagram scheme a family of
points

‚ ‚ ‚ . . . ‚ . . .

with no non-identity morphisms, then the colimit over J is called the coproduct.

As explained in Examples 1.5.49, the coproduct means things like direct sums, disjoint unions,
and tensor products. If pAiqiPI is a family of objects in some category, then we find the universal
property of the coproduct can be stated succinctly:

MorC

´

ğ

iPI

Ai, B
¯

“
ź

iPI

MorC
`

Ai, B
˘

.

So the idea of a colimit unifies a whole bunch of constructions. Now let us take a different
example.

1.5.51 Example Take J to be the index category with diagram scheme

‚ ‚

So a functor F : JÑ Ens is a diagram

A B .

Call the two arrows f, g : AÑ B. To get the colimit, we take B and mod out by the equivalence
relation generated by fpaq „ gpaq. To map out of this is the same thing as mapping out of B
such that the pullbacks to A are the same.

1.5.52 Definition If the index category J is generated by the diagram scheme

‚ ‚

the colimit of a functor F : JÑ C is called the coequalizer of F .

1.5.53 Theorem If the category C has all coproducts and coequalizers, then it has all colimits.
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Proof. Let F : I Ñ C be a functor, where I is a small category. We need to obtain an object X
with morphisms

FiÑ X, i P I

such that for each f : iÑ i1, the diagram below commutes:

Fi

��

// Fi1

}}
X

and such that X is universal among such diagrams.

To give such a diagram, however, is equivalent to giving a collection of maps

FiÑ X

that satisfy some conditions. So X should be thought of as a quotient of the coproduct \iFi.
Let us consider the coproduct \iPI,fFi, where f ranges over all morphisms in the category I
that start from i. We construct two maps

\fFi Ñ \fFi,

whose coequalizer will be that of F . The first map is the identity. The second map sends a
factor

Limits

As in the example with pullbacks and pushouts and products and coproducts, one can define a
limit by using the exact same universal property above just with all the arrows reversed. Let us
explain this in some more detail.

1.5.54 Example The product is an example of a limit where the indexing category is a small
category I with no morphisms other than the identity. This example shows the power of uni-
versal constructions; by looking at colimits and limits, a whole variety of seemingly unrelated
mathematical constructions are shown to be in the same spirit.

Filtered colimits

Filtered colimits are colimits over special indexing categories I which look like totally ordered
sets. These have several convenient properties as compared to general colimits. For instance,
in the category of modules over a ring (to be studied in ??), we shall see that filtered colimits
actually preserve injections and surjections. In fact, they are exact. This is not true in more
general categories which are similarly structured.

1.5.55 Definition An indexing category is filtered if the following hold:
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1. Given i0, i1 P I, there is a third object i P I such that both i0, i1 map into i. So there is a
diagram

i0

��
i

i1

@@

.

2. Given any two maps i0 Ñ i1, there exists i and i1 Ñ i such that the two maps i0 Ñ i are
equal: intuitively, any two ways of pushing an object into another can be made into the
same eventually.

1.5.56 Example If I is the category

˚ Ñ ˚ Ñ ˚ Ñ . . . ,

i.e. the category generated by the poset Zě0, then that is filtered.

1.5.57 Example If G is a torsion-free abelian group, the category I of finitely generated sub-
groups of G and inclusion maps is filtered. We don’t actually need the lack of torsion.

1.5.58 Definition Colimits over a filtered category are called filtered colimits.

1.5.59 Example Any torsion-free abelian group is the filtered colimit of its finitely generated
subgroups, which are free abelian groups.

This gives a simple approach for showing that a torsion-free abelian group is flat.

1.5.60 Proposition If I is filtered1 and C “ Ens,Ab,Grp, etc., and F : I Ñ C is a functor,
then colimI F exists and is given by the disjoint union of Fi, i P I modulo the relation x P Fi is
equivalent to x1 P Fi1 if x maps to x1 under Fi Ñ Fi1 . This is already an equivalence relation.

The fact that the relation given above is transitive uses the filtering of the indexing set. Other-
wise, we would need to use the relation generated by it.

1.5.61 Example Take Q. This is the filtered colimit of the free submodules Zp1{nq.

Alternatively, choose a sequence of numbers m1,m2, . . . , such that for all p, n, we have pn | mi

for i " 0. Then we have a sequence of maps

Z m1
Ñ Z m2

Ñ ZÑ . . . .

The colimit of this is Q. There is a quick way of seeing this, which is left to the reader.

1Some people say filtering.
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When we have a functor F : I Ñ Ens,Grp, R ´Mod taking values in a “nice” category (e.g. the
category of sets, (left-) modules over a ring R, etc.), one can construct the colimit by taking the
union of the Fi, i P I and quotienting by the equivalence relation x P Fi „ x1 P Fi1 if f : i Ñ i1

sends x into x1. This is already an equivalence relation, as one can check.

Another way of saying this is that we have the disjoint union of the Fi modulo the relation that
a P Fi and b P Fi1 are equivalent if and only if there is a later i2 with maps i Ñ i2, i1 Ñ i2 such
that a, b both map to the same thing in Fi2 .

One of the key properties of filtered colimits is that, in “nice” categories they commute with finite
limits.

1.5.62 Proposition In the category of sets, filtered colimits and finite limits commute with each
other.

The reason this result is so important is that, as we shall see, it will imply that in categories
such as the category of R-modules, filtered colimits preserve exactness.

Proof. Let us show that filtered colimits commute with (finite) products in the category of sets.
The case of an equalizer is similar, and finite limits can be generated from products and equalizers.

So let I be a filtered category, and tAiuiPI , tBiuiPI be functors from I Ñ Ens. We want to show
that

lim
ÝÑ
I

pAi ˆBiq “ lim
ÝÑ
I

Ai ˆ lim
ÝÑ
I

Bi.

To do this, note first that there is a map in the direction Ñ because of the natural maps
lim
ÝÑI

pAi ˆ Biq Ñ lim
ÝÑI

Ai and lim
ÝÑI

pAi ˆ Biq Ñ lim
ÝÑI

Bi. We want to show that this is an
isomorphism.

Now we can write the left side as the disjoint union
Ů

IpAiˆBiq modulo the equivalence relation
that pai, biq is related to paj , bjq if there exist morphisms iÑ k, j Ñ k sending pai, biq, paj , bjq to
the same object in Ak ˆBk. For the left side, we have to work with pairs: that is, an element of
lim
ÝÑI

Ai ˆ lim
ÝÑI

Bi consists of a pair pai1 , bi2q with two pairs pai1 , bi2q, paj1 , bj2q equivalent if there
exist morphisms i1, j1 Ñ k1 and i2, j2 Ñ k2 such that both have the same image in Ak1 ˆ Ak2 .
It is easy to see that these amount to the same thing, because of the filtering condition: we can
always modify an element of Ai ˆBj to some Ak ˆBk for k receiving maps from i, j.

1.5.63 Remark Let A be an abelian group, e : A Ñ A an idempotent operator, i.e. one such
that e2 “ e. Show that eA can be obtained as the filtered colimit of

A
e
Ñ A

e
Ñ A . . . .

The initial object theorem

We now prove a fairly nontrivial result, due to Freyd. This gives a sufficient condition for the
existence of initial objects. We shall use it in proving the adjoint functor theorem below.

Let C be a category. Then we recall that A P C if for each X P C, there is a unique AÑ X. Let
us consider the weaker condition that for each X P C, there exists a map AÑ X.
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1.5.64 Definition Suppose C has equalizers. If A P C is such that MorCpA,Xq ‰ H for each
X P C, then X is called weakly initial.

We now want to get an initial object from a weakly initial object. To do this, note first that if
A is weakly initial and B is any object with a morphism B Ñ A, then B is weakly initial too.
So we are going to take our initial object to be a very small subobject of A. It is going to be so
small as to guarantee the uniqueness condition of an initial object. To make it small, we equalize
all endomorphisms.

1.5.65 Proposition If A is a weakly initial object in C, then the equalizer of all endomorphisms
AÑ A is initial for C.

Proof. Let A1 be this equalizer; it is endowed with a morphism A1 Ñ A. Then let us recall what
this means. For any two endomorphisms A Ñ A, the two pullbacks A1 Ñ A are equal. Moreover,
if B Ñ A is a morphism that has this property, then B factors uniquely through A1.

Now A1 Ñ A is a morphism, so by the remarks above, A1 is weakly initial: to each X P C, there
exists a morphism A1 Ñ X. However, we need to show that it is unique.

So suppose given two maps f, g : A1 Ñ X. We are going to show that they are equal. If not,
consider their equalizer O. Then we have a morphism O Ñ A1 such that the post-compositions
with f, g are equal. But by weak initialness, there is a map AÑ O; thus we get a composite

AÑ O Ñ A1.

We claim that this is a section of the embedding A1 Ñ A. This will prove the result. Indeed, we
will have constructed a section AÑ A1, and since it factors through O, the two maps

AÑ O Ñ A1 Ñ X

are equal. Thus, composing each of these with the inclusion A1 Ñ A shows that f, g were equal
in the first place.

Thus we are reduced to proving:

1.5.66 Lemma Let A be an object of a category C. Let A1 be the equalizer of all endomorphisms
of A. Then any morphism AÑ A1 is a section of the inclusion A1 Ñ A.

Proof. Consider the canonical inclusion i : A1 Ñ A. We are given some map s : A Ñ A1; we
must show that si “ idA1 . Indeed, consider the composition

A1
i
Ñ A

s
Ñ A1

i
Ñ A.

Now i equalizes endomorphisms of A; in particular, this composition is the same as

A1
i
Ñ A

id
Ñ A;

that is, it equals i. So the map si : A1 Ñ A has the property that isi “ i as maps A1 Ñ A. But
i being a monomorphism, it follows that si “ idA1 .
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1.5.67 Theorem (Freyd) Let C be a category admitting all small limits.2 Then C has an initial
object if and only if the following solution set condition holds: there is a set tXi, i P Iu of objects
in C such that any X P C can be mapped into by one of these.

The idea is that the family tXiu is somehow weakly universal together.

Proof. If C has an initial object, we may just consider that as the family tXiu: we can hom out
(uniquely!) from a universal object into anything, or in other words a universal object is weakly
universal.

Suppose we have a “weakly universal family” tXiu. Then the product
ś

Xi is weakly universal.
Indeed, ifX P C, choose some i1 and a morphismXi1 Ñ X by the hypothesis. Then this map com-
posed with the projection from the product gives a map

ś

Xi Ñ Xi1 Ñ X. Proposition 1.5.65
now implies that C has an initial object.

Completeness and cocompleteness

1.5.68 Definition A category C is said to be complete if for every functor F : I Ñ C where I
is a small category, the limit limF exists (i.e. C has all small limits). If all colimits exist, then
C is said to be cocomplete.

If a category is complete, various nice properties hold.

1.5.69 Proposition If C is a complete category, the following conditions are true:

1. all (finite) products exist

2. all pullbacks exist

3. there is a terminal object

Proof. The proof of the first two properties is trivial since they can all be expressed as limits; for
the proof of the existence of a terminal object, consider the empty diagram F : H Ñ C. Then
the terminal object is just limF .

Of course, if one dualizes everything we get a theorem about cocomplete categories which is
proved in essentially the same manner. More is true however; it turns out that finite (co)completeness
are equivalent to the properties above if one requires the finiteness condition for the existence of
(co)products.

2We shall later call such a category complete.
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Continuous and cocontinuous functors

1.6. Yoneda’s lemma

add this section is barely fleshed out

Let C be a category. In general, we have said that there is no way to study an object in a category
other than by considering maps into and out of it. We will see that essentially everything about
X P C can be recovered from these hom-sets. We will thus get an embedding of C into a category
of functors.

The functors hX

We now use the structure of a category to construct hom functors.

1.6.1 Definition Let X P C. We define the contravariant functor hX : CÑ Ens via

hXpY q “ MorCpY,Xq.

This is, indeed, a functor. If g : Y Ñ Y 1, then precomposition gives a map of sets

hXpY
1q Ñ hXpY q, f ÞÑ f ˝ g

which satisfies all the usual identities.

As a functor, hX encodes all the information about how one can map into X. It turns out that
one can basically recover X from hX , though.

The Yoneda lemma

Let X f
Ñ X 1 be a morphism in C. Then for each Y P C, composition gives a map

MorCpY,Xq Ñ MorCpY,X
1q.

It is easy to see that this induces a natural transformation

hX Ñ hX 1 .

Thus we get a map of sets
MorCpX,X

1q Ñ MorphX , hX 1q,

where hX , hX 1 lie in the category of contravariant functors C Ñ Ens. In other words, we have
defined a covariant functor

CÑ FunpCop,Ensq.

This is called the Yoneda embedding. The next result states that the embedding is fully faithful.

1.6.2 Theorem (Yoneda’s lemma) If X,X 1 P C, then the map MorCpX,X
1q Ñ MorphX , hX 1q

is a bijection. That is, every natural transformation hX Ñ hX 1 arises in one and only one way
from a morphism X Ñ X 1.

1.6.3 Theorem (Strong Yoneda lemma)
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Representable functors

We use the same notation of the preceding secction for a category C and X P C, we let hX be
the contravariant functor CÑ Ens given by Y ÞÑ MorCpY,Xq.

1.6.4 Definition A contravariant functor F : CÑ Ens is representable if it is naturally isomor-
phic to some hX .

The point of a representable functor is that it can be realized as maps into a specific object. In
fact, let us look at a specific feature of the functor hX . Consider the object α P hXpXq that
corresponds to the identity. Then any morphism

Y Ñ X

factors uniquely as
Y Ñ X

α
Ñ X

(this is completely trivial!) so that any element of hXpY q is a f˚pαq for precisely one f : Y Ñ
X.

1.6.5 Definition Let F : CÑ Ens be a contravariant functor. A universal object for C is a pair
pX,αq where X P C, α P F pXq such that the following condition holds: if Y is any object and
β P F pY q, then there is a unique f : Y Ñ X such that α pulls back to β under f .

In other words, β “ f˚pαq.

So a functor has a universal object if and only if it is representable. Indeed, we just say that
the identity X Ñ X is universal for hX , and conversely if F has a universal object pX,αq,
then F is naturally isomorphic to hX (the isomorphism hX » F being given by pulling back α
appropriately).

The article ? by Vistoli contains a good introduction to and several examples of this theory.
Here is one of them:

1.6.6 Example Consider the contravariant functor F : Ens Ñ Ens that sends any set S to its
power set PpSq (i.e. its collection of subsets). This is a contravariant functor: if f : S Ñ T , there
is a morphism

PpT q Ñ PpSq, T 1 ÞÑ f´1pT 1q.

This functor is representable. Indeed, the universal object can be taken as the pair

pt0, 1u , t1uq.

To understand this, note that a subset S; of S determines its characteristic function χS1 : S Ñ
t0, 1u that takes the value 1 on S and 0 elsewhere. If we consider χS1 as a morphism S Ñ t0, 1u,
we see that

S1 “ χ´1
S1 pt1uq.

Moreover, the set of subsets is in natural bijection with the set of characteristic functions, which
in turn are precisely all the maps S Ñ t0, 1u. From this the assertion is clear.
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We shall meet some elementary criteria for the representability of contravariant functors in the
next subsec. For now, we note3 that in algebraic topology, one often works with the homotopy
category of pointed CW complexes (where morphisms are pointed continuous maps modulo ho-
motopy), any contravariant functor that satisfies two relatively mild conditions (a Mayer-Vietoris
condition and a condition on coproducts), is automatically representable by a theorem of Brown.
In particular, this implies that the singular cohomology functors Hnp´, Gq (with coefficients in
some group G) are representable; the representing objects are the so-called Eilenberg-MacLane
spaces KpG,nq. See Hatcher (2002).

Limits as representable functors

add

Criteria for representability

Let C be a category. We saw in the previous subsec that a representable functor must send
colimits to limits. We shall now see that there is a converse under certain set-theoretic conditions.
For simplicity, we start by stating the result for corepresentable functors.

1.6.7 Theorem ((Co)representability theorem) Let C be a complete category, and let F :
CÑ Ens be a covariant functor. Suppose F preserves limits and satisfies the solution set condi-
tion: there is a set of objects tYαu such that, for any X P C and x P F pXq, there is a morphism

Yα Ñ X

carrying some element of F pYαq onto x.

Then F is corepresentable.

Proof. To F , we associate the following category D. An object of D is a pair px,Xq where
x P F pXq and X P C. A morphism between px,Xq and py, Y q is a map

f : X Ñ Y

that sends x into y (via F pfq : F pXq Ñ F pY q). It is easy to see that F is corepresentable if and
only if there is an initla object in this category; this initial object is the “universal object.”

We shall apply the initial object theorem, Theorem 1.5.67. Let us first verify that D is complete;
this follows because C is and F preserves limits. So, for instance, the product of px,Xq and
py, Y q is ppx, yq, X ˆ Y q; here px, yq is the element of F pXq ˆ F pY q “ F pX ˆ Y q. The solution
set condition states that there is a weakly initial family of objects, and the initial object theorem
now implies that there is an initial object.

3The reader unfamiliar with algebraic topology may omit these remarks.
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1.7. Adjoint functors

1.7.1 According to MacLane, “Adjoint functors arise everywhere.” We shall see several examples
of adjoint functors in this book such as Hom and the tensor product. The fact that a functor has
an adjoint often immediately implies useful properties about it like that it commutes with either
limits or colimits. This will lead, for instance, to a conceptual argument proving right-exactness
of the tensor product later on.

For the whole section we suppose that C, D are categories and F : C Ñ D, G : D Ñ C two
(covariant) functors.

Definition

1.7.2 Definition The functors F , G are adjoint if there is a natural isomorphism

αc,d : MorDpFc, dq „ÝÝÑ MorCpc,Gdq

whenever c is an object of C and d an object of D. The functor F is said to be the right adjoint
and G is the left adjoint.

Here, naturality means that for every morphism f : c1 Ñ c2 in C and every morphism g : d1 Ñ d2

in D the square

MorDpFc2, d1q MorCpc2, Gd1q

MorDpFc1, d2q MorCpc1, Gd2q

MorDpFf,gq“pFfq
˚g˚

αc2,d1

MorCpf,Ggq“f
˚pGgq˚

αc1,d2

(1.7.1)

commutes. In other words this means that α is a natural isomorphism between the two functors
MorDpF´,´q,MorCp´, G´q : Cop ˆ DÑ Ens .

1.7.3 Examples (a) There is a simple pair of adjoint functors between Ens and Ab. Here, the
first functor sends a set S to the free abelian group ZrSs “ ZpSq (see Definition 2.8.1 for a
discussion of free modules over arbitrary rings), while the second, U , is the “forgetful” functor
that sends an abelian group to its underlying set. Then Zr´s and U are adjoints. That is, to
give a group-homomorphism ZpSq Ñ A for some abelian group A is the same as giving a map of
sets S Ñ A. This is precisely the defining property of the free abelian group.

(b) In fact, most “free” constructions are just left adjoints. For instance, recall the universal
property of the free group F pSq on a set S (see (?, I. §12)): to give a group-homomorphism
F pSq Ñ G for G any group is the same as choosing an image in G of each s P S. That is,

MorGrppF pSq, Gq “ MorEnspS,UpGqq.

This states that the free functor S ÞÑ F pSq is left adjoint to the forgetful functor U from Grp to
Ens.

45



0.1. Category theory 1.7. Adjoint functors

(c) The abelianization functor G ÞÑ Gab “ G{rG,Gs from Grp Ñ Ab is left adjoint to the
inclusion Ab Ñ Grp. That is, if G is a group and A an abelian group, there is a natural
correspondence between homomorphisms GÑ A and Gab Ñ A. Note that Ab is a subcategory
of Grp such that the inclusion admits a left adjoint; in this situation, the subcategory is called
reflective.

Adjunctions

1.7.4 The fact that two functors are adjoint is encoded by a simple set of algebraic data between
them. To see this, suppose F : CÑ D, G : DÑ C are adjoint functors. For any object c of the
category C we know that

MorDpFc, Fcq „ÝÝÑ MorCpc,GFcq,

so that the identity morphism Fc Ñ Fc, which is natural in c, corresponds to a map c Ñ GFc
also natural in c. In other words we obtain a natural transformation

η : idC Ñ GF

by mapping the object c to the morphism ηc “ αc,F cpidFcq. This assignment is natural indeed
since for a morphism f : c1 Ñ c2 in C the equality

GFf ˝
`

αc1,F c1pidFc1q
˘

“
`

pGFfq˚ ˝ αc1,F c1
˘

pidFc1q “
`

αc1,F c2 ˝ pFfq˚
˘

pidFc1q “

“
`

αc1,F c2 ˝ pFfq
˚
˘

pidFc2q “
`

f˚ ˝ αc2,F c2
˘

pidFc2q “
`

αc2,F c2pidFc2q
˘

˝ f

holds true by commutativity of Diagram 1.7.1, hence the square

c1 GFc1

c2 GFc2

f

ηc1

GFf

ηc2

commutes.

Similarly, we get a natural transformation

ε : FGÑ idD

by mapping an object d of the category D to the morphism α´1
Gd,dpidGdq. So the morphism

εd : FGdÑ d corresponds to the identity GdÑ Gd under the adjoint correspondence. Given a
morphism g : d1 Ñ d2 in D the square

FGd1 d1

FGd2 d2

FGg

εd1

g

εd2
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commutes since by commutativity of Diagram 1.7.1

g ˝
`

α´1
Gd1,d1

pidGd1q
˘

“
`

g˚ ˝ α
´1
Gd1,d1

˘

pidGd1q “
`

α´1
Gd1,d2

˝ pGgq˚
˘

pidGd1q “

“
`

α´1
Gd1,d2

˝ pGgq˚
˘

pidGd2q “
`

pFGgq˚ ˝ α´1
Gd2,d2

˘

pidGd2q “
`

α´1
Gd2,d2

pidGd2q
˘

˝ FGg .

This proves naturality of ε.

One calls η the unit and ε the counit of the pair of adjoint functors F , G. The unit and counit
are not simply arbitrary. We are, in fact, going to show that they determine the isomorphisms
αc,d : MorDpFc, dq „ÝÝÑ MorCpc,Gdq. This will be a little bit of diagram-chasing.

We know that the isomorphism MorDpFc, dq „ÝÝÑ MorCpc,Gdq is natural. In fact, this is the key
point. Let φ : Fc Ñ d be any map. Then there is a morphism pc, Fcq Ñ pc, dq in the product
category Cop ˆ D; by naturality of the adjoint isomorphism, we get a commutative square of
sets

MorDpFc, Fcq
adj //

φ˚
��

MorCpc,GFcq

Gpφq˚
��

MorDpFc, dq
adj //MorCpc,Gdq

Here the mark adj indicates that the adjoint isomorphism is used. If we start with the identity
idFc and go down and right, we get the map c Ñ Gd that corresponds under the adjoint
correspondence to Fc Ñ d. However, if we go right and down, we get the natural unit map
ηpcq : cÑ GFc followed by Gpφq.

Thus, we have a recipe for constructing a map cÑ Gd given φ : FcÑ d:

1.7.5 Proposition (The unit and counit determines everything) Let pF,Gq be a pair of
adjoint functors with unit and counit transformations η, ε.

Then given φ : Fc Ñ d, the adjoint map ψ : c Ñ Gd can be constructed simply as follows.
Namely, we start with the unit ηpcq : cÑ GFc and take

ψ “ Gpφq ˝ ηpcq : cÑ Gd (1.7.2)

(here Gpφq : GFcÑ Fd).

In the same way, if we are given ψ : c Ñ Gd and want to construct a map φ : Fc Ñ d, we
construct

εpdq ˝ F pψq : FcÑ FGdÑ d. (1.7.3)

In particular, we have seen that the unit and counit morphisms determine the adjoint isomor-
phisms.

Since the adjoint isomorphisms MorDpFc, dq Ñ MorCpc,Gdq and MorCpc,Gdq Ñ MorDpFc, dq
are (by definition) inverse to each other, we can determine conditions on the units and counits.

For instance, the natural transformation F ˝ η gives a natural transformation F ˝ η : F Ñ FGF ,
while the natural transformation ε ˝ F gives a natural transformation FGF Ñ F . (These are
slightly different forms of composition!)
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1.7.6 Lemma The composite natural transformation F Ñ F given by pε ˝ F q ˝ pF ˝ ηq is the
identity. Similarly, the composite natural transformation GÑ GFGÑ G given by pG˝εq˝pη˝Gq
is the identity.

Proof. We prove the first assertion; the second is similar. Given φ : Fc Ñ d, we know that
we must get back to φ applying the two constructions above. The first step (going to a map
ψ : cÑ Gd) is by (1.7.2) ψ “ Gpφq ˝ ηpcq; the second step sends ψ to εpdq ˝ F pψq, by (1.7.3). It
follows that

φ “ εpdq ˝ F pGpφq ˝ ηpcqq “ εpdq ˝ F pGpφqq ˝ F pηpcqq.

Now suppose we take d “ Fc and φ : FcÑ Fc to be the identity. We find that F pGpφqq is the
identity FGFcÑ FGFc, and consequently we find

idF pcq “ εpFcq ˝ F pηpcqq.

This proves the claim.

1.7.7 Definition Let F : C Ñ D, G : D Ñ C be covariant functors. An adjunction is the data
of two natural transformations

η : 1 Ñ GF, ε : FGÑ 1,

called the unit and counit, respectively, such that the composites pε ˝ F q ˝ pF ˝ εq : F Ñ F and
pG ˝ εq ˝ pη ˝Gq are the identity (that is, the identity natural transformations of F,G).

We have seen that a pair of adjoint functors gives rise to an adjunction. Conversely, an adjunction
between F,G ensures that F,G are adjoint, as one may check: one uses the same formulas (1.7.2)
and (1.7.3) to define the natural isomorphism.

For any set S, let F pSq be the free group on S. So, for instance, the fact that there is a natural
map of sets S Ñ F pSq, for any set S, and a natural map of groups F pGq Ñ G for any group
G, determines the adjunction between the free group functor from Ens to Grp, and the forgetful
functor GrpÑ Ens.

As another example, we give a criterion for a functor in an adjunction to be fully faithful.

1.7.8 Proposition Let F,G be a pair of adjoint functors between categories C,D. Then G is
fully faithful if and only if the unit maps η : 1 Ñ GF are isomorphisms.

Proof. We use the recipe (1.7.2). Namely, we have a map MorDpFc, dq Ñ MorCpc,Gdq given by
φ ÞÑ Gpφq ˝ ηpcq. This is an isomorphism, since we have an adjunction. As a result, composition
with η is an isomorphism of hom-sets if and only if φ ÞÑ Gpφq is an isomorphism. From this the
result is easy to deduce.

1.7.9 Example For instance, recall that the inclusion functor from Ab to Grp is fully faithful
(clear). This is a right adjoint to the abelianization functor G ÞÑ Gab. As a result, we would
expect the unit map of the adjunction to be an isomorphism, by Proposition 1.7.8.

The unit map sends an abelian group to its abelianization: this is obviously an isomorphism, as
abelianizing an abelian group does nothing.
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Adjoints and (co)limits

One very pleasant property of functors that are left (resp. right) adjoints is that they preserve
all colimits (resp. limits).

1.7.10 Proposition A left adjoint F : C Ñ D preserves colimits. A right adjoint G : D Ñ C
preserves limits.

As an example, the free functor from Ens to Ab is a left adjoint, so it preserves colimits. For
instance, it preserves coproducts. This corresponds to the fact that if A1, A2 are sets, then
ZrA1 \A2s is naturally isomorphic to ZrA1s ‘ ZrA2s.

Proof. Indeed, this is mostly formal. Let F : CÑ D be a left adjoint functor, with right adjoint
G. Let f : I Ñ C be a “diagram” where I is a small category. Suppose colimI f exists as an
object of C. The result states that colimI F ˝ f exists as an object of D and can be computed as
F pcolimI fq. To see this, we need to show that mapping out of F pcolimI fq is what we want—that
is, mapping out of F pcolimI fq into some d P D—amounts to giving compatible F pfpiqq Ñ d for
each i P I. In other words, we need to show that MorDpF pcolimI fq, dq “ limI MorDpF pfpiqq, dq;
this is precisely the defining property of the colimit.

But we have

MorDpF pcolim
I

fq, dq “ MorCpcolim
I

f,Gdq “ lim
I

MorCpfi,Gdq “ lim
I

MorDpF pfiq, dq,

by using adjointness twice. This verifies the claim we wanted.

The idea is that one can easily map out of the value of a left adjoint functor, just as one can
map out of a colimit.
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2.1. Natural numbers

Peano structures

2.1.1 Definition (Peano) A triple pP, 0, sq consisting of a set P, an element 0 P P and a map
s : PÑ P is called a Peano structure, if the following axioms hold true:

(P1) 0 is not in the image of s.

(P2) s is injective.

(P3) (Induction Axiom) Every inductive subset of P coincides with P, where by an inductive
subset of P one understands a set I Ă P having the following properties:

(I1) 0 is an element of I.

(I2) If n P I, then spnq P I.

The element 0 is called zero or zero element of the Peano structure, the map s : P Ñ P the
successor map.

By Axiom (P1), 0 is not in the image of the successor map. But all other elements of the Peano
structure are, as our first result tells.

2.1.2 Proposition Let pP, 0, sq be a Peano structure. Then the image of s coincides with the
set P‰0 :“ tn P P | n ‰ 0u of all non-zero elements, in signs spPq “ P‰0.

Proof. Put I :“ t0u Y spPq. We show that I is an inductive set. By definition, 0 P I. Assume
that n P I. Then spnq P spPq Ă I, so I is an inductive set indeed. By Axiom (P3), I coincides
with P, which entails the claim.

2.1.3 Definition If pP, 0, sq and pP1, 01, s1q are two Peano structures, a morphism from pP, 0, sq
to pP1, 01, s1q is a map f : PÑ P1 with the following properties:

(P4) fp0q “ 01 ,

(P5) f ˝ s “ s1 ˝ f .

One denotes such a morphism by f : pP, 0, sq Ñ pP1, 01, s1q.

2.1.4 Theorem The Peano structures as objects together with their morphisms form a category.
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Proof. For each Peano structure pP, 0, sq the identity map idP is obviously a morphism from
pP, 0, sq to pP, 0, sq. Moreover, if f : pP, 0, sq Ñ pP1, 01, s1q and g : pP1, 01, s1q Ñ pP2, 02, s2q are two
morphisms of Peano structures, their composition as mappings g ˝ f is a morphism from pP, 0, sq
to pP2, 02, s2q, because g ˝ fp0q “ gpfp0qq “ gp01q “ 02 and g ˝ f ˝ s “ g ˝ s1 ˝ f “ s2 ˝ g ˝ f .
We denote by g ˝ f : pP, 0, sq Ñ pP2, 02, s2q the resulting morphism and call it the composition
of f : pP, 0, sq Ñ pP1, 01, s1q and g : pP1, 01, s1q Ñ pP2, 02, s2q.

Since the composition of mappings is associative and the identity maps act as neutral elements
with respect to composition of mappings, the claim follows.

2.1.5 Theorem (Dedekind’s Iteration Theorem, (Dedekind, 1893, Satz 126))
Assume that pP, 0, sq is a Peano structure. Let X be a set, x0 a distinguished element of X, and
t : X Ñ X a function. Then there exists a unique function f : P Ñ X such that fp0q “ x0 and
f ˝ s “ t ˝ f .

Proof. Our proof follows (Mendelson, 2008, Proof of the Iteration Theorem). We first introduce
some new language. We will call a function g : AÑ X defined on a subset A Ă P admissible, if
it has the following properties:

(i) 0 P A and gp0q “ x0 .

(ii) For every n P P the relation spnq P A entails n P A and gpspnqq “ tpgpnqq.

If in addition to these properties a given element n P P lies in the domain of g, i.e. if n P A, we
say that g : AÑ X is n-admissible. We now prove a series of claims.

Claim 1. If g : AÑ X is spnq-admissible, then it is n-admissible.
By assumption, g is spnq-admissible, hence (ii) entails n P A. So g is n-admissible, too.

Claim 2. For each n P P there exists an n-admissible function g : AÑ X.
We show that the set I Ă P of all n P P for which there exists an n-admissible function is
inductive. By the Induction Axiom (P3) this will then entail the claim. Obviously, 0 P I, since
the function t0u Ñ X, 0 ÞÑ x0 is 0-admissible. Now assume that n P I, and let g : A Ñ X be
an admissible function with n P A. We define an spnq-admissible g˚ : A˚ Ñ X as follows, where
A˚ :“ A Y tspnqu. Restricted to A, the function g˚ is defined to be equal to g. If spnq P A we
are done, and g˚ coincides with g. Otherwise spnq R A, and we put g˚pspnqq :“ tpgpnqq. In any
case, A˚ Ă P, spnq P A˚, and g˚ : A˚ Ñ X satisfies (i) and (ii) by construction.

Claim 3. If g : AÑ X and h : B Ñ X are two n-admissible functions, then gpnq “ hpnq.
Let I Ă P be the set of all n P P such that for all n-admissible functions g : A Ñ X and
h : B Ñ X the relation gpnq “ hpnq holds true. Obviously, 0 P I, since any two admissible
functions g : A Ñ X and h : B Ñ X satisfy gp0q “ x0 “ hp0q by (i). Now assume n P I, and
let g : A Ñ X and h : B Ñ X be two spnq-admissible functions. Since spnq P A X B, one gets
n P A X B by (ii), hence g and h are both n-admissible, too. By using (ii) again one concludes
gpspnqq “ tpgpnqq “ tphpnqq “ hpspnqq. Hence spnq P I, so one obtains I “ P by the Induction
Axiom. The claim follows.

Claim 4. There exists an admissible function f : PÑ X.
Given n P P choose an n-admissible function g : AÑ X, and put fpnq :“ gpnq. by the previous
claim the value fpnq does not depend on the particular choice of an n-admissible g, hence f is
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well-defined. Let us show that f is admissible. Obviously, fp0q “ x0 since every admissible g
satisfies gp0q “ x0 by (i). Now let n P P and choose an spnq-admissible g : A Ñ X. Then one
concludes by (ii) and the definition of f that n P A and fpspnqq “ gpspnqq “ tpgpnqq “ tpfpnqq.
Hence f is admissible.

Claim 5. Any two admissible functions f1 : PÑ X and f2 : PÑ X coincide.
Let I be the set of all n P P such that f1pnq “ f2pnq. Obviously, 0 P I since f1p0q “ x0 “ f2p0q.
Now let n P I, or in other words assume f1pnq “ f2pnq. Then by (ii) f1pspnqq “ tpf1pnqq “
tpf2pnqq “ f2pspnqq, which means spnq P I. Thus I is an inductive set, so coincides with P by
the Induction Axiom.

With the verification of Claim 4. and Claim 5. the proof is finished.

By the next two results, Peano structures are unique up isomorphism.

2.1.6 Corollary If pP, 0, sq and pP1, 01, s1q are two Peano structures, there exists a unique mor-
phism f : pP, 0, sq Ñ pP1, 01, s1q.

Proof. The claim follows immediately from the preceding theorem when puttingX :“ P1, x0 :“ 01

and t :“ s1.

2.1.7 Theorem Every morphism f : pP, 0, sq Ñ pP1, 01, s1q between two Peano structures is an
isomorphism.

Proof. Assume that we can show that f is bijective. Then the inverse map g :“ f´1 satisfies
gp01q “ 0 and g ˝ s1 “ g ˝ s1 ˝ f ˝ g “ g ˝ f ˝ s ˝ g “ s ˝ g, hence is a morphism of Peano structures
as well. So it suffices to show that f is bijective.

By Axiom (P3), surjectivity follows when the image of f is an inductive subset of P1. But that
holds true, since 01 “ fp0q is an element of fpPq and since for each element n1 P P1 for which
there exists an n P P with n1 “ fpnq the relation s1pn1q “ s1pfpnqq “ fpspnqq P fpPq holds true.

Now let K be the set of all n P P for which tnu “ f´1pfpnqq. We show that this set is
inductive as well, which by Axiom (P3) implies that f is injective. First observe that 0 P K.
Namely, by Proposition 2.1.2, there exists for every non-zero k P P an l P P with k “ splq,
which entails fpkq “ fpsplqq “ spfplqq ‰ 01. Now let n P K. Assume that k P P is an element
with fpkq “ fpspnqq. Then k ‰ 0 by Axiom (P1), because fpkq “ fpspnqq “ s1pfpnqq ‰ 01.
By Proposition 2.1.2 one can therefore find an m P P such that spmq “ k. By the equality
s1pfpmqq “ fpspmqq “ fpkq “ fpspnqq “ s1pfpnqq and Axiom (P2) one concludes fpmq “ fpnq.
By n P K, the equality m “ n follows, hence k “ spmq “ spnq and spnq P K. The proof is
finished.

2.1.8 So far we know that up to isomorphism there is at most one Peano structure. But we do
not yet know whether such a structure exists. We will show existence by a construction going
back to John von Neumann (1923). To this end recall the axiom of infinity of Zermelo–Fraenkel
set theory which says that there exists a set I with H P I and xY txu P I for all x P I. We call
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a set I with these properties an inductive set. Fix an inductive set I and denote by I Ă PpIq the
set of all inductive subsets of I. Now put

N :“
č

I, 0 :“ H, and let s : NÑ N, n ÞÑ nY tnu .

Because N is inductive by the following proposition, the map s is well-defined, indeed. We call
the triple pN, 0, sq the (set-theoretic or von Neumann) system of natural numbers. The elements
of N are called natural numbers.

2.1.9 Proposition The set N is the smallest inductive set, i.e. N is inductive and contained in
every inductive set.

Proof. We first prove that the set N is inductive. Obviously H P N, since H is an element of
each inductive subset of I. If n is an element of N, then it lies in each inductive subset of I,
which implies that nY tnu is an element of each inductive subset of I, too, hence nY tnu P N.
Because N is inductive, the map s is well-defined.

It remains to show that N is contained in every inductive set. To verify this, let J be an arbitrary
inductive set and I the inductive set used in the definition of N. Then H P J X I. Moreover, if
x P J X I, then xY txu P J X I as well, since both J and I are inductive. By definition of N the
relation N Ă J follows, hence N is the smallest inductive set indeed.

2.1.10 Remarks (a) The proposition entails in particular that the construction of N does not
depend on the initial choice of the inductive set I.

(b) For later purposes it will be useful to denote the set of all non-zero natural numbers by an
individual symbol. We will write N‰0 or Ną0 for that set.

2.1.11 Lemma Let I be an inductive set, i an element of I, and n P N. If i P n, then i is an
element of N as well, and i Ă n.

Proof. Let J :“ tn P N | @i P I : i P n ùñ i P N & i Ă nu. We show that J is an inductive
set which by Proposition 2.1.9 will entail the claim. Clearly, H P J , since H does not have any
elements. Assume that x P J , and consider xY txu. If i P I and i P xY txu, then i P x or i “ x.
In the latter case, i P J Ă N and i Ă xY txu. In the first case, i P N and i Ă x Ă xY txu by the
inductive assumption x P J . The proof is finished.

2.1.12 Theorem (cf. von Neumann (1923)) The system of natural numbers pN, 0, sq is a
Peano structure.

Proof. By construction, 0 is an element of N and s : NÑ N a function. Since n P spnq for every
element n P N, 0 is not in the image of s. This gives Axiom (P1). Now assume that spnq “ spmq.
Then m Y tmu “ n Y tnu. This implies that m P n & n P m holds true or that m “ n. In the
latter case we are done with proving Axiom (P2). In the first case we are done with this as well,
since then m Ă n and n Ă m by Lemma 2.1.11. The Induction Axiom (P3) is an immediate
consequence of Proposition 2.1.9.
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Addition of natural numbers

2.1.13 Dedekind’s iteration theorem allows the definition of addition for the set of natural
numbers N. To this end fix some m P N and let αm : N Ñ N be the unique function which
satisfes αmp0q “ m and αmpspnqq “ spαmpnqq for all n P N. Using this notation we introduce
addition of natural numbers as the function

` : Nˆ NÑ N, pm,nq ÞÑ m` n :“ αmpnq .

In the following proposition we state the fundamental properties of addition of natural num-
bers.

2.1.14 Theorem The set N of natural numbers together with addition ` : Nˆ NÑ N and the
element 0 becomes an abelian monoid which means that the following axioms are satisfied:

(Grp1) Addition is associative that means

pl `mq ` n “ l ` pm` nq for all l,m, n P N .

(Grp2) The element 0 is neutral with respect to addition which means that

0` n “ n` 0 “ n for all n P N .

(Grp4) Addition is commutative that means

m` n “ n`m for all m,n P N .

Proof. We first show that for all m,n P N

αspmqpnq “ αmpspnqq . (2.1.1)

For n “ 0 this is clear since then both sides are equal to spmq. So assume that αspmqpnq “
αmpspnqq for some n P N. Then

αspmqpspnqq “ spαspmqpnqq “ spαmpspnqqq “ αmpspspnqqq.

By the Induction Axiom Equation (2.1.1) therefore holds for all m,n P N.

Next we prove associativity of ` . To this end we have to show that ααlpmqpnq “ αlpαmpnqq for
all l,m, n P N. For m “ n “ 0 we have ααlp0qp0q “ αlp0q “ αlpα0p0qq. Now assume that for some
m P N the relation ααlpmqp0q “ αlpαmp0qq holds. Then

ααlpspmqqp0q “ αspαlpmqqp0q “ spααlpmqp0qq “

“ spαlpαmp0qqq “ αlpspαmp0qqq “ αlpαmpsp0qqq “ αlpαspmqp0qq,

where in the last equality we have used Equation (2.1.1). By the Induction Axiom one concludes
that ααlpmqp0q “ αlpαmp0qq for all l,m P N. Now assume that for some n P N and all l,m P N
the relation ααlpmqpnq “ αlpαmpnqq holds true. Then

ααlpmqpspnqq “ spααlpmqpnqq “ spαlpαmpnqqq “ αlpspαmpnqqq “ αlpαmpspnqqq.
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By the Induction Axiom associativity of ` follows.

Before we verify commutativity let us first show that α0pnq “ n for all n P N. Together with the
the equality αnp0q “ n this will entail that 0 is neutral with respect to addition. By definition
α0p0q “ 0. So assume that α0pnq “ n for some n P N. Then α0pspnqq “ spαpnqq “ spnq, hence
α0pnq “ n for all n P N by the Induction Axiom.

In particular we have now proved that α0pnq “ αnp0q for all n P N. Next assume that αmpnq “
αnpmq for some m P N and all n P N. Then, using Equation (2.1.1), αspmqpnq “ αmpspnqq “
spαmpnqq “ spαnpmqq “ αnpspmqq, hence commutativity of addition follows by the Induction
Axiom.

We have now finished the proof that pN,`, 0q is an abelian monoid.

2.1.15 Definition If one is given a triple pM, ˚, eq where M is a set, ˚ : M ˆM Ñ M a map
and e PM an element such that the above axioms (Grp1) and (Grp2) are fulfilled with N replaced
by M , ` replaced by ˚, and 0 by e, then one calls M (together with ˚ and e) a monoid. If in
addition Axiom (Grp4) holds true (with the same replacements), pM, ˚, eq is called an abelian
monoid. The binary operation ˚ : M ˆM Ñ M of a monoid M is sometimes called its law of
composition or shorter its composition law.

2.1.16 Theorem The abelian monoid pN,`, 0q has the cancellation property that means the
following holds true:

(CancL) Every element l P N is left cancellable, i.e. for all m,n P N the relation l `m “ l ` n
implies m “ n.

(CancR) Every element l P N is right cancellable, i.e. for all m,n P N the relation m` l “ n` l
implies m “ n.

Proof. By commutativity of ` it suffices to show (CancR). Obviously, the relation m` 0 “ n` 0
implies m “ n. So assume that for some l P N one can conclude from m` l “ n` l the equality
m “ n. Now assume m` splq “ n` splq. Then

spm` lq “ spαmplqq “ αmpsplqq “ m` splq “ n` splq “ αnpsplqq “ spαnplqq “ spn` lq,

which by injectivity of s entails m ` l “ n ` l. Hence m “ n by inductive hypthesis. By the
Induction Axiom every l P N now has to be left cancellable.

2.1.17 Definition A monoid pM, ˚, eq is said that to have the left (respectively right) cancella-
tion property if (CancL) (respectively (CancR)) is satisfied when replacing ` by ˚ and 0 by e. If
pM, ˚, eq has the left and right cancellation property the monoid is said to have the cancellation
property or is called a cancellation monoid. In other words Theorem 2.1.16 tells that pN,`, 0q is
a cancellation monoid.

2.1.18 Proposition For all m P N and all n P Ną0 one has

m ‰ m` n.

Proof. If m “ m` n, then n “ 0 since m “ m` 0 and since m is left cancellable.
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2.1.19 Lemma For all k, l P N the relation k ` l “ 0 is equivalent to k “ l “ 0.

Proof. Recall that a natural number is non-zero if and only if it is in the image of the successor
map. So if k or l is non-zero, that number is a successor, hence the sum of k and l is a successor
as well by definition of addition. But then k ` l ‰ 0. If k “ l “ 0, then obviously k ` l “ 0.

2.1.20 Theorem (Trichotomy law for addition) For all m,n P N exactly one of the follow-
ing statements holds true:

(i) m “ n` k for some k P Ną0.

(ii) m “ n.

(iii) n “ m` l for some l P Ną0.

Proof. If m “ n, then neither (i) nor (iii) can hold true by the preceding Proposition 2.1.18. So
assume m ‰ n. If m “ n ` k and n “ m ` l for some k, l P Ną0, then m “ m ` pk ` lq. Now
k` l is non-zero by Lemma 2.1.19 which contradicts Proposition 2.1.18. Hence one can not have
m “ n` k and n “ m` l with non-zero k, l at the same time. Thus we have shown that at most
one of the three statements (i), (ii), and (iii) can be true.

Now fix m P N and let I be the set of all n P N such that one of (i), (ii), or (iii) holds true. We
show that I is inductive which will entail the claim. First observe that n P I for n “ 0, because
if m “ 0, then m “ n holds, otherwise m “ 0`m “ n`m with m ‰ 0. Assume that n P I for
some n P N. If m “ n, then spnq “ n` 1 “ m` 1, so spnq P I in this case, too. If n “ m` l for
some l P Ną0, then spnq “ n` 1 “ pm` lq` 1 “ m`pl` 1q, so spnq P I again, since l` 1 P Ną0.
Finally, if m “ n`k for some k P Ną0, then k “ splq for some l P N, and m “ n` splq “ spnq` l
by Equation (2.1.1). For non-zero l this equation entails spnq P I. If l “ 0, we have equality of
m and spnq, hence spnq P I holds then as well. So we have shown that I is inductive, and the
theorem is proved.

Multiplication of natural numbers

2.1.21 Similarly like for addition, we use Dedekind’s iteration theorem to define multiplication
of natural numbers. Again fix some m P N and let µm : N Ñ N be the unique function which
satisfes µmp0q “ 0 and µmpspnqq “ αmpµmpnqq for all n P N. Multiplication of natural numbers
is then defined as the function

¨ : Nˆ NÑ N, pm,nq ÞÑ m ¨ n :“ µmpnq .

The fundamental algebaric properties of natural number are expressed in the following result.

2.1.22 Theorem The set N of natural numbers together with addition ` : N ˆ N Ñ N, multi-
plication ¨ : NˆNÑ N and the elements 0 and 1 :“ sp0q becomes a commutative semiring that
means the following axioms hold true:

(SRing1) N together with addition ` and the element 0 is an abelian monoid.

(Ring2) N together with multiplication ¨ and the element 1 is a monoid.
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(SRing2a) Multiplication by 0 annihilates N that is

0 ¨ n “ n ¨ 0 “ 0 for all n P N .

(Ring3) Multiplication distributes from the left and the right over addition that means

l ¨ pm` nq “ pl ¨mq ` pl ¨ nq for all l,m, n P N, and

pm` nq ¨ l “ pm ¨ lq ` pn ¨ lq for all l,m, n P N.

(Ring4) Multiplication is commutative that is

m ¨ n “ n ¨m for all m,n P N .

Proof. By Theorem 2.1.14 Axiom (SRing1) holds true.

Let us show that 0 ¨ m “ 0 for all m P N. To this end observe first that 0 ¨ 0 “ µ0p0q “ 0.
Assuming that 0 ¨m “ 0 for some m P N we conclude that

0 ¨ pspmqq “ µ0pspmqq “ α0pµ0pmqq “ µ0pmq “ 0,

where we have used that 0 is neutral with respect to addition. By induction, the claimed equality
0 ¨m “ 0 follows for all m P N. Since by definition m ¨ 0 “ µmp0q “ 0 for all m P N, we also have
shown Axiom (SRing2a).

Next we verify right distributivity. Obviously pm ` nq ¨ 0 “ 0 “ pm ¨ 0q ` pn ¨ 0q. Assume that
pm` nq ¨ l “ pm ¨ lq ` pn ¨ lq for some l P N and all m,n P N. Then, by the inductive hypothesis
and repeated application of associativity and commutativity of addition,

pm` nq ¨ splq “ µαmpnqpsplqq “ ααmpnqpµαmpnqplqq “ pm` nq ` ppm` nq ¨ lq “

“ pm` nq ` ppm ¨ lq ` pn ¨ lqq “ ppm` nq ` pm ¨ lqq ` pn ¨ lq “

“ pm` pn` pm ¨ lqqq ` pn ¨ lq “ pm` ppm ¨ lq ` nqq ` pn ¨ lq “

“ ppm` pm ¨ lqq ` nq ` pn ¨ lq “ pm` pm ¨ lqq ` pn` pn ¨ lqq “

“ αmpµmplqq ` αnpµnplqq “ µmpsplqq ` µnpsplqq “ pm ¨ splqq ` pn ¨ splqq.

By the Induction Axiom right distributivity follows.

Next observe that n ¨ 1 “ µnpsp0qq “ αnpµnp0qq “ n ` 0 “ n for all n P N, which essentailly
says that 1 is right neutral with respect to multiplication. Left multiplicative neutrality of 1
follows by induction on n. By definition of multiplication 1 ¨ 0 “ µ1p0q “ 0. Under the inductive
hypothesis 1 ¨ n “ n one concludes

1 ¨ spnq “ µ1pspnqq “ α1pµ1pnqq “ α1p1 ¨ nq “ α1pnq “ αsp0qpnq “ spα0pnqq “ spnq ,

so 1 is also left neutral with respect to multiplication.

To verify commutativity of ¨ observe that we already proved m ¨ 0 “ 0 “ 0 ¨m for all m P N.
Assuming that m ¨n “ n ¨m for some n P N and all m P N we conclude, using right distributivity
and that 1 is left neutral,

m ¨ spnq “ µmpspnqq “ αmpµmpnqq “ m` pm ¨ nq “ m` pn ¨mq “ p1 ¨mq ` pn ¨mq “

“ p1` nq ¨m “ pn` 1q ¨m “ αnpsp0qq ¨m “ spαnp0qq ¨m “ spnq ¨m.
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By induction, this proves commutativity of multiplication.

Commutativity of multiplication now entails that multiplication also left distributes over addition
and that 1 is also left neutral with respect to multiplication.

It remains to show associativity of multiplication. To this end first note that pl ¨mq ¨ 0 “ 0 “
l ¨ 0 “ l ¨ pm ¨ 0q for all l,m P N. Assume that pl ¨mq ¨ n “ l ¨ pm ¨ nq for some n P N and all
l,m P N. Then

pl ¨mq ¨ pspnqq “ µµlpmqpspnqq “ αµlpmqpµµlpmqpnqq “ pl ¨mq ` ppl ¨mq ¨ nq “

“ pl ¨mq ` pl ¨ pm ¨ nqq “ l ¨ pm` pm ¨ nqq “ µlpαmpµmpnqqq “

“ µlpµmpspnqqq “ l ¨ pm ¨ spnqq,

which by induction implies that multiplication is associative.

So all axioms of a semiring have been verified for N, and the proof is finished.

2.1.23 Definition Assume to be given a quintuple pR,`, ¨, 0, 1q such thatR is a set, ` : RˆRÑ
R and ¨ : R ˆ R Ñ R are maps and 0, 1 P R elements. Then R (together with `, ¨, 0 and 1) is
called a semiring if the above axioms (SRing1), (Ring2), (SRing2a), and (Ring3) are fulfilled with
N replaced by R. If in addition Axiom (Ring4) holds true, the semiring is called commutative.

2.1.24 Remark It is generally agreed upon in mathematics, and we follow that here too, that
multiplication ¨ in a semiring pR,`, ¨, 0, 1q takes precedence over addition `. This means that
for elements r, s P R an expression of the form r ¨ s` . . . (respectively of the form . . .` r ¨ s or
. . .`r ¨s` . . . ) is to be interpreted as an abbreviation for the expression pr ¨sq` . . . (respectively
for the expression . . .` pr ¨ sq or . . .` pr ¨ sq ` . . . ), where the terms to the left and to the right
are left invariant. With this agreement, the left and right distribution laws can now be written
more shortly as:

q ¨ pr ` sq “ q ¨ r ` q ¨ s and pr ` sq ¨ q “ r ¨ q ` s ¨ q for all q, r, s P R .

2.1.25 Definition As usual, the first nine non-zero natural numbers are denoted by the follow-
ing symbols:

1 :“ sp0q, 2 :“ sp1q, 3 :“ sp2q, 4 :“ sp3q, 5 :“ sp4q,

6 :“ sp5q, 7 :“ sp6q, 8 :“ sp7q, 9 :“ sp8q.

2.1.26 From now one we will avoid using the symbols s, αn, and µm and replace them by the
standard notation involving only the addition symbol `, the multiplication symbol ¨, and the
number symbols. Let us write this down in more detail and rewrite the basic terms involving s,
αn, and µm in standard notation.

2.1.27 Lemma The following equations hold true for all natural numbers m and n:

spnq “ n` 1 “ 1` n , (2.1.2)
αmpnq “ m` n “ n`m , (2.1.3)
µmpnq “ m ¨ n “ n ¨m , (2.1.4)
αmpspnqq “ m` pn` 1q “ pm` 1q ` n , (2.1.5)
µmpspnqq “ pm ¨ nq `m . (2.1.6)
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Proof. Compute n` 1 “ αnpsp0qq “ spαnp0qq “ spnq. Together with commutativity of addition
this equality entails the first equation.

Equations (2.1.3) and (2.1.4) are consequences of the definitions of ` and ¨ and commutativity
of these operations.

Equation (2.1.5) follows from Equations (2.1.3), (2.1.2) and (2.1.1).

The last equation is a rewrite of the equality µmpspnqq “ αmpµmpnqq.

2.1.28 Even though the monoid pN, ¨, 1q is not a cancellation monoid since 0 annihilates N, every
non-zero natural number can be multiplicatively cancelled from the left and right.

2.1.29 Proposition Every element l P Ną0 is both left and right cancellable that is for all
m,n P N the relation m ¨ l “ n ¨ l or l ¨m “ l ¨ n implies m “ n.

Proof. Let k, l P N and assume that k ¨ pl ` 1q “ 0. Then 0 “ k ¨ pl ` 1q “ k ¨ l ` k, hence
k “ k ¨ l “ 0 by Lemma 2.1.19. Therefore, the relation k ¨ l “ 0 implies k “ 0 if l is non-zero.

Now assume that m ¨ l “ n ¨ l for m,n P N and some l P Ną0. By Theorem 2.1.20, the trichotomy
law for addition, there exists k P N such that n “ m` k or m “ n` k. Assume the first. Then
m ¨ l “ n ¨ l “ pm`kq ¨ l “ m ¨ l`k ¨ l. By the cancellation law for addition, k ¨ l “ 0 which entails
k “ 0. Analogously one concludes k “ 0 if m “ n` k. So in either case we obtain m “ n. This
is what we had to show.

2.1.30 Let us finally introduce in this section another algebraic operation on N, namely the
power operation. We will show that the power operation provides an example of a monoid
homomorphism.

2.1.31 Definition For every natural number k let NÑ N, n ÞÑ kn be the map uniquely defined
by Dedekind’s Iteration Theorem such that

k0 “ 1 and kn`1 “ kn ¨ k for all n P N .

One calls the thus defined natural number kn the n-th power of k.

2.1.32 The power operation intertwines the additive and multiplicative monoid structures on N
or in more precise terms it is a monoid homomorphism between those two monoid structures
on N. Before we state and prove that result we briefly introduce the concept of a general
homomorphism of monoids.

2.1.33 Definition Let pM, ‹, eq and pN, ‚, ηq be both monoids. A map f : M Ñ N then is
called a (monoid) homomorphism from pM, ‹, eq to pN, ‚, ηq if it has the following properties:

(Grp5) The map f preserves the binary operations that is

fpa ‹ bq “ fpaq ‚ fpbq for all a, b P G .
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(Grp6) The map f preserves the neutral elements which means

fpeq “ η .

2.1.34 Proposition The power operation on natural numbers is a homomorphism of monoids
from pN,`, 0q to pN, ¨, 1q that is k0 “ 1 and kpm`nq “ km ¨ kn for all k,m, n P N. Moreover,
kn ¨ ln “ pk ¨ lqn for all k, l, n P N.

Proof. By definition of the power operation, k0 “ 1 for all k P N. Now fix m P N. To prove the
second part of the claim it suffices to show that the set I of all natural n for which the equality
kpm`nq “ km ¨ kn holds true is an inductive subset of N. Observe that kpm`0q “ km “ km ¨ 1 “
km ¨ k0, so 0 P I. Now assume that n P N. Then, using the definition of the power operation,

km`pn`1q “ kpm`nq`1 “ kpm`nq ¨ k “ pkm ¨ knq ¨ k “ km ¨ pkn ¨ kq “ km ¨ kn`1 .

Hence n` 1 P I, so I is inductive indeed and the homomorphism property is proved.

Now fix k, l P N. Obviously, k0 ¨ l0 “ 1 “ pk ¨ lq0. Assume that kn ¨ ln “ pk ¨ lqn for some n P N.
Then

kn`1 ¨ ln`1 “ pkn ¨ kq ¨ pln ¨ lq “ pkn ¨ lnq ¨ pk ¨ lq “ pk ¨ lqn ¨ pk ¨ lq “ pk ¨ lqn`1 .

So the set of all n P N for which the equality kn ¨ ln “ pk ¨ lqn holds true is an inductive subset
of N, hence coincides with N. This proves the second claim.

The order of natural numbers

2.1.35 Definition One calls a number m P N smaller or less than a number n P N, in signs
m ă n, if there exists an l P Ną0 such that n “ m` l. The relation that m is less or equal than
n will be denoted by m ď n.

If n is smaller than m, we call m greater than n and denote this by m ą n. By m ě n we denote
the relation that m is greater or equal than n.

2.1.36 Theorem The relation ď on the set of natural numbers is a total order relation that is
the following axioms are satisfied:

(O1) Reflexivity
For all n P N the relation n ď n holds true.

(O2) Antisymmetry
If m ď n and n ď m for some m,n P N, then m “ n.

(O3) Transitivity
For all k,m, n P N the relations k ď m and m ď n entail k ď n.

(O4) Totality
For all m,n P N the relation m ď n or the relation n ď m holds true.
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In particular, the law of trichotomy is satisfied for natural numbers which means that for all
m,n P N exactly one of the following holds true:

m ă n, m “ n, or n ă m .

Proof. First note that the relation m ď n is equivalent to the existence of an l P N such that
n “ m` l.

The relation ď on N is reflexive by definition. Assume that m ď n and n ď m for two numbers
m,n P N. Then there exist k, l P N such that n “ m ` l and m “ n ` k. This implies
n “ pn`kq` l “ n`pk` lq. By Proposition 2.1.18, k` l “ 0, hence k “ l “ 0 by Lemma 2.1.19.
This implies m “ n, so ď is antisymmetric. Let us show that ď is transitive. To this end assume
k ď m and m ď n. Then there exist j, l P N such that m “ k ` j and n “ m ` l. This implies
n “ pk ` jq ` l “ k ` pj ` lq, hence k ď n and transitivity of ď is proved. So we have shown
that ď is an order relation on N.

It remains to verify the trichotomy law which also entails Axiom (O4) or in other words that ď
is a total order. But the trichotomy law is an immediate consequence of the trichotomoy law for
addition, Theorem 2.1.20.

2.1.37 Definition Let us remind the reader at this point that a set X together with a binary
relation ď on it is called an ordered set, partially ordered set or a poset if Axioms (O1) to (O3)
are satisfied (obviously after replacing N by X in the axioms). The relation ď then is called an
order relation or a partial order on X. If in addition Axiom (O4) holds true, pX,ďq is called a
totally ordered set and ď a total order on X. A set X together with a binary relation ď which
fulfills the axiom of reflexivity (O1) and of transitivity (O3) is sometimes called a preordered set.

Two elements x, y of a partially ordered set pX,ďq are called comparable if x ď y or y ď x. So
X being totally ordered by ď means that any two of its elements are comparable.

For an order relation ď on a set X one usually abbreviates for elements x, y P X the relation
x ď y and x ‰ y by x ă y. Moreover, x ě y and x ą y stand for y ď x and y ă x, respectively.

Let pX,ďq and pY,ĺq be two ordered sets. Then a map f : X Ñ Y is called order preserving
or monotone increasing if fpxq ĺ fpyq for all x, y P X with x ď y. If instead x ď y implies
fpxq ľ fpyq for all x, y P X, then f is called order reversing or monotone decreasing. If x ă y
always implies fpxq ă fpyq, then f is said to be strictly order preserving or strictly monotone
increasing. In case fpxq ą fpyq for all x, y P X with x ă y, then f is a strictly order reversing
or in other words strictly monotone decreasing map.

2.1.38 Remark Note that if an order relation ď on a set X is total, then the trichotomy law
holds true that is that for each pair of elements x, y P X exactly one of the relations x ă y,
x “ y, or y ă x is true.

2.1.39 Theorem (Monotony laws) The algebraic operations and the order relation on N are
compatible in the following sense:

(M1) Monotony of addition
For all m,n P N and k P N the relation m ă n implies m` k ă n` k.
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(M2) Monotony of multiplication
For all m,n P N and k P Ną0 the relation m ă n implies m ¨ k ă n ¨ k.

Proof. Assume that m ă n. Then there exists a unique l P Ną0 such that n “ m` l.

The equality n “ m` l implies pn` kq “ pm` kq ` l for all k P N which entails (M1).

By distributivity pn ¨ kq “ pm ¨ kq ` pl ¨ kq for every k P Ną0, so (M2) follows if we can yet show
that l ¨ k P Ną0. To prove this observe that k “ spiq for some i P N and that l “ spjq for some
j P N. Therefore, l ¨ k “ l ¨ spiq “ l ¨ i` l “ l ¨ i` spjq “ s

`

l ¨ i` j
˘

, which entails l ¨ k P Ną0 and
the claim is proved.

2.1.40 Proposition Let m,n be natural numbers such that n ď m ď n ` 1. Then m “ n or
m “ n`1. In other words this means that there is no natural number which is larger than n and
smaller than the successor n` 1.

Proof. Assume that n ď m ď n ` 1 holds true. Then there exists some l P N such that
m ` l “ n ` 1. If If l “ 0, then m “ n ` 1, if l “ 1, then m “ n by the cancellation property.
But we can not have l ą 1, since otherwise n` 1 ď m` 1 ă m` l “ n by monotony of addition
which is a contradiction to n ă n` 1. The proof is finished.

2.1.41 Theorem (Archimedean property of natural numbers) Let m,n be non-zero nat-
ural numbers. Then there exists k P N such that

k ¨m ą n .

Proof. If m ą n, then put k “ 1 and we are done. So assume m ď n. Then there exists an l P N
such that n “ m` l. Put k “ l` 2. Since m ě 1, distributivity and monotony of multiplication
entail

k ¨m “ p1` l ` 1q ¨m “ m` pl ` 1q ¨m ě m` pl ` 1q “ pm` lq ` 1 “ n` 1 ą n .

The claim is proved.

2.1.42 Before we formulate the well ordering principle for natural numbers let us briefly recall
the notions of minimal and maximal elements of a subset of an ordered set and related notions.

2.1.43 Definition Let pX,ďq be an ordered set and Y Ă X a non-empty subset.

(i) An element b P X is called a lower bound of Y if b ď y for all y P Y and an upper bound if
y ď b for all y P Y .

(ii) A non-empty subset of X having a lower bound is said to be bounded below. If it has an
upper bound it is called bounded above. If the subset is both bounded below and bounded
above, then it is called bounded. A non-empty subset of X which is not bounded is called
unbounded.

(iii) A lower bound l of Y is called a greatest lower bound or an infimum of Y , if b ď l for
every lower bound of Y . An upper bound bound u of Y is called a least upper bound or a
supremum of Y , if u ď b for every upper bound of Y .
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(iv) An element m P Y is called a minimal element of Y if for every y P Y with y ď m the
equality y “ m holds and a maximal element of Y if for every y P Y withm ď y the equality
y “ m is true.

(v) An element m P Y is called a least element or minimum of Y if m ď y for all y P Y and a
greatest element or maximum of Y if y ď m for all y P Y .

2.1.44 Lemma If they exist, the greatest lower bound and the least upper bound of a non-empty
subset Y Ă X of an ordered set pX,ďq are uniquely determined. Likewise, least and greatest
elements are uniquely determined when they exist.

Proof. Let l and l1 be greatest lower bounds of Y . Then l1 ď l and l ď l1, hence l “ l1. The same
argument works for the least upper bound and least and greatest elements.

2.1.45 Remarks (a) The notions of a lower bound and of an upper bound of a subset Y Ă X
defined in Definition 2.1.43 (i) make also sense when pX,ďq is just a preordered set. We
will follow this convention.

(b) Unless any two elements of Y in Definition 2.1.43 (iv) are comparable, minimal and maximal
elements of Y need not be uniquely determined.

2.1.46 Definition If it exists, the greatest lower bound of a subset Y of an ordered set pX,ďq
will be denoted by inf Y , the least upper bound of Y by supY , the minimum of Y by minY ,
and the maximum of Y by maxY .

2.1.47 Lemma Every non-empty set of natural numbers which is bounded above has a greatest
element.

Proof. By induction on n we show that every non-empty subset B Ă N having n has upper
bound has a greatest element. If 0 is an upper bound of B, then B “ t0u, and 0 is a greatest
element. Assume that for some n P N every subset of N having n as upper bound has a greatest
element. Let B Ă N be a subset having n ` 1 is an upper bound. Then either n ` 1 P B or
n` 1 is not an element of B. In the first case, n` 1 is a greatest element of B. In the second,
m ă n ` 1 for all m P B, hence m ď n for all m P B. By inductive hypothesis B therefore has
greatest element in this case too. The argument is finished.

2.1.48 Theorem (Well ordering principle of natural numbers) Every non-empty set of
natural numbers has a least element.

Proof. Let M Ă N be non-empty, and B Ă N the set of lower bounds of N. Since 0 P B, B is
non-empty. Since M is non-empty, B is bounded above, hence has a greatest element m by the
preceding lemma. Now m is an element of M as well. Assume it is not. Then m ă n for all
n P M , hence m ` 1 ď n for all n P M , and m ` 1 is a lower bound of M which contradicts m
being the greatest lower bound of M . So m is an element of M indeed. Since m is also a lower
bound of M , it is a least element of M .
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Finite sets

2.1.49 Definition By an interval in N or an interval of natural numbers one understands a set
I of the form

I “ tk P N | m ď k ď mu or I “ tk P N | m ď ku

for some m,n P N. One usually denotes the first kind of interval by rm,nsN or tm, . . . , nu, the
second by Něm. Note that for n ă m the intervall rm,nsN is empty.

A set X is called finite, if there exists a bijective map X Ñ r1, nsN for some n P N.

2.1.50 Proposition Let m and n be natural numbers. Then there exists a bijection f : r1, nsN Ñ
r1,msN if and only if m “ n.

Proof. We only need to show that the conditionm “ n is necessary for the existence of a bijection
f : r1, nsN Ñ r1,msN, because it is obviously sufficient; take the identity function, for example.

We prove necessity by induction on n. First assume n “ 0, and let f : r1, 0sN Ñ r1,msN be a
bijection. Since r1, 0sN “ H, the function f is the empty function. The empty function is only
bijective if the range is empty as well. Hence r1,msN “ H, which is the case if and only if m “ 0,
because otherwise 1 P r1,msN.

Now assume that the claim holds for some n P N. Let f : r1, n ` 1sN Ñ r1,msN be a bijection.
Since n` 1 ě 1, the interval r1, n` 1sN is not empty, hence r1,msN is so, too. This implies that
m “ m̃` 1 for a unique m̃ P N. Let k “ f´1pmq. If k “ n` 1, let τ : r1, n` 1sN Ñ r1, n` 1sN
be the identity function, otherwise put τpkq “ n ` 1, τpn ` 1q “ k, and τpiq “ i for all
i P r1, n ` 1sNztk, n ` 1u. The function g “ f ˝ τ : r1, n ` 1sN Ñ r1,msN then is a bijection as
well, and gpn`1q “ m. Hence the restriction g|r1,nsN has image r1,msNztmu “ r1, m̃sN; note that
for the latter equality we have used Proposition 2.1.40. By inductive assumption one obtains
n “ m̃, hence n` 1 “ m, and the proposition is proved.

2.1.51 Definition For a finite set X the unique natural number n for which there exists a
bijection X Ñ r1, nsN is called the cardinality of X. It is denoted |X|.

2.1.52 Proposition Let X and Y be finite sets. Then the following holds true:

(i) The cardinality of the disjoint union X \ Y is |X| ` |Y |.

(ii) The cardinality of the cartesian product X ˆ Y is |X| ¨ |Y |.

(iii) The cardinality of the power set PpXq is 2|X|.

Proof. ad (i ). It suffices to show that for all m,n P Ną0 the disjoint union r1,msN \ r1, nsN can
be bijectively mapped onto r1,m` nsN. But such a bijection is given by

r1,msN \ r1, nsN “ t1u ˆ r1,msN Y t2u ˆ r1, nsN Ñ r1,m` nsN, pi, kq ÞÑ

#

k, if i “ 1

m` k, if i “ 2.
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ad (ii ). Now one needs to prove that |r1,msN ˆ r1, nsN| “ n ¨m for all m,n P N. Let us show
that the set I of all n P N for which this equality holds for every m P N is inductive. This will
prove (ii). Obviously, 0 P I since r1,msN ˆH “ H. Next observe that if Z “ tzu is a set having
a unique element z, then the map r1,msNˆZ Ñ r1,msN, pk, zq ÞÑ k is a bijection, so r1,msNˆZ
has cardinality m. Under the assumption n P I this observation entails

ˇ

ˇr1,msN ˆ r1, n` 1sN
ˇ

ˇ “
ˇ

ˇr1,msN ˆ r1, nsN Y r1,msN ˆ tn` 1u
ˇ

ˇ “

“
ˇ

ˇr1,msN ˆ r1, nsN
ˇ

ˇ`
ˇ

ˇr1,msN ˆ tn` 1u
ˇ

ˇ “

“ m ¨ n`m “ m ¨ pn` 1q ,

where in the second equality we have used (i). Hence n` 1, and the second claim is proved.

ad (iii ). Obviously, if f : X Ñ r1, nsN is a bijection, then the induced map f : PpXq Ñ
Ppr1, nsNq, A ÞÑ fpAq is one, too. This means that we need to verify the claim only for sets
of the form X “ r1, nsN with n P N. Let J be the set of all natural numbers n such that
ˇ

ˇPpr1, nsNq
ˇ

ˇ “ 2n. Since PpHq “ tHu, one has |PpHq| “ 1 “ 20, hence 0 P J . Assume n P J .
Then Ppr1, n ` 1sNq is the disjoint union the set P of all subsets of r1, n ` 1sN not containing
n` 1 and the set Q of all subsets containing n` 1. Then

ˇ

ˇPpr1, n` 1sNq
ˇ

ˇ “ |P | ` |Q|. Moreover,
P coincides with Ppr1, nsNq, hence |P | “ 2n. So the claim is proved if one can yet show that
|Q| “ 2n, because then n` 1 P J by

ˇ

ˇPpr1, n` 1sNq
ˇ

ˇ “ |P | ` |Q| “ 2 ¨ 2n “ 2n`1 .

But the map QÑ P , A ÞÑ Aztn`1u is a bijection with inverse P Ñ Q, B ÞÑ BYtn`1u, which
entails the remaining claim.

2.1.53 Proposition Let pX,ďq be a finite ordered set of cardinality n P Ną0. Then X has a
minimum and a maximum and there exists a unique strictly order preserving map r1, nsN Ñ X.
This map is a bijection.

Proof. We use induction by n. For n “ 1 the claim is trivial because then the unique element
of X is both a minimum and a maximum and there exists only one map between t1u and X
in this situation. That map is obviously order preserving. So assume the claim holds true for
some natural n ą 0 and that X is an ordered set of cardinality n` 1. Let x0 P X be an element
of X and consider X 1 “ Xztx0u. Then X 1 has a minium x1m and a maximum x1M. If x0 ă x1m
put xm “ x0, otherwise let xm “ x1m. By construction, xm is the minimum of X. Likewise one
constructs the maximum xM: define xM “ x0 if x1M ă x0, otherwise let xM “ x1M. By inductive
assumption there exists a unique strict order preserving map f 1 : r1, nsN Ñ XztxMu. Extend
f 1 to a map f : r1, n ` 1sN Ñ X by putting fpn ` 1q “ xM. By constructing f is strictly
order preserving. Let g : r1, n ` 1sN Ñ X be another strictly order preserving map. Since g
is strictly order preserving, the map g1 : r1, nsN Ñ Xztgpn ` 1qu, k ÞÑ gpkq is well-defined and
strictly order preserving. By inductive assumption g1 is a bijection. Hence x ă gpn ` 1q for all
x P Xztgpn`1qu, so gpn`1q “ xM “ fpn`1q. Since f 1 and g1 coincide by inductive assumption,
f “ g follows. Moreover, impfq “ impgq “ X, which shows surjectivity of f . As a strictly order
preserving map it is also injective, and the claim is proved.
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Recursion and sequences

2.1.54 Recursion is a crucial tool to construct sequences of natural numbers, real numbers or
more general objects, and goes back to Dedekind’s iteration scheme. We will introduce here a
quite broad notion of a sequence and then formulate and prove the recursion theorem. Afterwards
we will use it to define further operations on natural numbers like the factorial and some examples
of recursively defined sequences.

2.1.55 Definition Let X denote a set. A map x : I Ñ X from an interval I Ă N to X is called
a sequence in X and I its index set. A sequence x : I Ñ X is usually denoted pxkqkPI , where xk
stands for the value xpkq at k P I. If the set I Ă N is finite, one calls a sequence pxkqkPI finite
otherwise infinite. The cardinality of the index set of a finite set is sometimes called the length
of the sequence or the index set. In case the index set of pxkqkPI is of the form I “ rm,nsN, we
will usually denote the sequence by pxkqnk“m or pxkqmďkďn. If the index set of pxkqkPI is equal
to some Něm, the sequence is usually written in the form pxkq

8
k“m.

2.1.56 Theorem (Recursion Theorem) Let X be a set, x0 P X an element, and t : NˆX Ñ

X a function. Then there exists a unique function f : NÑ X such that fp0q “ x0 and such that
fpn` 1q “ tpn, fpnqq for all n P N.

Proof. Define the map T : N ˆ X Ñ N ˆ X by T pn, xq “ pn, tpn, xqq for all n P N and x P X.
By Dedekind’s Iteration Theorem 2.1.5 there exists a unique function F : N Ñ N ˆ X such
that F p0q “ p0, x0q and F pn ` 1q “ T pF pnqq for all n P N. Put f :“ pr2 ˝F , where pri :
N ˆ X Ñ X for i “ 1, 2is projection onto the i-th coordinate. Then fp0q “ x0. Let us show
that fpn` 1q “ tpn, fpnqq for all n P N. Since pr1 ˝T “ pr1, Dedekind’s Iteration Theorem 2.1.5
entails pr1 ˝F “ idN, hence

fpn` 1q “ pr2pF pn` 1qq “ pr2pT pF pnqqq “ t
`

pr1pF pnqq, fpnq
˘

“ tpn, fpnqq for all n P N .

So we have shown the existence of a function f with the desired properties. Let f̃ : N Ñ X
be another one. Then f̃p0q “ x0 “ fp0q and f̃pn ` 1q “ tpn, f̃pnqq “ tpn, fpnqq “ fpn ` 1q if
f̃pnq “ fpnq. By induction, the equality f̃ “ f follows. The claim is proved.

2.1.57 Proposition and Definition Let pM, ‹, eq be a monoid. Then the following holds true:

(i) For every a PM there exists a unique sequence
`

ˆn a
˘

nPN in M such that

ˆ0a “ e and ˆn`1 a “ pˆnaq ‹ a for all n P N .

In case the monoid M is multiplicatively written that is the operation is denoted by ¨ or ˝
and the neutral element by 1, the element ˆna will be denoted an and called the n-th power
of a. If the monoid M is abelian and additively written which means that the operation is
denoted by ` or ‘ and the neutral element by 0, then ˆna will be denoted n ¨ a or briefly
na.

(ii) Let I Ă PpNq be the set of finite intervals in N and S the set
Ť

IPIM
I of all finite sequences

in M . Then there exists a unique map
Ś

: SÑM such that
ą

`

paiqiPH
˘

“ e and
ą

`

paiqiPI
˘

“
ą

`

paiqiPI 1
˘

‹ amax I for all paiqiPI P S, I ‰ H .
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Hereby, paiqiPH denotes the empty sequence in M , and I 1 for every non-empty finite interval
I Ă N the interval Iztmax Iu. One usually denotes

Ś
`

paiqiPI
˘

by
Ś

iPI ai or by
Śn

i“m ai,
when I “ rm,ns, and calls it the composition of the finite sequence paiqiPI .

In case the monoid M is multiplicatively written, then one writes
ś

iPI ai or
śn
i“m ai for

the composition of a finite sequence paiqiPI in M . If the monoid M is abelian and additively
written, then one writes

ř

iPI ai or
řn
i“m ai instead of

Ś

iPI ai and calls the composition of
paiqiPI the sum of the finite sequence paiqiPI in M .

Proof. ad (i ). This follows immediately from the Recursion Theorem 2.1.56.

ad (ii ). For n P N let In be the set of all intervals in N of length n, Sn “
Ť

IPIn
M I the set of

sequences of length n, and Xn be the set MSn of all functions Sn Ñ M . Note that the Xn are
pairwise disjoint and put X “

Ť

nPNXn. Now let x0 P X be the element of X0 which maps the
empty sequence paiqiPH to 1. Define tn : Xn Ñ Xn`1 for n P N by

tpxq
`

paiqiPI
˘

:“ x
`

paiqiPI 1
˘

‹ amax I where x P Xn, I P In`1, and paiqiPI P Sn`1

The maps tn define a unique map t : X Ñ X such that tn coincides with the restriction of t to
Xn. By the Recursion Theorem 2.1.56 there now exists a map f : NÑ X such that

fp0q “ x0 and fpn` 1q “ tpfpnqq for all n P N .

Since fp0q P X0 and since fpnq P Xn implies fpn`1q “ tpfpnqq “ tnpfpnqq P Xn`1 for all n P N,
one has fpnqq P Xn for all n P N which means that fpnq is a map that assigns to each sequence
paiqiPI of length n a value fpnq

`

paiqiPI
˘

P M . The map
Ś

: S Ñ M , paiqiPI ÞÑ fp|I|q
`

paiqiPI
˘

then has the claimed properties since
ą

`

paiqiPH
˘

“ fp0q
`

paiqiPH
˘

“ 1

and since for all n P N and sequences paiqiPI P Sn`1

ą

`

paiqiPI
˘

“ fpn` 1q
`

paiqiPI
˘

“ tpfpnqq
`

paiqiPI
˘

“

“ fpnq
`

paiqiPI‘
˘

‹ amax I “
ą

`

paiqiPI‘
˘

‹ amax I .

Assume that Ă

Ś

: S Ñ M is another such map. Let J Ă N be the set of all n P N such that
for every sequence paiqiPI of finite length n the equality Ă

Ś
`

paiqiPI
˘

“
Ś

`

paiqiPI
˘

holds true.
Obviously, 0 is an element of J . If n P J , then one has for every sequence paiqiPI of length n` 1

Ą

ą

`

paiqiPI
˘

“
Ą

ą

`

paiqiPI 1
˘

‹ amax I “
ą

`

paiqiPI 1
˘

‹ amax I “
ą

`

paiqiPI
˘

.

Hence n` 1 P J , too, so J is an inductive subset of N and coincides with N. Therefore Ă

Ś

“
Ś

and the claim is proved.

2.1.58 Remark Given an element a of a monoid M , the equality ˆna “
Śn

i“1 a holds true for
every n P N, where paq1ďiďn denotes the constant family with value a.
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2.1.59 Proposition Let pM, ‹, eq be a monoid and a PM . Then the map NÑM , n ÞÑ ˆna is
a monoid homomorphism.

Proof. By definition of the operation, ˆ0a “ e. Now fix m P N. To prove that ˆm`na “
pˆmaq ‹ pˆnaq for all n P N observe first that ˆm`0a “ ˆma “ pˆmaq ‹ pˆ0aq and then that the
validity of ˆm`na “ pˆmaq ‹ pˆnaq implies

ˆm`pn`1qa “ pˆm`naq ‹ a “
`

pˆmaq ‹ pˆnaq
˘

‹ a

“ pˆmaq ‹
`

pˆnaq ‹ a
˘

“ pˆmaq ‹ pˆn`1aq .

By the induction axiom the equality ˆm`na “ pˆmaq‹pˆnaq therefore holds true for allm,n P N
and the claim is proved.

2.1.60 Definition The factorial is the function ! : NÑ N, nÑ n! defined recursively by 0! “ 1
and pn` 1q! “ n! ¨ pn` 1q.

2.1.61 Definition For all n, k P N, the binomial coefficients
`

n
k

˘

are defined recursively as
follows:

ˆ

0

k

˙

“

#

1, if k “ 0,

0, else,
and

ˆ

n` 1

k

˙

“

$

’

&

’

%

1, if k “ 0 or k “ n` 1,
`

n
k´1

˘

`
`

n
k

˘

, if 1 ď k ď n,

0, else .

2.1.62 Remark (Proof by induction) Let P pxq denote a formula or property in one variable
x. To prove that P pnq holds true for all natural numbers n greater or equal than a fixed natural
number m it suffices to show that the set

I “
 

n P N | pn ă mq _
`

n ě m& P pnq
˘(

is inductive. But this set is inductive if and only if one can verify P pmq and that for all natural
n ě m the implication P pnq ñ P pn` 1q holds true. When one verifies these two statements one
usually says that one proves P pnq (for natural n or natural n ě m) by induction on n. From
now on we will use this language, too.

2.2. Integers

2.2.1 Even though the semiring of natural numbers has the cancellation property with regard
to addition, there does not exist an additive inverse for a non-zero element in N. More precisely,
this means that for n P Ną0 there is no element m P N such that n ` m “ m ` n “ 0.
Otherwise the trichotomy law for addition would be violated. The lack of additive inverses in N
is a “deficiency” and as usual in mathematics, one heals this by adding what is missing, in this
case additive inverses or in other words negative numbers. As a result one obtains the abelian
group of integers pZ,`, 0q which even carries the structure of a commutative ring when extending
multiplication from N to Z.
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In modern mathematics, the idea of “supplementing” an abelian monoid with additive inverses
led to the invention of K-theory in Grothendieck (1957a), where the K-theory K0pXq of a quasi-
projective variety X has been constructed as the K-group associated to the abelian monoid of
isomorphism classes of (algebraic) vector bundles over X. The main ideas of constructing Z out
of N and of constructing the K-group of an abelian monoid are essentially the same, so we will
present the more abstract concept already here.

Interlude on abelian groups and rings

Before we can describe the construction of Grothendieck’s K-group, we need to explain what an
abelian group and a ring are: the former is an abelian monoid in which every element has an
inverse, the latter a semiring which forms an abelian group with respect to addition. Let us first
give the full definition of a group which includes the non-abelian case as well.

2.2.2 Definition A monoid pG, ‹, eq is called a group if it satisfies the additional axiom

(Grp3) For every a P G exists an inverse that is an element b P G such that

a ‹ b “ b ‹ a “ e .

If in addition to this (Grp4) is satisfied that is if a ‹ b “ b ‹ a for all a, b P G, then the group is
called abelian.

2.2.3 Example (a) The set N of natural numbers together with addition ` as binary operation
and 0 as neutral element is an abelian monoid by Theorem 2.1.14, but it is not a group since no
element of Ną0 has an inverse by the trichotomy law for addition, Theorem 2.1.20.

(b) The set G “ t´1, 1u with operation ¨ : G ˆ G Ñ G defined by 1 ¨ 1 “ p´1q ¨ p´1q “ 1 and
p´1q ¨ 1 “ 1 ¨ p´1q “ ´1 and neutral element 1 is an abelian group.

2.2.4 Remarks (a) The binary operation of a group G is also called its group law.

(b) The binary operation of an abelian group or monoid A is often denoted by ` or ‘, and its
neutral element by 0. We sometimes say in this case that the operation is additively written.
If A is an abelian group with additively written operation, the inverse of an element a P A is
usually denoted by ´a and called the negative of a.

(c) If the binary operation of a a group or monoid G is denoted by ¨ or ˝, then one sometimes
says that the operation is multiplicatively written. Usually, the identity element of a monoid or
group G with multiplicatively written operation is denoted by 1, and the inverse of an element
b P G (if it exists) by b´1.

(d) Even though not every element in a monoid pG, ‹, eq needs to have an inverse some still
might. One gives those elements a P G for which there exists an inverse that is a b P G such
that a ‹ b “ b ‹ a “ e a name and calls them invertible.

2.2.5 Following the categorical paradigm of this book we now introduce structure preserving
maps between monoids and groups.
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2.2.6 Definition Let pG, ‹, eq and pH, ‚, ηq be both groups or both monoids. A map f : GÑ H
then is called a (group respectively monoid) homomorphism if the following holds:

(Grp5) The binary operations are preserved which means that

fpa ‹ bq “ fpaq ‚ fpbq for all a, b P G .

(Grp6) The neutral elements are preserved that is

fpeq “ η .

2.2.7 Proposition Let pM, ‹, eq be a monoid.

(i) The neutral element of M is uniquely determined that is if e1 is another element neutral
with respect to the operation ‹, then e “ e1.

(ii) If b P M is a left inverse of some a P M and c P M a right inverse that is if b ‹ a “ e and
a ‹ c “ e, then b “ c and a is invertible. In particular inverse elements in M are uniquely
determined.

(iii) If a PM is invertible with inverse b PM , then b is invertible with inverse a.

(iv) If a P M is invertible with inverse b P M and c P M is invertible with inverse d P M , then
ac is invertible with inverse db.

(v) If f : G Ñ H is a homomorphism from pG, ‹, eq to a monoid pH, ‚, ηq, and if b P G is the
inverse of some a P G, then fpbq is the inverse of fpaq in H.

Proof. ad (i ). Both e and e1 are neutral, therefore

e “ e ‹ e1 “ e1 .

ad (ii ). This follows from

b “ b ‹ e “ b ‹ pa ‹ cq “ pb ‹ aq ‹ c “ e ‹ c “ c .

ad (iii ). This is clear since ab “ e and ba “ e.

ad (iv ). The claim is immediate by

pacqpdbq “ apcdqb “ aeb “ ab “ e and pdbqpacq “ dpbaqc “ dec “ dc “ e .

ad (v ). Just compute

fpaq ‚ fpbq “ fpa ‹ bq “ fpeq “ η and fpbq ‚ fpaq “ fpb ‹ aq “ fpeq “ η .

2.2.8 Proposition Let pG, ‹, eq be group and GÑ G, a ÞÑ a´1 its inverse map.

(i) For given elements a, b P G the equations ax “ b and ya “ b have each exactly one solution
namely x “ a´1b and y “ ba´1.
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(ii) The inverse map is an involution that is
`

a´1
˘´1

“ a for all a P G.

(iii) The inverse map is an antihomomorphism that is pabq´1 “ b´1 a´1 for all a, b P G.

(iv) If pH, ‚, ηq is a group as well and f : GÑ H a map which satisfies (Grp5), then f is a group
homomorphism.

Proof. ad (i ). Obviously, x “ a´1b solves the equation ax “ b and y “ ba´1 the equation
ya “ b. Uniqueness of x and y follows by multiplication of ax “ b from the left and ya “ b from
the right by a´1.

ad (ii ). Proposition 2.2.7 (iii) says that the inverse map on a group is an involution.

ad (iii ). This is a consequence of Proposition 2.2.7 (iv).

ad (iv ). We only have to show that f preserves the identity elements. To this end let % be the
inverse of fpeq and compute:

η “ % ‚ fpeq “ % ‚ fpe ‹ eq “ % ‚
`

fpeq ‚ fpeq
˘

“
`

% ‚ fpeq
˘

‚ fpeq “ η ‚ fpeq “ fpeq .

2.2.9 Theorem and Definition (i) The identity map on a monoid is a homomorphism, like-
wise the composition of two monoid homomorphisms.

(ii) Monoids as objects together with their homomorphisms as morphisms form a category de-
noted by Mon. When restricting objects to abelian monoids one obtains a full subcategory
denoted by AbMon.

(iii) Groups as objects together with their homomorphisms as morphisms form a full subcategory
of Mon denoted by Grp. When restricting objects to abelian groups one obtains the full
subcategory Ab of abelian groups.

Proof. ad (i ). The identity map idG on a monoid pG, ‹, eq is obviously a homomorphism since
it leaves the product of two elements and the neutral element e invariant. Assume that pG, ‹, eq,
pH, ‚, ηq and pK, ¨, oq are three monoids and let f : GÑ H and g : H Ñ K be a homomorphism.
Then the composition g ˝ f : GÑ K satisfies

g ˝ fpa ‹ bq “ gpfpa ‹ bqq “ gpfpaq ‚ fpbqq “ gpfpaqq ¨ gpfpbqq “ pg ˝ fpaqq ¨ pg ˝ fpbqq

for all a, b P G and
g ˝ fpeq “ gpfpeqq “ gpηq “ o ,

hence g ˝ f is a homomorphism of monoids.

ad (ii ). This follows from (i).

ad (iii ). This is clear by (ii) and the definition of group homomorphisms.

2.2.10 Definition A semiring pR,`, ¨, 0, 1q is called a ring if it satisfies

(Ring1) R together with addition ` and the element 0 is an abelian group.
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If in addition (Ring4) holds true i.e. if multiplication is commutative, then R is called a commu-
tative ring.

2.2.11 Remark Note that Axiom (SRing2a), which says that 0 annihilates every element, fol-
lows from (Ring1) and the distributivity axiom (Ring3). Namely, if these two axioms hold for
pR,`, ¨, 0, 1q, then for all x P R

0 “ 0 ¨ x´ 0 ¨ x “ p0` 0q ¨ x´ 0 ¨ x “ p0 ¨ x` 0 ¨ xq ´ 0 ¨ x “ 0 ¨ x

and similarly 0 “ x¨0. This means that in the definition of a ring, unlike for the one of a semiring,
Axiom (SRing2a) is actually not necessary because it is a consequence of the other ones. In ??,
where we expand on ring theory, we therefore do not make use of (SRing2a) in the definion of a
ring.

2.2.12 Definition Let pR,`R , ¨R , 0R , 1Rq and pS,`S , ¨S , 0S , 1S q be both semirings or both rings.
A map f : R Ñ S then is called a (semiring respectively ring) homomorphism if the following
holds:

(Ring5) The addition maps are preserved which means that

fpr `R sq “ fprq `S fpsq for all r, s P R .

(Ring6) The multiplication maps are is preserved which means

fpr ¨R sq “ fprq ¨S fpsq for all r, s P R .

(Ring7) The zero elements are preserved that is

fp0Rq “ 0S .

(Ring8) The identity elements are preserved that is

fp1Rq “ 1S .

An injective ring or semiring homomorphism f : RÑ S is called an embedding of rings respec-
tively semirings.

2.2.13 Proposition If pR,`R , ¨R , 0R , 1Rq and pS,`S , ¨S , 0S , 1S q are both rings, and f : R Ñ S
is a map which satisfies (Ring5), (Ring6), and (Ring8), then (Ring7) is satisfied as well, so f is a
ring homomorphism.

Proof. This follows immediately from Proposition 2.2.8 (iv).

2.2.14 Theorem and Definition (i) The identity map on a semiring is a homomorphism,
likewise the composition of two semiring homomorphisms.

(ii) Semirings as objects together with their homomorphisms as morphisms form a category
denoted by SRing. When restricting objects to commutative semirings one obtains a full
subcategory denoted by CSRing.
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(iii) Rings as objects together with their homomorphisms as morphisms form a full subcategory
of SRing denoted by Ring. When restricting objects to commutative rings one obtains the
full subcategory CRing of commutative rings.

Proof. ad (i ). The identity map idR on a semiring pR,`R , ¨R , 0R , 1Rq is obviously a homomor-
phism since it leaves the sum and product of two elements invariant and preserves the zero and
identity elements. Assume that and pS,`S , ¨S , 0S , 1S q and pT,`T , ¨T , 0T , 1T q are two more semir-
ings and let f : RÑ S and g : S Ñ T be homomorphisms. Then the composition g ˝ f : RÑ T
satisfies

g ˝ fpr ¨R sq “ gpfpr ¨R sqq “ gpfprq ¨S fpsqq “ gpfprqq ¨T gpfpsqq “ pg ˝ fprqq ¨T pg ˝ fpsqq

for all r, s P R and
g ˝ fp1Rq “ gpfp1Rqq “ gp1S q “ 1T ,

hence g ˝ f is a homomorphism of semirings.

ad (ii ). This follows from (i).

ad (iii ). This is clear by (ii) and the definition of ring homomorphisms.

2.2.15 Proposition The following algebraic relations hold in any ring pR,`, ¨, 0, 1q:

(i) p´rqs “ rp´sq “ ´prsq for all r, s P R.

(ii) p´1q2 “ 1.

(iii) A multiplicative identity element in R is uniquely determined.

(iv) Assume that R possesses an identity element. Then the inverse for an invertible r P R is
uniquely determined. If it exists, the inverse of r is denoted by r´1.

Proof. ad (i ). Since 0 is an annihilator in R, one obtains

0 “ 0 ¨ s “ pr ` p´rqq ¨ s “ rs` p´rqs ,

which entails p´rqs “ ´prsq after adding ´prsq on both sides. Similarly, one shows rp´sq “
´prsq.

ad (ii ). This is a consequence of 0 “ 0 ¨ p´1q “ p1` p´1qq ¨ p´1q “ p´1q ` p´1q2.

Properties (iii) and (iv) follow from Proposition 2.2.7 (i) and (ii), respectively.

The Grothendieck group of an abelian monoid

2.2.16 Definition Let M be an abelian monoid with binary operation ‘ : M ˆM Ñ M and
neutral element 0 P M . An abelian group K together with a morphism κ : M Ñ K of monoids
is called a Grothendieck group of M if the following universal property is satisfied:
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(Gro) For every abelian group A and every morphism of monoids f : M Ñ A there exists a
unique homomorphism of groups fK : K Ñ A such that the diagram

M A

K

κ

f

fK

commutes.

2.2.17 We will now construct a Grothendieck group for an abelian monoid pM,‘, 0q. To this
end define an equivalence relation „ on the cartesian product M ˆM by putting pm,nq „ pp, qq
for pm,nq, pp, qq PM ˆM if m‘ q‘ k “ p‘ n‘ k for some k PM . The relation „ is obviously
reflexive and symmetric. To verify transitivity let pa, bq „ pm,nq and pm,nq „ pp, qq. Then
choose k, l PM such that a‘ n‘ k “ m‘ b‘ k and m‘ q ‘ l “ p‘ n‘ l and compute

pa‘ qq ‘ pn‘ k ‘ lq “ pa‘ n‘ kq ‘ pq ‘ lq “ pm‘ b‘ kq ‘ pq ‘ lq “

“ pm‘ q ‘ lq ‘ pb‘ kq “ pp‘ n‘ lq ‘ pb‘ kq “ pp‘ bq ‘ pn‘ k ‘ lq.

So pa, bq „ pp, qq, hence „ is transitive and an equivalence relation indeed.

The „ equivalence class of an element pm,nq PM ˆM will be denoted by rm,ns.

Next we define a binary operation on the set of equivalence classes

KGropMq :“ pM ˆMq{„ .

For rm,ns, rp, qs P KGropMq put

rm,ns ‘ rp, qs :“ rm‘ p, n‘ qs.

The sum rm,ns ‘ rp, qs is well-defined by this indeed, since for pm,nq „ pm1, n1q and pp, qq „
pp1, q1q the pairs pm‘ p, n‘ qq and pm1 ‘ p1, n1 ‘ q1q are equivalent by

pm‘ pq ‘ pn1 ‘ q1q ‘ pk ‘ lq “ pm‘ n1 ‘ kq ‘ pp‘ q1 ‘ lq “

“ pm1 ‘ n‘ kq ‘ pp1 ‘ q ‘ lq “ pm1 ‘ p1q ‘ pn‘ qq ‘ pk ‘ lq,

where k, l PM have been chosen so that m‘n1‘k “ m1‘n‘k and p‘q1‘ l “ p1‘q‘ l. Hence
one obtains a map ‘ : KGropMq ˆ KGropMq Ñ KGropMq. The element 0 :“ r0, 0s obviously
serves as neutral element. Associativity and commutativity of the operation ‘ on KGropMq
follow, because they hold componentwise. pKGropMq,‘, 0q is even a group that means additive
inverses exist. Namely, since 0 “ rm,ms for all m PM , the element rn,ms is an additive inverse
for rm,ns P KGropMq:

rm,ns ‘ rn,ms “ rn,ms ‘ rm,ns “ rm‘ n,m‘ ns “ 0 .

So pKGropMq,‘, 0q is an abelian group, and the map

κ : M Ñ KGropMq, mÑ rms :“ rm, 0s

a morphism of monoids.
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2.2.18 Proposition If the abelian monoid pM,‘, 0q has the cancellation property, the canonical
map κ : M Ñ KGropMq, m Ñ rm, 0s is injective. Moreover, two pairs pm,nq P M ˆ M
and pp, qq P M ˆ M represent the same elements in KGropMq which in other words means
rm,ns “ rp, qs if and only if m‘ q “ p‘ n.

Proof. Assume that pM,‘, 0q has the cancellation property. We first show that elements pm,nq P
M ˆM and pp, qq PM ˆM are then equivalent if and only if m‘ q “ p‘n. This will also prove
the second claim.

If m‘ q “ p‘ n, then pm,nq and pp, qq are obviously equivalent. Vice versa, if pm,nq „ pp, qq,
then m ‘ q ‘ k “ p ‘ n ‘ k for some k P M , which implies m ‘ q “ p ‘ n, since M has the
cancellation property.

It remains to prove injectivity of κ. So let rm, 0s “ rn, 0s. Then by what we have shown already
m “ m` 0 “ n` 0 “ n. Hence κ is injective.

2.2.19 Proposition and Definition The abelian group KGropMq :“ pM ˆMq{„ associated
to an abelian monoid pM,‘, 0q is a Grothendieck group for M . It is called the Grothendieck
group of M . Moreover, assigning to each monoid pM,‘, 0q the Grothendieck group KGropMq
and to each morphism f : M Ñ N of abelian monoids pM,‘, 0q and pN,`, 0q the unique group
homomorphism KGropfq making the diagram

M N

KGropMq KGropNq

f

KGropfq

commute, is a functor from the category AbMon of abelian monoids to the category Ab of abelian
groups.

Proof. Let us show that KGropMq together with the morphism of monoid κ : M Ñ KGropMq
satisfies the universal property (Gro). So assume that pA,`, 0q is an abelian group and that
f : M Ñ A is a morphism of monoids. Define fKGropMq : KGropMq Ñ A by

rm,ns ÞÑ fpmq ´ fpnq.

This map is well-defined. To verify this choose k P M such that m ‘ q ‘ k “ p ‘ n ‘ k and
compute

fpmq ` fpqq “ fpm‘ q ‘ kq ´ fpkq “ fpp‘ n‘ kq ´ fpkq “ fppq ` fpnq.

Hence fpmq ´ fpnq “ fppq ´ fpqq, so fKGropMq is well-defined indeed. The map fKGropMq is a
group homomorphism, since

fKGropMqprm,ns ‘ rp, qsq “ fKGropMqprm‘ p, n‘ qsq “ fpm‘ pq ´ fpn‘ qq “

“ fpmq ` fppq ´ pfpnq ` fpqqq “ pfpmq ´ fpnqq ` pfppq ´ fpqqq “

“ fKGropMqprm,nsq ` fKGropMqprp, qsq.
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Assume that f 1 : KGropMq Ñ A is another group homomorphism such that f 1 ˝ κ “ f . Then,
for all rm,ns P KGropMq

fKGropMqprm,nsq “ fpmq ´ fpnq “ f 1pκpmqq ´ f 1pκpnqq “ f 1pκpmq ´ κpnqq “ f 1prm,nsq,

hence fKGropMq “ f 1. This proves that fKGropMq together with κ is a Grothendieck group of M .
The remainder of the claim is now an immediate consequence of the universal property (Gro).

2.2.20 Remark The group operation on the Grothendieck group of an abelian monoid M will
usually be denoted by the same symbol like the binary operation on the monoid. Moreover, the
image of an element m P M under the canonical morphism M Ñ KGropMq will be denoted by
rms. If M has the cancellation property, then one just writes m instead of rms which will not
lead to confusion by injectivity of M Ñ KGropMq in this case.

2.2.21 Proposition In case pR,`, ¨, 0, 1q is a semiring, the Grothendieck group KGropRq of the
abelian monoid pR,`, 0q carries a natural multiplicative structure given by

¨ : KGropRq ˆKGropRq Ñ KGropRq, rp, qs ¨ rr, ss :“ rp ¨ r ` q ¨ s, p ¨ s` q ¨ rs.

The Grothendieck group KGropRq - or more precisely
`

KGropRq,`, 0q
˘

- supplemented by the
operation ¨ and the multiplicatively neutral element r1, 0s then becomes a ring. It is commutative,
if R is.

Proof. The definition of ¨ does not depend on representatives. To verify this assume pp, qq „
pp1, q1q and pr, sq „ pr1, s1q. Then one can find k, l P M such that p ` q1 ` k “ p1 ` q ` k and
r ` s1 ` l “ r1 ` s` l. Now compute

pp ¨ r ` q ¨ sq ` pp1 ¨ s` q1 ¨ rq ` k ¨ pr ` sq “ pp1 ¨ r ` q1 ¨ sq ` pp ¨ s` q ¨ rq ` k ¨ pr ` sq,

pp1 ¨ r ` q1 ¨ sq ` pp1 ¨ s1 ` q1 ¨ r1q ` pp1 ` q1q ¨ l “ pp1 ¨ r1 ` q1 ¨ s1q ` pp1 ¨ s` q1 ¨ rq ` pp1 ` q1q ¨ l,

and conclude

rp ¨ r ` q ¨ s, p ¨ s` q ¨ rs “ rp1 ¨ r ` q1 ¨ s, p1 ¨ s` q1 ¨ rs “ rp1 ¨ r1 ` q1 ¨ s1, p1 ¨ s1 ` q1 ¨ r1s.

So rp, qs ¨ rr, ss is well-defined.

Let us now show that the operation ¨ : KGropRq ˆ KGropRq Ñ KGropRq is associative and
has r1, 0s as neutral element. The latter follows from r1, 0s ¨ rr, ss “ r1 ¨ r, 1 ¨ ss “ rr, ss and
rp, qs ¨ r1, 0s “ rp ¨ 1, q ¨ 1s “ rp, qs. To prove associativity let ra, bs, rp, qs, rr, ss P KGropRq and
compute

ra, bs ¨ prp, qs ¨ rr, ssq “ ra, bs ¨ prp ¨ r ` q ¨ s, p ¨ s` q ¨ rsq “

“ ra ¨ pp ¨ r ` q ¨ sq ` b ¨ pp ¨ s` q ¨ rq, a ¨ pp ¨ s` q ¨ rq ` b ¨ pp ¨ r ` q ¨ sqs “

“ rpa ¨ p` b ¨ qq ¨ r ` pa ¨ q ` b ¨ pq ¨ s, pa ¨ p` b ¨ qq ¨ s` pa ¨ q ` b ¨ pq ¨ rs “

“ ra ¨ p` b ¨ q, a ¨ q ` b ¨ ps ¨ rr, ss “ pra, bs ¨ rp, qsq ¨ rr, ss.

The operation ¨ distributes over addition from the left by

ra, bs ¨ prp, qs ` rr, ssq “ ra, bs ¨ rp` r, q ` ss “

“ ra ¨ pp` rq ` b ¨ pq ` sq, b ¨ pp` rq ` a ¨ pq ` sqs “

“ rpa ¨ p` b ¨ qq ` pa ¨ r ` b ¨ sq, pa ¨ q ` b ¨ pq ` pa ¨ s` b ¨ rqs “

“ ra ¨ p` b ¨ q, a ¨ q ` b ¨ ps ` ra ¨ r ` b ¨ s, a ¨ s` b ¨ rs “

“ ra, bs ¨ rp, qs ` ra, bs ¨ rr, ss,
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and from the right by

pra, bs ` rp, qsq ¨ rr, ss “ ra` p, b` qs ¨ rr, ss “

“ rpa` pq ¨ r ` pb` qq ¨ s, pa` pq ¨ s` pb` qq ¨ rs “

“ rpa ¨ r ` b ¨ sq ` pp ¨ r ` q ¨ sq, pa ¨ s` b ¨ rq ` pp ¨ s` q ¨ rqs “

“ ra ¨ r ` b ¨ s, a ¨ s` b ¨ rs ` rp ¨ r ` q ¨ s, p ¨ s` q ¨ rs “

“ ra, bs ¨ rr, ss ` rp, qs ¨ rr, ss.

Altogether this shows that KGropRq is a ring. If the semiring R is commutative, then

rp, qs ¨ rr, ss “ rp ¨ r ` q ¨ s, p ¨ s` q ¨ rs “ rr ¨ p` s ¨ q, r ¨ q ` s ¨ p`s “ rr, ss ¨ rp, qs

and multiplication in KGropRq is commutative as well. This finishes the proof.

The ring of integers Z

2.2.22 Definition The ring of integers Z is defined as the Grothendieck ringKGropNq associated
to the semiring of natural numbers N.

2.2.23 Theorem and Definition The set Z together with addition ` and multiplication ¨ as
binary operations and the elements 0 :“ r0, 0s and 1 :“ r1, 0s as neutral elements is a commutative
ring. Moreover, the canonical map N ãÑ Z, n ÞÑ n :“ rn, 0s is an embedding of abelian monoids,
so N can be identified with its image

 

rn, 0s P Z | n P N
(

in Z. Under this identification, Z is the
disjoint union of Ną0, t0u and ´Ną0. Elements of Ną0 are called positive integers, elements of
´Ną0 negative integers.

Proof. The first claim is a consequence of Proposition 2.2.21. The second claim follows from
Proposition 2.2.18. The third claim is essentially a consequence of the trichotomy law for addi-
tion, Theorem 2.1.20. Namely, given rm,ns P Z there are exactly three cases:

(1) There exists k P Ną0 such that m “ n` k.

(2) m “ n.

(3) There exists l P Ną0 such that n “ m` l.

In the first case the equality m ` 0 “ k ` n holds true which in other words means that
rm,ns “ rk, 0s “ k P Ną0. If m “ n, then rm,ns “ r0, 0s “ 0 P N. In the third case one has
l `m “ 0` n which entails rm,ns “ r0, ls “ ´l P ´Ną0. The proof is finished.

2.2.24 Remark From now on we will identify every natural number n P N with its image in Z.
In particular we will denote the image of n P N in Z by the same symbol for ease of notation.
Further we will denote by Z‰0 the set of nonzero integers or in other words the union of Ną0 and
´Ną0. The set Ną0 of positive integers is sometimes denoted by Zą0, the set ´Ną0 of negative
integers by Ză0.

2.2.25 Proposition The product p ¨ q of any non-zero integers p, q is non-zero.
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Proof. Assume first that p and q are elements of Ną0. Then both are successors that means
p “ spkq and q “ splq for some k, l P N. Then

p ¨ q “ spkq ¨ splq “ spkq ¨ l ` spkq “ s
`

spkq ¨ l ` k
˘

P Ną0 .

If p P ´Ną0 and q P Ną0, then ´p P Ną0 and

p ¨ q “ ´
`

p´pq ¨ q
˘

P ´Ną0 .

By commutativity of multiplication p ¨ q “ q ¨ p P ´Ną0 if p P Ną0 and q P ´Ną0. Finally, if
both p and q are negative, then

p ¨ q “ p´pq ¨ p´qq P Ną0 .

Quod erat demonstrandum.

2.2.26 One can rephrase the preceding proposition by saying that the ring of integers Z does not
have any nontrivial zero divisors. The notion of zero divisors makes sense in any ring, though,
even if not commutative. In the following we give the precise definition.

2.2.27 Definition An element l of a ring R is called a left zero divisor if there exists an s P Rzt0u
such that ls “ 0. An element r P R is called a right zero divisor if there exists an s P Rzt0u such
that sr “ 0. If a P R is both a left and a right zero divisor it is called a two-sided zero divisor.
In any nonzero ring the zero element is a zero divisor. It is called the trivial zero divisor. All
other zero divisors are called nontrivial. A nonzero ring without any nontrivial zero divisors is
called a domain. The elements of a ring which are neither left nor right zero divisors are said to
be regular or are called non-zero-divisors.

In the case where R is a commutative ring, the left, right, and both-sided zero divisors are all
the same, so one just speaks of zero divisors in this case. A nonzero commutative ring with no
nontrivial zero divisors is called an integral domain.

2.2.28 Remark Using the language from this definition, Proposition 2.2.25 just tells that Z is
an integral domain.

2.2.29 Proposition and Definition Let pG, ‹, eq be a group, G Ñ G, g ÞÑ g´1 its inverse
map, and g P G an element. Then the map

ZÑ G, p ÞÑ ˆpg :“

$

&

%

Śp
i“1 g if p ě 0,

´

Ś´p
i“1 g

¯´1
if p ă 0,

is a group homomorphism. If the group law on G is commutative and additively written, one
writes p ¨g or briefly pg instead ˆpg, if the group law is multiplicatively written, then one denotes
ˆpg by gp.

Proof. We already know by Proposition 2.1.59 that the map N Ñ G, n ÞÑ ˆng is a monoid
homomorphism. So it only remains to show that ˆp`qg “ pˆpgq ‹ pˆqgq if p or q is negative.
Assume that p ě 0, q ă 0. If p` q ě 0, then by definition and Proposition 2.1.59

ˆp`qg “ ˆp`qg ‹ pˆ´qgq ‹ pˆqgq “ pˆpgq ‹ pˆqgq .
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If p` q ă 0, then

ˆp`qg “ ˆp`qg ‹ pˆ´qgq ‹ pˆqgq “ pˆp`qgq ‹ pˆ´pp`qqqg ‹ pˆpgq ‹ pˆqgq “ pˆpgq ‹ pˆqgq .

Likewise one proves the case p ă 0, q ě 0. If p, q ă 0, then

ˆp`qg “ ˆp`qg ‹ pˆ´qgq ‹ pˆqgq “ ˆp`qg ‹ pˆ´qgq ‹ pˆ´pgq ‹ pˆpgq ‹ pˆqgq

“ ˆp`qg ‹ ˆ´pp`qqg ‹ pˆpgq ‹ pˆqgq “ pˆpgq ‹ pˆqgq .

This proves the claim.

2.2.30 The ring of integers Z inherits from N also an order structure compatible with the algebraic
operations.

2.2.31 Theorem and Definition Given two integers p, q one calls p less or equal than q, in
signs p ď q, if q ´ p P N. The relation ď is a total order on Z which extends the one on N and
satisfies the following monotony axioms:

(M1) Monotony of addition
For all p, q P Z and a P Z the relation p ă q implies p` a ă q ` a.

(M2) Monotony of multiplication
For all p, q P Z and a P Ną0 the relation p ă q implies p ¨ a ă q ¨ a.

Proof. Note first that p ă q if and only if q ´ p P Ną0. Since Z is the disjoint union of Ną0, t0u
and ´Ną0, this implies that the trichotomy law holds true for the relation ă. This implies in
particular that ď is total.

Reflexivity of ď is clear since p´ p “ 0 P N. Antisymmetry follows from the trichotomy law. If
p ď q and q ď r, then q ´ p and r ´ q are both elements of N, hence r ´ p “ pr ´ qq ` pq ´ pq is
an element of N as well. So ď is transitive. Thus we have proved that ď is an order relation on
Z.

By Definition 2.1.35, the order relation on Z extends the one on N.

Monotony of addition is trivial, since q ´ p P Ną0 implies pq ` aq ´ pp ` aq P Ną0. Similarly, if
a P Ną0, then q´p P Ną0 implies pq ¨aq´pp ¨aq “ pq´pq ¨a P Ną0, so monotony of multiplication
holds true as well. The proof is finished.

Ordered commutative rings and integral domains

2.2.32 Definition A commutative ring pR,`, ¨, 0, 1q together with a total order ď on it is called
an ordered commutative ring if the following weak monotony properties hold true:

(M1)’ Weak monotony of addition
For all r, s P R and a P R the relation r ď s implies r ` a ď s` a.

(M2)’ Weak monotony of multiplication
For all r, sq P R and a P R with a ě 0 the relation r ď s implies r ¨ a ď s ¨ a.
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If R is an ordered commutative ring and does not have any non-trivial zero divisors, we call R -
or better pR,`, ¨, 0, 1,ďq - an ordered integral domain.

Given an ordered ring R, elements of Rą0 :“ tx P R | x ą 0u are called positive, elements of
Ră0 :“ tx P R | x ă 0u negative. The set Rě0 :“ tx P R | x ě 0u is the set of nonnegative
elements of R, the set Rď0 :“ tx P R | x ď 0u the set of its nonpositive elements.

2.2.33 Proposition A commutative ring pR,`, ¨, 0, 1q on which a total order relation ď is given
is an ordered commutative ring if the two monotony axioms (M1) and (M2) from Theorem 2.2.31
are satisfied with Z replaced by R and Ną0 replaced by Rą0. If R is an integral domain, the
converse holds true as well.

Proof. To verify this assume first that pR,`, ¨, 0, 1,ďq is a commutative ring and ď an order
relation satisfying (M1) and (M2). Let r, s, a P R and assume r ď s. If r “ s, then r` a “ s` a.
If r ă s then r ` a ă s ` a by (M1). This proves (M1)’. Now assume in addition that a ě 0.
Then the inequality r ď s implies r ¨ a “ r ¨ a in case a “ 0 or p “ q and, by (M2), r ¨ a ă s ¨ a if
a ą 0 and p ‰ q. So (M2)’ holds as well.

Now assume that pR,`, ¨, 0, 1,ďq is an ordered ring. Assume that r ă s and let a P R. Then
r ` a ď s` a.

2.2.34 Example By Theorem 2.2.31 and Proposition 2.2.33, the ring of integers is an example
of an ordered integral domain. We will encounter several more examples, in particular the ordered
fields Q and R of rational and real numbers, respectively.

2.2.35 Remark In Z and any integral domain, the monotony axioms (M1) and (M2) are equiv-
alent to (M1)’ and (M2)’, respectively. When dealing with ordered integral domains we therefore
will refer to both properties (M1) and (M1)’ as monotony of addition, and to both (M2) and
(M2)’ as monotony of multiplication.

2.2.36 Proposition The following holds true for integers p, q and r or, more generally, for
elements p, q, and r of an ordered integral domain R:

(i) One has 1 ą 0 and ´1 ă 0.

(ii) If 0 ă p, then ´p ă 0. If q ă 0, then 0 ă ´q.

(iii) If p ă q and r ă 0, then rq ă rp.

(iv) If p ‰ 0, then p2 ą 0.

(v) If 0 ď p and 0 ď q, then the inequality p ă q is equivalent to p2 ă q2.

(vi) If p is invertible that is if there is an element p´1 P R such that p ¨ p´1 “ 1, then p is
nonzero. Moreover, p is positive (respectively negative) if and only if p´1 is.

(vii) If both p and q are invertible and positive, then the inequality p ă q is equivalent to 1
q ă

1
p .

Proof. ad (ii ). By monotony of addition, adding ´p to both sides of the inequality 0 ă p entails
´p ă 0. Adding ´q to both sides of q ă 0 gives 0 ă ´q.
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ad (iii ). Since ´r ą 0, the inequality p ă q entails ´rp ă ´rq. Adding rp ` rq to both sides
proves the claimed inequality by monotony of addition.

ad (iv ). For p ą 0 the claim is clear by monotony of multiplication. So assume p ă 0. Then
´p ą 0, hence p2 “ p´1q2 ¨ p2 “ p´pq2 ą 0.

ad (i ). Since in any integral domain 1 ‰ 0, one obtains 1 “ 12 ą 0 by (iv). By (ii), ´1 ă 0
follows.

ad (v ). By monotony of multiplication and transitivity, p ă q implies p2 ď pq ă q2 whereas
p ě q entails p2 ě pq ě q2.

ad (vi ). Since R is an integral domain, p is nonzero, because otherwise 1 “ p ¨ p´1 “ 0. By
trichotomy, p therefore is either positive or negative. If p is positive, then p´1 ď 0 implies 1 ď 0
which can not be true. So p´1 ą 0 if p ą 0. Now recall that inverses of invertible elements
are uniquely determined by (ii) in Proposition 2.2.7. Therefore, p´1 is invertible with inverse p,
hence p´1 ą 0 implies p ą 0. The remainder of the claim now follows from trichotomy.

ad (vii ). By (vi), both p´1 and q´1 are positive, hence p ă q implies by monotony of multipli-
cation q´1 “ p´1 p q´1 ă p´1 q q´1 “ q´1.

2.2.37 Definition Let pR,`, ¨, 0, 1,ďq be an ordered commutative ring. Then the abstract value
function on R is defined as follows:

| ¨ | : RÑ R, r ÞÑ

$

’

&

’

%

r if r ą 0,

0 if r “ 0,

´r if r ă 0 .

One calls |r| the abstract value of r P R.

2.2.38 Proposition Let pR,`, ¨, 0, 1,ďq be an ordered commutative ring and consider its ab-
stract value function | ¨ | : RÑ R. Then the following holds true for all r, s P R:

(i) |r| ě 0 and |r| “ 0 if and only if r “ 0.

(ii) If s ě 0 and ´s ď r ď s, then |r| ď s. Moreover, ´|r| ď r ď |r|.

(iii) Triangle Inequality: |r ` s| ď |r| ` |s|.

(iv) Reverse Triangle Inequality:
ˇ

ˇ|r| ´ |s|
ˇ

ˇ ď |r ´ s|.

(v) |r ¨ s| “ |r| ¨ |s|.

(vi) | ´ r| “ |r|.

(vii) If r is invertible, then
ˇ

ˇ

1
r

ˇ

ˇ “ 1
|r| .

Proof. ad (i ). The first claim follows by definition, Proposition 2.2.36 (ii) and since Z is the
disjoint union of Zą0, t0u and Ză0.
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ad (ii ). The second claim follows for r ě 0 by ´r ď 0 ď r “ |r| and for r ă 0 by ´|r| “ r ă 0 ă
´r “ |r|. Now assume that ´s ď r ď s for some s ě 0. If r ě 0, then |r| “ r ď s. If r ă 0, then
|r| “ ´r ď s by assumption and Proposition 2.2.36 (i) and (iii). So the first claim is proved as
well.

ad (iii ). One has ´|r| ´ |s| ď r ` s ď |r| ` |s| by (ii) and monotony of addition. Applying (ii)
again gives the claim.

ad (iv ). Douple application of the triangle inequality and monotony of addition entails ´|r´s| ď
|r| ´ |s| ď |r ´ s|, hence the reverse triangle inequality follows by (ii).

ad (v ). If r, s ě 0, then r ¨ s ě 0 by monotony of multiplication, hence |r ¨ s| “ r ¨ s “ |r| ¨ |s|. If
r ă 0 and s ě 0 or r ě 0 and s ă 0, then r ¨ s ď 0, hence |r ¨ s| “ ´pr ¨ sq “ |r| ¨ |s|. If both r
and s are negative, then r ¨ s ą 0, hence |r ¨ s| “ r ¨ s “ p´1q2 ¨ r ¨ s “ p´rq ¨ p´sq “ |r| ¨ |s|.

ad (vi ). This follows from the preceding relation and | ´ 1| “ 1.

ad (vii ). The last equality is a consequence of |r| ¨
ˇ

ˇ

1
r

ˇ

ˇ “
ˇ

ˇ

r
r

ˇ

ˇ “ |1| “ 1.

2.3. Arithmetic in Z

The fundamental theorem of arithmetic

2.3.1 Theorem (The Division Theorem) Let a, b be integers with b ‰ 0. Then there exist
uniquely determined q, r P Z such that a “ qb` r and 0 ď r ă |b|.

Proof. Consider the set M “ tm P N | Dq P Z : m “ a ´ qbu. This set is non-empty, since by
the archimedean property for Z there exists a natural number n such that n|b| ą ´a. If b ą 0
put q “ ´n otherwise let q “ n. In either case a ´ qb “ a ` n|b| ą 0, hence a ´ qb P M . Since
N is well-ordered, the set M has a least element which we denote by r. Let q P Z such that
r “ a´ qb. Assume that r ě |b|. Then s “ a´ pq ` sgnpbqqb “ r ´ sgnpbqb “ r ´ |b| P N, where
sgnpbq is defined to be equal to 1 if b ą 0 and to be ´1 else. Hence s P M and s ă r which
contradicts the minimality of r. Therefore r ă |b|.

Now assume that q1, r1 are a second pair of integers such that a “ q1b` r1 and 0 ď r1 ă |b|. Then
ˇ

ˇpq ´ q1qb
ˇ

ˇ “ |r1 ´ r| ă |b| and
ˇ

ˇpq ´ q1qb
ˇ

ˇ “ |q ´ q1| ¨ |b|. This can only be possible if |q ´ q1| “ 0
which entails q1 “ q and r1 “ r. The proof is finished.

2.3.2 Definition If r, s are integers or more generally elements of an integral domain R, then
r is said to divide s or that r is a divisor of s if there exists some element q of Z respectively R
such that q ¨ r “ s. One also says in this situation that s is a multiple of r and denotes it by
writing r | s. If r does not divide s, one denotes this by r - s.

2.3.3 Lemma If r is a divisor of the non-zero integer s, then |r| ď |s|.

Proof. By definition there exists an integer q such that q ¨ r “ s. Then q must be non-zero and
|q| ¨ |r| “ |s|. Hence |q| ě 1 and |r| ď |s|.
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2.3.4 Every natural number larger than 1 has at least two positive divisors, namely 1 and the
number itself. The natural numbers n ą 1 for which these two divisors are all the divisors of n
have a particular name, they are called prime numbers.

2.3.5 Definition Let r1, . . . , rk with k P Ną0 be integers. A natural number d is called greatest
common divisor of r1, . . . , rk if d is a divisor of all the rj and if any natural number which is a
divisor of all the rj is a divisor of d. If 1 is a greatest common divisor of r1, . . . , rk, then one
calls r1, . . . , rk coprime or relatively prime.

2.3.6 Proposition and Definition The greatest common divisor of integers r1, . . . , rk exists
and is uniquely determined. It is denoted gcdpr1, . . . , rkq.

Proof. First assume that r1 “ . . . “ rk “ 0. Then any natural number is a divisor of each of
the rj . In particular 0 is a divisor of all the rj and is divided by all natural numbers. Since 0 is
the only natural number with that property 0 is a greatest common divisor of r1, . . . , rk and it
is the only one.

Now assume that at least one of the rj is non-zero. Let us first prove uniqueness in this situation
and assume that d and d1 are greatest common divisors of r1, . . . , rk. Since 0 is not a divisor
of the non-zero elements of the rj both d and d1 have to be positive. By definition of greatest
common divisors d divides d1 and vice versa. Hence there are n,m P Ną0 such that d “ nd1

and d1 “ nd. But then d “ nmd which implies nm “ 1 since d is non-zero. This means that
n “ m “ 1 and d “ d1.

Next we prove existence. Let L be the set of all positive integers which can be written in the form
x1r1`. . .`xkrk for integers x1, . . . , xk. The set L is non-empty since it contains r2

1`. . .`r
2
k. Let

d be its smallest element. Clearly, if c divides all the rj , then c divides d. So it remains to show
that d divides all the rj . By the the Division Theorem 2.3.1 there exist aj , bj P Z, j “ 1, . . . , k
with 0 ď bj ă d such that rj “ aj ¨ d` bj . Assume that bi ą 0. Then

bi “ ri ´ ai ¨ d “ p1´ aixiqri ´
ÿ

j‰i

paixjqrj ,

where the xj P Z are chosen so that d “ x1r1 ` . . . ` xkrk. But this means that bi P L which
contradicts the minimality of d. Hence bj “ 0 for j “ 1, . . . , k, and d divides all rj .

2.3.7 Example If p is a prime number and r an integer, then p is a divisor of r if and only if
gcdpp, rq “ p. Otherwise gcdpp, rq “ 1. The greatest common divisor of 0 and an integer r is |r|,
the greatest common divisor of 1 and an integer r is 1.

2.3.8 With the proof of Proposition 2.3.6 we have also shown the following result.

2.3.9 Lemma (Bézout’s Lemma) A natural number is the greatest common divisor of inte-
gers r1, . . . , rk if and only if it is the smallest positive natural number d for which there exist
x1, . . . , xk P Z such that

d “ x1r1 ` . . .` xkrk .

2.3.10 Lemma (Euclid’s Lemma) If a prime number p divides the product rs of two integers
r and s, then p divides at least one of the integers r and s.
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Proof. If p divides r we are done. So assume that p does not divide r. Then gcdpp, rq “ 1, hence
by Bezout’s Lemma 2.3.9 there exist x, y P Z such that xp ` yr “ 1. Multiplication by s gives
s “ xsp` yrs. The right side is divisible by p, hence p divides s.

2.4. Rational numbers

2.4.1 Even though the integers form an abelian group with respect to addition, multiplicative
inverses of integers n ‰ 1,´1 do not exist in Z. The argument is as follows. First observe that
0 is not multiplicatively invertible in Z and even not in any extension ring R of Z because if
it were with inverse m, then 1 “ 0 ¨ m “ 0 and r “ 1 ¨ r “ 0 ¨ r “ 0 for all r P R. But this
contradicts that R is assumed to be an extension ring of Z, which, to remind the reader, is a
ring R in which Z is embedded by an injective ring homomorphism Z ãÑ R. To verify that also
every integer n ‰ 0, 1,´1 does not have a multiplicative inverse in Z, assume that m P Z is one,
i.e. that n ¨m “ m ¨ n “ 1. If n ą 0, then m ą 0 as well, since otherwise n ¨ p´mq “ ´1 ă 0
and n ¨ p´mq ą 0 by monotony of multiplication which is a contradiction. But then m ě 1 and
n ą 1, hence n ¨m ą 1 which contradicts the assumption that m is a multiplicative inverse of
n. If n ă 0, then ´m is a multiplicative inverse of ´n which is strictly positive and which we
already have ruled out to have a multiplicative inverse. So the elements of Zzt1,´1u are all not
invertible in Z.

The ring (or better field as we will later see) of rational numbers Q will be defined as the minimal
extension of Z in which all non-zero integers are multiplicatively invertible. The construction
of Q is via localization by the set of non-zero integers meaning by forming abstract quotients,
called fractions, of integers by non-zero ones. The process resembles the construction of the
Grothendieck group, but it is not the same since we do not want to invert the zero element of
Z. The symbol Q for the field of rational numbers goes back to Giuseppe Peano who introduced
it 1895 after quoziente, the Italian word for quotient.

Localization

2.4.2 Definition A subset S of a commutative ring R is called multiplicative if it contains 1
and if for all r, s P S the product rs is in S again.

Let R be a commutative ring, and S Ă R a multiplicative subset. On the cartesian product
Rˆ S we introduce an equivalence relation as follows. Two pairs pp, qq, pr, sq P Rˆ S are called
equivalent, in signs pp, qq „ pr, sq, if pst “ rqt for some t P S. Obviously, „ is reflexive and
symmetric. To verify transitivity, assume that pa, bq „ pp, qq and pp, qq „ pr, sq. Choose d, t P S
such that aqd “ pbd and pst “ rqt. Then

aspqdtq “ aqdpstq “ pbdpstq “ pstpbdq “ rqtpbdq “ rbpqdtq ,

hence pa, bq „ pr, sq, so „ is transitive and an equivalence relation indeed. We denote the
equivalence class of pp, qq by

p

q
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and call it the abstract quotient or fraction of p by q. The set of fractions p
q with p P R, q P S is

denoted by S´1R and called the localization of R by S.

2.4.3 Lemma For every element t of a multiplicative subset S of a commutative ring R and
every element p

q P S
´1R the fractions p

q and pt
qt coincide.

Proof. This is clear since p qt “ pt q.

2.4.4 Proposition Let R be a commutative ring and S Ă R a multiplicative subset.

(i) The localization S´1R carries a ring structure with addition

` : S´1Rˆ S´1RÑ S´1R,
´p

q
,
r

s

¯

ÞÑ
ps` rq

qs
,

multiplication
¨ : S´1Rˆ S´1RÑ S´1R,

´p

q
,
r

s

¯

ÞÑ
pq

qs
,

zero element 0 :“ 0
1 and multiplicative identity 1 :“ 1

1 .

(ii) For every s P S, the fraction 1
s is the inverse of s

1 in S´1R.

(iii) The map RÑ S´1R, r ÞÑ r
1 is a ring homomorphism.

(iv) In case S does not contain any zero divisors that is if sr ‰ 0 for all s P S and r P R‰0,
then the canonical ring homomorphism R Ñ S´1R is injective. Moreover in this case, two
fractions p

q and r
s are identical if and only if ps “ rq.

Proof. ad (i ). First one needs to verify that addition and multiplication are well-defined. To this
end let p

q “
p1

q1 and
r
s “

r1

s1 . This means there are t, u P S such that pq1t “ p1qt and rs1u “ r1su.
Then

pps` rqq q1s1 tu “ pq1tpss1uq ` rs1upqq1tq “ p1qtpss1uq ` r1supqq1tq “ pp1s1 ` r1q1q qs tu ,

so the sum of two fractions is well-defined. Next

pr q1s1 ut “ ppq1tqprs1uq “ pp1qtqpr1suq “ p1r1 qs ut ,

so the product of two fractions is well-defined as well.

To prove associativity of addition compute

´a

b
`
p

q

¯

`
r

s
“
aq ` pb

bq
`
r

s
“
paq ` pbqs` rbq

bqs
“

“
aqs` pps` rqqb

bqs
“
a

b
`
ps` rq

qs
“
a

b
`

´p

q
`
r

s

¯

.

Since R is a commutative ring,

p

q
`
r

s
“
ps` rq

qs
“
rq ` ps

sq
“
r

s
`
p

q
,
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hence addition in S´1R is commutative. The fraction 0
1 acts as neutral element by addition:

0

1
`
p

q
“

0 ¨ q ` p ¨ 1

1 ¨ q
“
p

q
.

And the additive inverse of pq is given by the fraction ´p
q :

p

q
`
´p

q
“
pq ` p´pqq

q2
“
pp´ pqq

q2
“

0

q2
“

0

1
.

So we have shown that S´1R with addition is an abelian group. Let us consider multiplication
now. Multiplication in S´1R is obviously associative since it is in R. More precisely,

´a

b
¨
p

q

¯

¨
r

s
“
ap

bq
¨
r

s
“
papqr

pbqqs
“
apprq

bpqsq
“
a

b
¨
pr

qs
“
a

b
¨

´p

q
¨
r

s

¯

.

Similarly, multiplication in S´1R is commutative:
p

q
¨
r

s
“
pr

qs
“
rp

sq
“
r

s
¨
p

q
.

The element 1
1 acts neutrally by multiplication, since

1

1
¨
p

q
“

1 ¨ p

1 ¨ q
“
p

q
.

Note that 1
1 “

t
t for all t P S since 1 ¨ t “ t ¨ 1. Using this, one proves that multiplication

distributes over addition:
a

b
¨

´p

q
`
r

s

¯

“
a

b
¨
ps` rq

qs
“
apps` rqq

bqs
“
b

b
¨
apps` rqq

bqs
“

“
aps` arq

bqs
“
ap bs` ar bq

bq bs
“
ap

bq
`
ar

bs
“
a

b
¨
p

q
`
a

b
¨
r

s
.

We have verified that S´1R is a commutative ring.

ad (ii ). Since for every s P S the relation

λpsq ¨
1

s
“
s

1
¨

1

s
“
s

s
“ 1

holds true, 1
s is the inverse of λpsq.

ad (iii ). The canonical mapping λ : RÑ S´1R, r ÞÑ r
1 is a ring homomorphism, since

r

1
`
s

1
“
r ` s

1
,

r

1
¨
s

1
“
rs

1
,

and since 0
1 and 1

1 are neutral with respect to addition and multiplication, respectively.

ad (iv ). Now we show that λ is injective if S does not contain any zero divisors. Assume that
λprq “ λpsq. Then λpr ´ sq “ 0, hence there exists a t P S such that pr ´ sqt “ 0. But since S
does not have any zero divisors r “ s, so λ is injective.

Finally consider the equation p
q “

r
s . It is equivalent to pst “ rqt for some t P S, hence to

pps´ rqqt “ 0. If S does not have zero divisors, the latter is equivalent to ps “ rq. This finishes
the proof of the proposition.
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2.4.5 Remark In the case where the multiplicative subset S of the commutative ring R does
not contain any zero divisors, one identifies R with its image in S´1R and denotes every element
in S´1R of the form r

1 just by r.

2.4.6 Theorem Let R be a commutative ring and S Ă R a multiplicative subset. Then the
localization S´1R fulfills the following universal property:

(Loc) Let A be a ring and f : RÑ A a ring homomorphism such that for every s P S the element
fpsq is invertible in A. Then there exists a unique ring homomorphism fS´1R : S´1RÑ A
which makes the diagram

R A

S´1R

f

fS´1R

commute.

Proof. Observe that for all r, s P R the equality

fpsqfprq “ fprsq “ fpsrq “ fprqfpsq

holds true. Hence fpsq´1fprq “ fprqfpsq´1 if s P S. If p, r P R, q, s P S and pp, qq „ pr, sq, choose
some t P S such that pst “ rqt. This entails fppqfpsqfptq “ fprqfpqqfptq and, by invertibility of
fptq in A, fpqq´1fppq “ fpsq´1fprq. Hence the map

fS´1R : S´1 Ñ A,
r

s
ÞÑ fpsq´1fprq

is well-defined. Moreover, it is a ring homomorphism by the following calculations:

fS´1Rp0q “ fS´1R

ˆ

0

1

˙

“ fp1q´1fp0q “ 0 ,

fS´1Rp1q “ fS´1R

ˆ

1

1

˙

“ fp1q´1fp1q “ 1 ,

fS´1R

´r

s

¯

` fS´1R

ˆ

p

q

˙

“ fpsq´1fprq ` fpqq´1fppq “

“ fpsqq´1
`

fpqqfprq ` fpsqfppq
˘

“ fS´1R

ˆ

qr ` sp

sq

˙

“ fS´1R

ˆ

r

s
`
p

q

˙

,

fS´1R

´r

s

¯

¨ fS´1R

ˆ

p

q

˙

“ fpsq´1fprqfpqq´1fppq “ fpsqq´1fprpq “ fS´1R

ˆ

r

s
¨
p

q

˙

.

This proves the existence claim. To verify uniqueness, let f : S´1R Ñ A be another ring

homomorphism such that the composition RÑ S´1R
f
Ñ A coincides with f . Then compute for

r P R and s P S
f
´r

s

¯

“ fpsq´1fprq “ fpsq´1fprq “ fS´1R

´r

s

¯

.

So f “ fS´1R and fS´1R is uniquely determined.
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The field of rational numbers Q

By Proposition 2.2.25, the set S :“ Z‰0 of non-zero integers is multiplicative. Hence the following
definition makes sense.

2.4.7 Definition The field of rational numbers Q is defined as the localization S´1Z of Z by
the multiplicative set S of non-zero integers.

2.4.8 Theorem and Definition The set Q together with addition ` and multiplication ¨ as
binary operations and the elements 0 :“ 0

1 and 1 :“ 1
1 as neutral elements is a field which means

that the following axioms hold true:

(Fld1) Q together with addition ` and the element 0 is an abelian group.

(Fld2) Q together with multiplication ¨ and the element 1 is an abelian monoid such that every
element Q‰0 :“ Qzt0u has a multiplicative inverse.

(Fld3) Multiplication distributes from the left and the right over addition.

(Fld4) The neutral elements 0 and 1 are not equal.

Moreover, the canonical map Z ãÑ Q, p ÞÑ n :“ p
1 is an injective ring homomorphism, so Z can

be identified with its image
 

n
1 P Q | n P Zu in Q.

Proof. By Proposition 2.4.4 we know that Q is a commutative ring and that Z ãÑ Q, pÑ p
1 an

injective ring homomorphism. In particular this verifies Axioms (Fld1) and (Fld3) and that Q
with multiplication ¨ and the element 1 is an abelian monoid. Since 0 ‰ 1 in Z (because N ãÑ Z
is injective, 1 “ sp0q and 0 is not in the image of the successor map s : N Ñ N), Axiom (Fld4)
holds true. It remains to show that every non-zero element of Q has a multiplicative inverse. So
let p

q P Q be non-zero. Then p and q are both in Z‰0. The element q
p now is the multiplicative

inverse of pq . This finishes the proof.

2.4.9 Definition A set F equipped with binary operations ` and ¨ on F and two elements
0, 1 P F is called a field if Axioms (Fld1) to (Fld4) above are satisfied (after replacing Q by F). If
in addition ď is a total order relation on F such that the monotony axioms below are satisfied
as well, then F, or more precisley pF,`, ¨, 0, 1,ďq is called an ordered field :

(M1) Monotony of addition
For all a, b P F and c P F the relation a ă b implies a` c ă b` c.

(M2) Monotony of multiplication
For all a, b P F and c P Fą0 :“ tx P F | x ą 0u the relation a ă b implies a ¨ c ă b ¨ c.

2.4.10 Definition A rational number p
q P Q is called less or equal than a rational number

r
s P Q, in signs p

q ď
r
s , if the integer prq ´ psqqs lies in N.

2.4.11 Theorem The field Q together with the binary relation ď is an ordered field. Moreover,
the canonical embedding Z ãÑ Q, p ÞÑ p

1 is order preserving which means that p ă q for p, q P Z
implies p

1 ă
q
1 .
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Proof. Obviously, ď is reflexive, since for p
q P Q the integer ppq ´ pqqq2 vanishes.

If pq ď
r
s and r

s ď
p
q , then both prq´ psqqs and its additive inverse pps´ rqqqs are elements of N,

hence prq ´ psqqs “ 0 which implies that r
s ´

p
q “

rq´ps
qs “

prq´psqqs
pqsq2

“ 0. So ď is antisymmetric.

If a
b ď

p
q and p

q ď
r
s , then ppb ´ aqqbq ě 0 and prq ´ psqqs ě 0. Hence

`

prb ´ asqbs
˘

qq “

prbq ´ aqsqbqs “ prq ´ psqqsb2 ` ppb ´ aqqbqs2 ą 0, since b2 ą 0 and s2 ą 0. Since q2 ą 0,
prb´ asqbs follows by monotony of multiplication in Z. This proves that ď is transitive. So we
have shown that ď is an order relation on Q.

Since for two rational numbers p
q and r

s the integer prq´psqqs is either positive, zero, or negative,
the trichotomy law holds true, and ď is a total order.

Note that the relation r
s ą 0 is equivalent to rs ą 0. Hence, if a

b ă
p
q and r

s ą 0, then ar
bs ă

pr
qs

since pprbs´ arqsqbsqs “
`

ppb´ aqqbq
˘

prsqs2 ą 0. Therefore, monotony of multiplication holds.
Now let r

s P Q be arbitrary and a
b ă

p
q as before. Then

a

b
`
r

s
“
as` rb

sb
and

p

q
`
r

s
“
ps` rq

sq
.

Now compute
`

pps` rqqsb´ pas` rbqpsqq
˘

sbsq “
`

ppb´ aqqbq
˘

s4 ą 0 .

Hence a
b `

r
s ă

p
q `

r
s , and monotony of addition is finally proved as well.

Finally assume p ă q for integers p, q. Then pq ¨ 1 ´ p ¨ 1q ¨ 12 “ p ´ q ą 0, hence p
1 ď

q
1 . But

p ‰ q since the ring homomorphism Z ãÑ Q is injective. So one even has p
1 ă

q
1 as claimed.

2.4.12 Theorem The field of rational numbers Q is an archimedean ordered field that is for
every pair of rational numbers p

q ,
r
s with r

s ą 0 there exists a natural number n P N such that
p
q ă n r

s .

Proof. By Proposition 2.2.36 (vi) and since r
s ą 0, the claim is equivalent to the existence of a

natural number n P N such that ps
qr ă n. So it suffices to prove that for every rational pq there

exists n P N such that p
q ă n. Let us show this. After possibly multiplying both p and q by ´1

we can assume that q P Ną0. If p ď 0, put n “ 1 and observe p ď 0 ă q “ n ¨ q. If p ą 0,
then p P N, so by the archimedean property for natural numbers 2.1.41 there exists n P N such
that p ă n ¨ q. Now observe that 0 ă 1

q because p1 ¨ 1 ´ 0 ¨ qq ¨ 1 ¨ q “ q ą 0. By monotony of
multiplication, we can now conclude from p ă n ¨ q that p

q ă n. This proves the claim.

2.4.13 An important observation for the field of rational numbers is that not all equations of
the form x2 ` a “ 0 for given a P Q have a solution x P Q.

2.4.14 Proposition Let n P N be a prime number. Then the equation x2´n “ 0 does not have
a rational solution.
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Proof. Assume that there is a rational number x such that x2 “ n. After possibly passing to
´x we can assume that there exist p P N and q P Ną0 such that x “ p

q . We can even assume
that q is the least positive natural number for which there exist a p P N such that x “ p

q . Then
n ¨ q2 “ p2. Since n is prime, Euclid’s Lemma 2.3.10 implies that n is a divisor of p. Write
p “ n ¨ r for some r P N. Then q2 “ n ¨ r2, which entails by Euclid’s Lemma again that n is a
divisor of q. Hence q “ n ¨ s for some s P Ną0. Observe that s has to be smaller than q. Now
x “ p

q “
r
s which contradicts the minimality of q.

Ordered fields

2.4.15 In the following we introduce new concepts for ordered fields and will derive properties
which hold in any ordered field, so in particular in Q.

Let us recall some notation and assume that pF,`, ¨, 0, 1,ďq is an ordered field. Then F (or better
pF,`, ¨, 0, 1,ďq) is in particular an ordered integral domain, so the sets Fą0 of positive elements
and Fă0 of negative elements are defined as tx P F | 0 ă xu and tx P F | x ă 0u, respectively,
cf. Definition 2.2.32. The sets Fě0 :“ tx P F | 0 ď xu and Fď0 :“ tx P F | x ď 0u are the the sets
of non-negative and non-positive elements of F, respectively.

2.4.16 Proposition and Definition Let pF,`, ¨, 0, 1,ďq be an ordered field. Then the set
F` :“ Fě0 of non-negative elements is a positive cone that is it satisfies the following axioms:

(PC1) For all x, y P F` the sum x` y lies in F`.

(PC2) For all x, y P F` the product x ¨ y lies in F`.

(PC3) The square x2 is an element of F` for every x P F.

(PC4) The element ´1 does not lie in F`.

(PC5) The field F is the union of F` and F´ :“ ´F`.

Proof. (PC1) follows by monotony of addition and transitivity: x`y ě x ě 0, (PC2) by monotony
of multiplication: x ¨ y ě x ¨ 0 “ 0. (PC3) is a consequence of Proposition 2.2.36 (iv). Adding ´1
to the inequality 0 ă 1 gives ´1 ă 0 which entails (PC4). Next observe that by Proposition 2.2.36
(ii) F´ “ Fď0. (PC5) then follows by the trichotomy law for ď.

2.4.17 Remark The proof of the proposition also shows F´ “ Fď0.

2.4.18 Corollary In an ordered field F the equation x2 “ 1 does not have a solution.

Proof. This is an immediate consequence of (PC3) and (PC4).

2.4.19 Proposition Let pF,`, ¨, 0, 1,ďq be an ordered field. Then the map

ZÑ F, p ÞÑ p ¨ 1 :“

$

’

’

’

’

&

’

’

’

’

%

p
ř

i“1
1 if p P Zą0,

0 if p “ 0,

´
´p
ř

i“1
1 if p P Ză0,

is a strictly order preserving embedding of rings. It is the only ring homomorphism from Z to F.
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Proof. By Proposition 2.2.29, the map ι : Z Ñ F, p ÞÑ p ¨ 1 is a group homomorphism with
respect to the additive group structures on Z and F. Observe that by definition ιp1q “ 1. Next
let us show by induction on n that ιpnpq “ ιpnqιppq for all n P N and p P Z. For n “ 0, 1 the
claim is trivial. Assume that it holds for some n ą 0. Then

ιppn` 1qpq “ ιpnp` pq “ ιpnqιppq ` ιppq “ pιpnq ` 1qιppq “ ιpn` 1qιppq ,

which shows that the claim holds for n` 1 as well. Moreover,

ιpp´nqpq “ ´ιpnpq “ ´ιpnqιppq “ ιp´nqιppq .

Hence ι is a ring homomorphism. Now let p, q P Z and assume q ă p. Then n “ p´ q P Ną0 and
p ¨ 1´ q ¨ 1 “ n ¨ 1 “

řn
i“1 1 ą 0, where the latter inequality follows by induction on n. Therefore

the map ZÑ F, p ÞÑ p ¨ 1 is strictly order preserving and in particular injective. If µ : ZÑ F is
another ring homomorphism, then for n P N

µpnq “ µ

˜

n
ÿ

i“1

1

¸

“

n
ÿ

i“1

µp1q “ ιpnq and µp´nq “ ´µ

˜

n
ÿ

i“1

1

¸

“ ´

n
ÿ

i“1

µp1q “ ιp´nq

since µp1q “ 1. Hence ι and µ coincide.

2.4.20 Since by the preceding result the set of integers is a subset of any ordered field pF,`, ¨, 0, 1,ď
q, one can ask the question whether N or Z are unbounded within that field. It will turn out
that this is not always so.

2.4.21 Definition An ordered field pF,`, ¨, 0, 1,ďq is said to be archimedean ordered if for every
pair of elements x, y P F with x ą 0 there exists a natural number n P N such that y ă n ¨ x.

2.4.22 Example The field of rational numbers is archimedean ordered by Theorem 2.4.12.

2.4.23 The field of rational numbers is the smallest archimedean field and contained in any other
archimedean ordered field by the following result.

2.4.24 Proposition Every archimedean ordered field F contains Q as subfield in a canonical
way. More precisely, there exists a unique strictly order preserving ring homomorphism Q ãÑ F.

Proof. By Proposition 2.4.19 there exists a uniquely determined strictly order preserving ring
homomorphism Z Ñ F. By the universal property of localization, see Theorem 2.4.6, this ring
homomorphism extends in a unique way to a ring homomorphism Q Ñ F. Let us show that
this ring homomorphism, which we denote by ι, is order preserving. Assume that p

q and r
s are

rational numbers and that p
q ă

r
s . After possibly passing to ´p

´q respectively ´r
´s we can assume

that q, s P Ną0. Then n :“ prq ´ psqqs P Ną0 and pιprqιpqq ´ ιppqιpsqqιpqsq “ ιpnq ą 0 by
Proposition 2.4.19. Since ιpqsq “ ιpqqιpsq ą 0, ιpqsq´1 is positive by Proposition 2.2.36 (vi).
Hence

ι
´r

s

¯

´ ι

ˆ

p

q

˙

“ ιprqιpsq´1 ´ ιppqιpqq´1 ą 0

and ι is strictly order preserving.
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2.4.25 Remark By the proposition one can identify for every ordered field F the field of rationals
with its image under the canonical embedding Q ãÑ F. We will follow that convention in this
work and will call the elements in the image of the embedding Q ãÑ F the rational elements of
F.

2.4.26 Proposition For an ordered field pF,`, ¨, 0, 1,ďq the following properties are equivalent:

(i) The field F is archimedean ordered.

(ii) For every y P F there exists n P N such that y ă n.

(iii) For all x, y P F with x ă y there exists a rational element r such that x ă r ă y.

(iv) For all x P F with x ě 0 there exists a unique n P N such that n ď x ă n` 1.

Proof. First observe that (ii) implies (i) since for x, y P F with x ą 0 (ii) entails the exsistence
of a natural n with y

x ă n. By positivity of n one obtains y ă n ¨ x, hence (i). The converse
implication is trivial, so (i) and (ii) are equivalent.

Assume that F is archimedean ordered. Let us show that then (iv) holds true. So let x ě 0.
The set of natural numbers ď x contains at least 0 and is finite by the archimedean property.
Hence it has a maximal element. Denote that element by n. Then x ă n ` 1 by maximality of
n. To verify uniqueness let m be another natural number with m ď x ă m` 1. Then m ď n by
maximality of n. One concludes n ď m from n ď x ă m ` 1. Hence n “ m and (iv) is proved.
Note that (iv) implies (ii). So (i) and (iv) are equivalent.

Now assume F is archimedean and that x, y are elements of F with x ă y. Since y´ x ą 0 there
exists a q P Ną0 with 1 ă q ¨ py´xq. Then choose p P N such that p ď qx ă p`1. One concludes
qx ă p` 1 ď qx` 1 ă qy, hence x ă p

q ă y. This proves (iii). If conversely (iii) holds true and
x ą 0 then there exist p, q P Ną0 with x ă p

q ă x` 1. Therefore x ď qx ă p which entails (ii).

2.4.27 Definition Let pF,`, ¨, 0, 1,ďq be an ordered field. The absolute value function on F is
the following map:

| ¨ | : FÑ F, x ÞÑ

$

’

&

’

%

x if x P Fą0 “ F`zt0u,
0 if x “ 0,

´x if x P Fă0 “ F´zt0u .

One calls |x| the absolute value of x P F.

2.4.28 Remark Since an ordered field is in particular an ordered integral domain, all properties
of Proposition 2.2.36 and Proposition 2.2.38 hold true for the absolute value function of an ordered
field.

The order topology

2.4.29 Let pX,ďq be a totally ordered set. Intervals in X are subsets I Ă X which contain with
every pair of elements x ă y also every element z between them which means that for all x, y P I
with x ă y and all z P X with x ď z ď y the relation z P I holds true. The following subsets are
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clearly intervals, where x, y denote arbitrary elements of X and ˘8 are two symbols assumed
not to stand for elements of X:

x, y :“ x, y X :“
 

z P X | x ă z ă y
(

,

rx, y :“ rx, y X :“
 

z P X | x ď z ă y
(

,

x, ys :“ x, ysX :“
 

z P X | x ă z ď y
(

,

rx, ys :“ rx, ysX :“
 

z P X | x ď z ď y
(

,

x,8 :“ x,8 X :“
 

z P X | x ă z
(

,

´8, y :“ ´8, y X :“
 

z P X | z ă y
(

,

´8,8 :“ ´8,8 X :“ X ,

rx,8 :“ rx,8 X :“
 

z P X | x ď z
(

,

´8, ys :“ ´8, ysX :“
 

z P X | z ď y
(

.

One calls intervals of the form x, y X , x,8 X ´8, y , or ´8,8 X open intervals in X, of
the form rx, ysX , rx,8 X or ´8, ysX closed intervals, and those of the form rx, y X or x, ysX
half-open intervals.

2.4.30 Remark When the context makes it clear which underlying set X is meant, we will
usually use the notation x, y instead of x, y X , rx, y instead of rx, y X and so on.

2.4.31 Definition Let pX,ďq be a totally ordered set with more than one elements. The order
topology TpX,ďq on pX,ďq (or just X) is then defined as the set of all subsets O Ă X such that
for each x P O one of the following holds:

(i) there exist a, b P X with x P a, b Ă O,

(ii) the element x is a minimum of X and there exists b P X such that rx, b Ă O,

(iii) the element x is a maximum of X and there exists a P X such that a, xs Ă O,

2.4.32 Remark Using the abbreviation X :“ X Y t˘8u, the order topology on X can be
equivalently defined as the set of all subsets O Ă X such that for each x P O there exists a, b P X
such that x P a, b Ă O.

2.4.33 Theorem and Definition The set T “ TpX,ďq associated to a totally ordered set pX,ďq
is a topology on X which means that the following axioms hold true:

(Top0) The sets X and H are both elements of T.

(Top1) The union of any collection of elements of T is again in T that means if pUiqiPI is a
family of elements Ui P T, then

Ť

iPI Ui P T.

(Top2) The intersection of finitely many elements of T is again in T that is for every natural n
and U1, . . . , Un P T the set

Şn
i“1 Ui lies in T.

Proof. The emptyset is an element of T by definition. Let x P X. If x is neither a minimum
nor a maximum, then there exist a, b P X with a ă x ă b or in other words x P a, b . If x is a
minimum of X, then there exists a b ą x. Hence x P rx, b . Similarly, if x is a maximum, there
exists an a P X such that x P a, bs. So X P T and (Top0) is proved.
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Next let x P
Ť

iPI Ui, where each Ui P T, i P I. Choose j P I such that x P Uj . Then either
I “ a, b P Uj for some a, b with a ă x ă b, I “ rx, b P Uj for some b ą x, or I “ a, xs P Uj for
some a ă x. In each case one has I Ă

Ť

iPI Ui which proves (Top1).

Finally let x P
Şn
i“1 Ui, where U1, . . . , Un P T. Assume first that x is neither a minimal nor a

maximal element of X. Then one can find a1, . . . , an, b1, . . . , bn P X such that ai ă x ă bi and
ai, bi Ă Ui for i “ 1, . . . , n. Let a be the maximum of the ai and b the minimum of the bi.
Then a ă x ă b and a, b Ă

Şn
i“1 Ui. Next assume x to be a minimum of X. Then there are

b1, . . . , bn P X such that rx, bi Ă Ui for i “ 1, . . . , n. As before let b denote the minimum of the
bi. Then rx, b Ă

Şn
i“1 Ui. The final case where x is a maximum of X works analogously. Choose

a1, . . . , an P X such that ai, xs Ă Ui for i “ 1, . . . , n and let a be the maximum of the ai. Then
a, xs Ă

Şn
i“1 Ui. So (Top2) holds true as well.

2.4.34 Remarks (a) A set X together with a subset T Ă PpXq such that the above axioms
(Top0) to (Top2) hold true is called a topological space. We sometimes denote such a topological
space as a pair pX,Tq. Subsets of X which are elements of the topology T are called open, subsets
of X whose complement in X is open are called closed. Note that both the sets of open and
of closed subsets of a topological space X are ordered by set-theoretic inclusion. From now on
we will use the notion of topological spaces even though the class of topological spaces will be
studied in detail only later in Chapter II.1.

(b) For every set X the power set PpXq and the set tH, Xu are topologies on X called the finest
and the coarsest topology on X, respectively. Note that this language makes fully sense since the
set of topologies on a set X is also ordered by set-theoretic inclusion, and PpXq is the largest,
tH, Xu the smallest topology on X with respect to this order relation.

2.4.35 Definition Let pX,Tq be a topological space and A Ă X a subset. By the interior of A
one understands the union of all open subsets contained in A, by the closure of A the intersection
of all closed subsets containing A. The interior of A is denoted by the symbol Å, its closure by
sA. The complement sA z Å is called the boundary of A and is denoted BA.

2.4.36 Lemma Let pX,Tq be a topological space and A Ă X a subset.

(i) The interior Å is the largest open subset of X contained in A.

(ii) The closure sA is the smallest closed subset of X containing A.

Proof. This follows immediately from the observation that the union of open sets of pX,Tq is
open and that the intersection of closed sets of pX,Tq is closed.

2.4.37 Definition Let x P X be a point of a topological space pX,Tq. A subset V Ă X is
called a neighborhood of x if there exists an open set U P T such that x P U Ă V . The set of
neighborhoods of a point x P X will be denoted Ux. If F is an ordered field and T the order
topology on F, one calls the elements of U0 zero neighborhoods.

2.4.38 Lemma Let pX,Tq be a topological space and x P X a point.

(i) Any superset of a neighborhood of x is a neighborhood of x.

(ii) The intersection of finitely many neighborhoods of x is a neighborhood of x.

94



0.2. Number systems 2.5. The real numbers

Proof. The claim is an immediate consequence of the definition of a neighborhood of x and axiom
(Top2) for a topology.

2.4.39 Definition

2.5. The real numbers

Complete ordered fields

2.5.1Unless some ambiguity could arise we will from now on denote a an ordered field pF,`, ¨, 0, 1,ď
q simply by the symbol F.

2.5.2 Definition An ordered field F is called Dedekind complete if every set bounded above has
a least upper bound.

2.5.3 Lemma An ordered field F is Dedekind complete if and only if every set bounded below
has a greatest lower bound.

Proof. The claim is an immediate consequence of the fact that multiplication by ´1 is a strictly
order reversing automorphism of the abelian group pF,`, 0q.

2.5.4 Proposition A Dedekind complete ordered field F is archimedean.

Proof. Assume that F is non-archimedean which in other words means that N is a bounded subset
of F. By Dedekind completeness there exists a least upper bound M of N. Since M ´1 ăM the
element M ´ 1 is not an upper bound of N, hence there exists an n P N such that M ´ 1 ă n.
But then M ă n` 1 which is a contradiction. Therefore F is archimedean.

2.5.5 Example The converse of the proposition does not hold true in general. For example
the ordered field of rational numbers is archimedean but not Dedekind complete. To prove this
consider the set X “ tx P Q | x2 ď 2u. Since |x|2 “ x2 ď 2 ă 22 for x P X, the estimate |x| ă 2
holds true for all x P X by Proposition 2.2.36 (v). Hence X is a bounded subset of Q. But X
does not have a least upper bound in Q. To prove this we will lead the assumption that X has a
least upper bound in Q to a contradiction. So assume that b is rational and a least upper bound
of X. First note that b ą 1 since 1 P X. If b2 ă 2 choose n P Ną0 so that 2b` 1 ă n ¨

`

2´ b2
˘

.
Then

`

b` 1
n

˘2
ď b2 ` 2b`1

n ă 2 which contradicts the assumption that b is an upper bound of
X. Hence b2 ě 2. Assume that b2 ą 2 and put c “ 1

2

`

b` 2
b

˘

. Then c2 ´ 2 “ 1
4

`

b´ 2
b

˘2
ě 0,

hence c is an upper bound of X. But b´ c “ 1
2b

`

b2 ´ 2
˘

ą 0 which contradicts that b is the least
upper bound of X. So b2 “ 2. But that contradicts Proposition 2.4.14, hence Q is not Dedekind
complete.

2.5.6 Definition By a Dedekind cut or shortly a cut in an archimedean ordered field F one
understand a pair pA,Bq of subsets A,B Ă F such that the following holds true

(DC1) The sets A,B form a partition of F that means F “ AYB.

(DC2) The set A does not have a greatest element.
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(DC3) For all elements a P A and b P B one has a ă b.

A cut pA,Bq of F is called a gap if B does not have a least element.

2.5.7 Example Let F be archimedean ordered, x P F and put A “ ty P F | y ă xu and
B “ tz P F | z ě xu. Then pA,Bq is a Dedekind cut which is not a gap.

2.5.8 Proposition Let pA,Bq be a Dedekind cut in the archimedean ordered field F. Then the
following holds true:

(i) If a, x P F satisfy a P A and x ď a, then x P A.

(ii) If b, y P F satisfy b P B and b ď y, then y P B.

(iii) The lower part A is always open in F and satisfies Ď̊A “ A.

(iv) The upper part B is always closed in F and satisfies s

B̊ “ B.

(v) If pA,Bq is a gap, then A and B are both open and closed.

Proof. Properties (i) and (ii) are immediate consequences of (DC1) and (DC3).

To verify that the lower part A is open let x P A. Since A does not have a greatest element there
exists a a P A with x ă a. Since F is archimedean there exists n P N such that a´ x ă n. Hence
a ´ n ă x ă a. Since every element y P F with y ă a is an element of A by (i), the interval
a´ n, a is contained in A and contains x. So A is open in the order topology. Its complement
B therefore is closed.

The relation A Ă sA entails A “ Å Ă Ď̊A. To verify (iv) it therefore remains to prove that Ď̊A Ă A.
Assume that x P Ď̊A. Then there exist a, b P F such that x P a, b Ă Ď̊A. But this means that every
open neighborhood of b contains a point of sA hence meets A. Therefore b P sA. Choose c P F
such that x ă c ă b. Then c, b` 1 is an open neighborhood of b, so contains some element
d P A. Since x ă d, the relation x P A follows by (i) and (iv) is proved.

Claim (iv) follows from the equality

s

B̊ “ F z Ď̊A “ F zA “ B .

To prove (v) is suffices to show that B is open. Let y be an element of B. Since by assumption
B does not have a least element there exists b P B with b ă y. Choose n P N such that y´ b ă n.
Then y P b, b` n Ă B, so B is open and the last claim is verified.

2.5.9 Proposition For an archimedean ordered field pF,`, ¨, 0, 1,ďq the following properties are
equivalent:

(i) The ordered field F is Dedekind complete.

(ii) No Dedekind cut in F is a gap.

(iii) The nested interval property holds for F which means that for all sequences
`

ran, bns
˘

nPN
of intervals fulfilling ran`1, bn`1s Ă ran, bns for all n P N the intersection

Ş

nPN ran, bns is
non-empty.
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(iv) The archimedean ordered field F is Cauchy complete that is every Cauchy sequence in F
converges.

Proof.

Definition and uniqueness of real number fields

2.5.10 Definition By a real number field one understands a complete archimedean ordered
field.

2.5.11 As we will show in this section all real number fields coincide up to isomorphism. More-
over, there exists a real number field. The proof will be broken up in a a uniqueness part and
an existence part. For the existence we need the notion of a morphism of (ordered) fields which
will be introduced next. Existence will be shown in two ways, first in the way real numbers
were constructed by R. Dedekind , then by constructung the complete hull of Q via equivalence
classes of Cauchy sequences.

2.5.12 Definition A field homomorphism or shortly a homorphism between two fields K and
F is a ring homomorphism f : K Ñ F. If both fields are ordered, an order preserving field
homomorphism f : KÑ F is called a morphism of ordered fields.

2.5.13 Proposition Fields with field homomorphisms as morphisms form a category denoted
Fld. Ordered fields together with order preserving field homomorphism as morphisms are a sub-
category OFld. The real number fields form a full subcategory of OFld.

Proof. Obviously, the identity map idK of a field K is a morphism. If K is ordered, the identity
map is also order preserving. Moreover, the composition of field morphisms is a morphism as
well. If both morphisms are order preserving the composition is so as well. The claim follows.

2.5.14 Proposition Every field homomorphism f : KÑ F is injective.

Proof. Let x, y P K and assume that fpxq “ fpyq. Then fpx ´ yq “ 0. If x ‰ y, the difference
x´ y has an inverse z. But that implies

1 “ fp1q “ f
`

zpx´ yq
˘

“ fpzqfpx´ yq “ 0

which is impossible. So x “ y and f is injective.

2.5.15 Theorem Let K and F be real number fields. Then there exists an order preserving field
homomorphism f : KÑ F. Every such morphism is an isomorphism.

Proof. By the preceding proposition we only need to show that f is surjective.
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Real numbers à la Dedekind

Cauchy completion of the field of rational numbers

2.5.16 Let QN
Cauchy denote the set of all Cauchy sequences in Q. Addition and multiplication

can be extended pointwise from Q to QN
Cauchy as follows:

` : QN
Cauchy ˆQN

Cauchy Ñ QN
Cauchy,

´

pxnqnPN, pynqnPN

¯

ÞÑ pxn ` ynqnPN

¨ : QN
Cauchy ˆQN

Cauchy Ñ QN
Cauchy,

´

pxnqnPN, pynqnPN

¯

ÞÑ pxn ¨ ynqnPN

Addition and multiplication on QN
Cauchy are both associative and commutative since these prop-

erties hold componentwise. Furthermore, multiplication distributes from the left and from the
right over addition, again since this property holds componentwise. Next define an embedding
Q ãÑ QN

Cauchy by r ÞÑ prqnPN, where prqnPN denotes the constant sequence with each component
being equal to r. Obviously, Q ãÑ QN

Cauchy preserves the operations of addition and multiplica-
tion. Moreover, the sequence p0qnPN serves as neutral element with respect to addition in QN

Cauchy,
and p1qnPN as neutral element with respect to multiplication. Hence

`

QN
Cauchy,`, ¨, p0qnPN, p1qnPN

˘

is a commutative ring and Q ãÑ QN
Cauchy an injective ring hommorphism. Now we define an

equivalence relation „ on QN
Cauchy as follows. Call two Cauchy sequences pxnqnPN and pynqnPN

equivalent, in signs pxnqnPN „ pynqnPN, if the sequence pxn´ynqnPN is a null sequence. Denote the
equivalence class of a Cauchy sequence pxnqnPN in Q by rpxnqnPNs, the quotient space QN

Cauchy
L

„

by R, and let q : QN
Cauchy Ñ R be the quotient map which assigns to every element of QN

Cauchy
its equivalence class. We will now show that „ is a congruence relation on QN

Cauchy. This means
that for Cauchy sequences pxnqnPN „ px1nqnPN and pynqnPN „ py1nqnPN the two added sequences
pxn` ynqnPN and px1n` y1nqnPN and the two multiplied sequences pxn ¨ ynqnPN and px1n ¨ y1qnPN are
equivalent.

2.5.17 Lemma The relation „ is a congruence relation on the commutative ring QN
Cauchy.

Proof. Asssume that pxnqnPN „ px1nqnPN and pynqnPN „ py1nqnPN, where all sequences are Cauchy
sequences in Q. Then pxn ´ x1nqnPN and pyn ´ y1nqnPN are both null sequences, hence there exist
for every ε ą 0 natural numbers N1pεq and N2pεq such that

ˇ

ˇxn ´ x1n
ˇ

ˇ ă ε for n ě N1pεq and
ˇ

ˇyn´ y
1
n

ˇ

ˇ ă ε for n ě N2pεq. Fix ε ą 0 and put N :“ max
 

N1p
ε
2q, N2p

ε
2q
(

. Then one obtains for
all n ě N

ˇ

ˇpxn ` ynq ´ px
1
n ` y

1
nq
ˇ

ˇ “
ˇ

ˇpxn ´ x
1
nq ` pyn ´ y

1
nq
ˇ

ˇ ď
ˇ

ˇxn ´ x
1
n

ˇ

ˇ`
ˇ

ˇyn ´ y
1
n

ˇ

ˇ ă
ε

2
`
ε

2
“ ε .

Next observe that px1nqnPN and pynqnPN are bounded since both sequences are Cauchy. Choose
M1,M2 ą 0 such that |x1n| ďM1 and |yn| ďM2 for all n P N. Now putN :“ max

 

N1p
ε

2M2
q, N2p

ε
2M1

q
(

.
Then one gets for all n ě N

ˇ

ˇpxn ¨ ynq ´ px
1
n ¨ y

1
nq
ˇ

ˇ “
ˇ

ˇpxn ´ x
1
nq ¨ yn ` x

1
n ¨ pyn ´ y

1
nq
ˇ

ˇ ď

ď
ˇ

ˇxn ´ x
1
n

ˇ

ˇ |yn| `
ˇ

ˇyn ´ y
1
n

ˇ

ˇ |x1n| ă
ε

2M2
M2 `

ε

2M1
M1 “ ε .

Hence pxn ` ynqnPN „ px1n ` y1nqnPN and pxn ¨ ynqnPN „ px1n ¨ y1nqnPN.

98



0.2. Number systems 2.6. The complex numbers

As a consequence of the lemma, addition and multiplication on QN
Cauchy descend to unique opera-

tions` and ¨ on the quotient space R such that for all rational Cauchy sequences pxnqnPN, pynqnPN:

q
`

pxnqnPN ` pynqnPN
˘

“ q
`

pxnqnPN
˘

` q
`

pynqnPN
˘

and (2.5.1)
q
`

pxnqnPN ¨ pynqnPN
˘

“ q
`

pxnqnPN
˘

¨ q
`

pynqnPN
˘

(2.5.2)

The resulting binary operations ` and ¨ on R are both associative and commutative since they
are on QN

Cauchy. Moreover, multiplication on R distributes over addition, again since ` and
¨ have that property on QN

Cauchy. The mapping i : Q ãÑ R, r ÞÑ rprqnPNs is injective and
preserves addition and multiplication by Equations 2.5.2 and 2.5.1 and since Q Ñ QN

Cauchy is a
ring homomorphism. Injectivity follows from the fact that for rational r, s the sequence pr´sqnPN
is constant, thus a null sequence if and only if r “ s. From now on, we will denote the image
of a rational number r under the embedding i by r as well. In particular the elements rp0qnPNs
and rp1qnPNs will be denoted by 0 and 1, respectively. Last let us define the set R` as the set of
all equivalence classes of Cauchy sequences pxnqnPN such that xn P Q` “ tr P Q | r ě 0u for all
n P N.

2.5.18 Theorem and Definition The set R together with addition `, multiplication ¨, and the
elements 0, 1 becomes a field. Moreover, the set R` is a positive cone on R. Thus one obtains a
total order ď on R respecting the monotony laws by defining x ď y for x, y P R if y ´ x P R`.
Altogether, pR,`, ¨, 0, 1,ďq is a complete ordered field called the field of real numbers. Finally,
i : Q ãÑ R an embedding of fields.

Proof.

2.6. The complex numbers
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I.1. Group theory

1.1. The category of groups

1.1.1 Definition A set G together with a binary operation ¨ : GˆGÑ G and an element e P G
is called a group if it satisfies the following axioms:

(Grp1) The operation ¨ is associative that means

pa ¨ bq ¨ c “ a ¨ pb ¨ cq for all a, b, c P G .

(Grp2) The element e is neutral with respect to the operation ¨ which means that

e ¨ a “ a ¨ e “ g for all a P G .

(Grp3) For each a P G there exists an inverse, i.e. an element b P G such that

a ¨ b “ b ¨ a “ e .

If in addition the following axiom of commutativity holds true, the group G is called abelian:

(Grp4) The operation ¨ is commutative that means

a ¨ b “ b ¨ a for all a, b P G .

If ¨ : GˆGÑ G is a binary operation on G such that (Grp1) is fulfilled, the pair pG, ¨q is called a
semigroup. In case G together with the binary operation ¨ and an element e P G satisfies axioms
(Grp1) and (Grp2), one calls pG, ¨, eq a monoid, if it satisfies axioms (Grp1), (Grp2), and (Grp4),
the monoid pG, ¨, eq is called abelian.

1.1.2 Examples (a) The set N of natural numbers together with addition and 0 is an abelian
monoid by Theorem 2.1.14.

(b) The set Z of integers together with addition as group law and 0 is an abelian group by
Theorem 2.2.23.

(c) The set Z of integers together with multiplication as binary operation and 1 is an abelian
monoid by Theorem 2.2.23.
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I.2. Rings and modules

2.1. The category of rings

Definitions and first examples

Even though we shall mostly work with commutative rings in this book, we will introduce the
general notion of rings which are allowed to be non-commutative.

2.1.1 Definition A ring is a set R together with an addition map ` : R ˆRÑ R, a multipli-
cation map ¨ : RˆRÑ R, and elements 0, 1 P R that satisfy the following conditions:

(Ring1) R together with addition as binary operation and 0 as neutral element is an abelian
group.

(Ring2) R together with multiplication as binary operation and 1 as neutral element is a monoid

(Ring3) Multiplication distributes from the left and the right over addition that is

r ¨ ps` tq “ r ¨ s` r ¨ t for all r, s, t P R, and

pr ` sq ¨ t “ r ¨ t` s ¨ t for all r, s, t P R.

If, in addition, the following axiom holds, the ring R is called commutative:

(Ring4) Multiplication is commutative that is r ¨ s “ s ¨ r for all r, s P R.

We shall typically write rs for r ¨s. Sometimes, when we want to particularly denote the structure
maps and structure elements of a ring we write a ring as a quintuple pR,`, ¨, 0, 1q.

If R is a ring, an invertible element or a unit is an element r P R, such that there exists an
element s P R, called (multiplicative) inverse of r, which satisfies

r ¨ s “ 1 and s ¨ r “ 1 .

The set of units of a ring R will be denoted by Rˆ.

Given a ring R, a subring is a subset S Ă R that contains the zero and identity elements, is
closed under addition and multiplication and is closed under forming additive inverses. In other
words, S Ă R is a subring, if 0, 1 P S and if for all r, s P S the elements r ` s, ´r and rs are in
S as well.

Following (Bourbaki, 1989, p. 98), a pseudo-ring (or in other words non-unital-ring) is a set R
together with binary operations ` and ¨ and an element 0 such that the Axioms (Ring1) and
(Ring3) are satisfied and such that ¨ is associative that is (Grp1) holds true. A pseudo-ring R is
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I.2. Rings and modules 2.1. The category of rings

called commutative if Axiom (Ring4) is satisfied as well. A subset S of a pseudo-ring R is called
a sub-pseudo-ring, if it contains the zero element, is closed under addition and multiplication,
and is closed under forming additive inverses. Sometimes we write a pseudo-ring as a quadrupel
pR,`, ¨, 0q to include the structure maps and its zero element.

If R is a pseudo-ring, the center of R is defined as the set of all r P R commuting with all ring
elements that is as the set

ZpRq :“
 

r P R | rs “ sr for all s P R
(

.

The following result is essentially a repetition of Proposition 2.2.15.

2.1.2 Proposition Let R be a pseudo-ring. Then

(i) 0 ¨ r “ r ¨ 0 “ 0 for all r P R.

(ii) p´rqs “ rp´sq “ ´prsq for all r, s P R.

(iii) If R possesses a multiplicative identity 1, then p´1q2 “ 1.

(iv) A multiplicative identity in R is uniquely determined.

(v) Assume that R possesses an identity element. Then the inverse for an invertible r P R is
uniquely determined. If it exists, the inverse of r is denoted by r´1.

Proof. ad (i ). First compute using associativity, distributivity and that 0 is a zero element:

0 ¨ r “ p0` 0q ¨ r “ p0 ¨ rq ` p0 ¨ rq .

Adding ´p0 ¨ rq on both sides gives 0 “ 0 ¨ r. By an analogous argument we obtain 0 “ r ¨ 0.

ad (ii ). By (i) we obtain

0 “ 0 ¨ s “ pr ` p´rqq ¨ s “ rs` p´rqs ,

which entails p´rqs “ ´prsq. Similarly, one shows rp´sq “ ´prsq.

ad (iii ). If 1 is a multiplicative identity, then 0 “ 0 ¨ p´1q “ p1 ` p´1qq ¨ p´1q “ p´1q ` p´1q2

which entails the claim by adding 1 on both sides.

ad (iv ). Assume that 1 and 11 are two identity elements in R. Then

1 “ 1 ¨ 11 “ 11 .

ad (v ). Let R be a ring with identity 1 and s, s1 P R be two inverses of r. Then

s “ s ¨ 1 “ s ¨ pr ¨ s1q “ ps ¨ rq ¨ s1 “ 1 ¨ s1 “ s1 .

2.1.3 Examples (a) The zero ring or trivial ring is the ring with underlying set t0u. Its identity
element coincides with 0, and it is obviously commutative.
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I.2. Rings and modules 2.1. The category of rings

(b) The simplest non-trivial example of a ring is the commutative ring Z2 “ t0, 1u. Note that as
a consequence of the ring axioms and the fact that 0 ‰ 1 one has ´1 “ 1 in Z2.

(c) The most important example of a commutative ring is the ring of integers Z.

(d) The sets Q, R, and C of rational, real, and complex numbers, respectively, form all commu-
tative rings.

(e) The set H of quaternions is a ring which is not commutative.

2.1.4 Example The center ZpRq of a pseudo-ring R is a sub-pseudo-ring of R by Proposi-
tion 2.1.2. It is commutative by definition. Moreover, if R possesses an identity element, then
ZpRq is even a subring.

2.1.5 Examples The following are examples of function rings.

(a) Let X be a set and R a pseudo-ring. The set RX of functions f : X Ñ R is a pseudo-
ring. Hereby, addition and multiplication of functions f, g : X Ñ R are defined pointwise:
pf ` gqpxq :“ fpxq` gpxq and pf ¨ gqpxq :“ fpxq ¨ gpxq for x P X. Obviously, RX with addition as
binary operation then becomes an abelian group, where the zero function 0X : X Ñ R, x ÞÑ 0
serves as neutral element, and the additive inverse ´f of f P RX is given by p´fqpxq :“ ´fpxq
for x P R. Associativity and commutativity of addition in RX hold true because they hold
pointwise over each x P X. Likewise, multiplication in RX is associative. The distributivity
law holds in RX also, because it holds pointwise when evaluating at x P X. So RX becomes a
pseudo-ring. If R is even a ring, the function 1X : X Ñ R, x ÞÑ 1 serves as an identity element,
so RX then is a ring as well.

(b) A sub-pseudo-ring of RX (independently of wether R is a ring or pseudo-ring) is given by
the subset

RpXq :“
 

f P RX
ˇ

ˇ fpxq ‰ 0 for at most finitely many x P X
(

.

This follows immediately from the observation that the sum and the product of two elements
f, g P RpXq lie again in RpXq, that 0X P RpXq, and that RpXq contains with an element f also
its negative ´f . Unless X is finite and R a ring, the pseudo-ring RpXq is not unital or in other
words not a ring.

(c) If X is a topological space and R “ R, the subspace

CpXq :“ tf P RX | f is continuousu

is a subring of RX , since the constant functions 0X and 1X are continuous, and since the sum
and product of two real-valued functions on X are again continuous.

(d) If M is a smooth manifold, the subspace

C8pMq :“ tf P CpMq | f is smoothu

is a subring of CpMq, since the constant function 1X is smooth, and since the sum and product
of two real-valued smooth functions on M is again smooth.
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I.2. Rings and modules 2.1. The category of rings

2.1.6 Example Let R be a commutative ring. One defines Rrxs, the ring of polynomials in one
variable over R, as follows. As a set, Rrxs coincides with RpNq. For an element a P Rrxs denote
by an for every n P N its n-th component, that means let a “ panqnPN. Using this agreement,
the sum and product of two elements a, b P Rrxs are defined by

pa` bqn :“ pan ` bnq for all n P N, and

pa ¨ bqn :“
ÿ

k`l“n

akbl for all n P N .

By Example 2.1.5 (b) , pRrxs,`, 0Nq is an abelian group with zero element 0N : NÑ R, n ÞÑ 0.
Let us show that ¨ is an associative and commutative operation on Rrxs. To this end let a, b, c P
Rrxs and compute for n P N using associativity of multiplication in R

ppa ¨ bq ¨ cqn “
ÿ

l`k“n

ÿ

i`j“l

paibjqck “
ÿ

i`j`k“n

paibjqck “

“
ÿ

i`j`k“n

aipbjckq “
ÿ

i`l“n

ÿ

j`k“l

aipbjckq “ pa ¨ pb ¨ cqqn .

Next verify that by commutativity of R

pa ¨ bqn “
ÿ

k`l“n

akbl “
ÿ

k`l“n

blak “ pb ¨ aqn .

Denote by 1N the element of Rrxs defined by p1Nq0 “ 1 and p1Nqn “ 0 for n P Ną0. One checks
immediately that a ¨ 1N “ 1N ¨ a “ a for all a P Rrxs. Hence pRrxs,`, ¨, 0N, 1Nq is a commutative
ring as claimed. Let us now denote by x the element of Rrxs uniquely defined by the property
that its n-th component is 1 for n “ 1 and 0 otherwise. Moreover, for r P R and a P Rrxs
denote by ra the element with components praqn “ ran, n P N. With this agreement and the
observation that the k-th component of xn is 1 for k “ n and 0 otherwise one checks that every
a P Rrxs can be written in the form

a “
ÿ

nPN
anx

n .

Note that the sum on the right hand side is finite indeed, since only finitely many an are allowed
to be nonzero. The representation of a in the form

ř

nPN anx
n is even unique. This follows

from the observation that the k-th component of a sum
ř

nPN bnx
n, where only finitely many

bn P R are nonzero, is the sum of the k-th components of the elements bnxn and that the k-th
component of bnxn is bk if n “ k and 0 otherwise. We will later see how one can embed R into
Rrxs and how polynomial rings Rrx1, . . . , xns in several variables x1, . . . , xn are defined.

The class of rings forms a category. Its morphisms are called ring homomorphisms. Let us
formulate this in more detail.

2.1.7 Definition A morphism of pseudo-rings is a map f : R Ñ S between pseudo-rings
pR,`R , ¨R , 0Rq and pS,`S , ¨S , 0S q that respects addition and multiplication. That is

(Ring5) fpx`R yq “ fpyq `S fpyq for all x, y P R.

(Ring6) fpx ¨R yq “ fpxq ¨S fpyq for all x, y P R.
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If R and S are rings, a morphism of pseudo-rings f : RÑ S which preserves the identity elements
is called a ring homomorphism. More precisely, f : RÑ S is a ring homomorphism if it satisfies
Axioms (Ring5) and (Ring6) and in addition the axiom

(Ring8) fp1Rq “ 1S , where 1R and 1S are the respective identity elements.

2.1.8 Proposition Let f : RÑ S be a morphism of pseudo-rings. Then

(Ring7) fp0Rq “ 0S, where 0R and 0S are the respective zero elements.

Proof. By additivity of f one has fp0Rq “ fp0R `R 0Rq “ fp0Rq `S fp0Rq. From this one
concludes fp0Rq “ 0S since pS,`S , 0Sq is an abelian group, so has the cancellation property.

2.1.9 Theorem and Definition (a) The identity map idR on a ring R is a ring homomor-
phism. If R is a pseudo-ring, idR is a morphism of pseudo-rings.

(b) Let R, S and T be three rings and f : R Ñ S and S : Y Ñ T ring homomrphisms. Then
g ˝ f is a ring homomorphism. If R, S, T are pseudo-rings and f , g morphisms of pseudo-rings,
then so is g ˝ f .

(c) Rings as objects together with ring homomorphisms as morphisms form a category. It is
called the category of rings and will be denoted by Ring. Analogously, one obtains the category
PRing of pseudo-rings and morphisms of pseudo-rings. The category Ring can be understood in
a canonical way as a subcategory of PRing.

Proof. The identity map on a (pseudo-) ring obviously preserves all structure maps and neutral
elements. If f and g are morphisms of pseudo-rings, then, for all x, y P R

pg ˝ fqpx`R yq “ g
`

fpx`R yq
˘

“ g
`

fpxq `S fpyq
˘

“ g
`

fpxq
˘

`T g
`

fpyq
˘

“

“ pg ˝ fqpxq `T pg ˝ fqpyq ,

g ˝ fpx ¨R yq “ g
`

fpx ¨R yq
˘

“ g
`

fpxq ¨S fpyq
˘

“ g
`

fpxq
˘

¨T g
`

fpyq
˘

“

“ pg ˝ fqpxq ¨T pg ˝ fqpyq ,

hence g ˝ f is a morphism of pseudo-rings. If R, S, and T are even rings, and f , g ring
homomorphisms, one checks

pg ˝ fqp1Rq “ g
`

fp1Rq
˘

“ gp1Sq “ 1T ,

so g ˝ f is a ring homomorphism. It is now clear that pseudo-rings together with morphisms of
pseudo-rings and rings together ring homomorphisms form categories PRing and Ring, respec-
tively. The canonical embedding of Ring into PRing is obtained by mapping a ring pR,`, ¨, 0, 1q
to the pseudo-ring pR,`, ¨, 0q or in other words by forgetting the multiplicative identity. Note
that this is an embedding indeed since by Proposition 2.1.2 (iv) identity elements in a ring are
uniquely determined.
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Unital algebras over a commutative ring

2.1.10 The philosophy of Grothendieck, as expounded in his EGA ?, is that one should always
do things in a relative context. This means that instead of working with objects, one should
work with morphisms of objects. Motivated by this, we introduce:

2.1.11 Definition Given a commutative ring R, a unital R-algebra is a ring A together with a
morphism of rings (the structure morphism) RÑ ZpAq Ă A. In other words, the structure mor-
phism RÑ A has image in the center of the ring A. A unital R-algebra A is called commutative
if A is a commutative ring.

A morphism between R-algebras is a ring homomorphism that is required to commute with the
structure morphisms. So if A is an R-algebra, then A is not only a ring, but there is a way to
multiply elements of A by elements of R. Namely, to multiply a P A with x P R, take the image
of x in A, and multiply that by a.

For instance, any ring is an algebra over any subring.

We can think of an A-algebra as an arrow AÑ R, and a morphism from AÑ R to AÑ S as a
commutative diagram

R // S

A

__ ??

This is a special case of the undercategory construction.

If B is an A-algebra and C a B-algebra, then C is an A-algebra in a natural way. Namely, by
assumption we are given morphisms of rings A Ñ B and B Ñ C, so composing them gives the
structure morphism AÑ C of C as an A-algebra.

2.1.12 Example Every ring is a Z-algebra in a natural and unique way. There is a unique
map (of rings) ZÑ R for any ring R because a ring-homomorphism is required to preserve the
identity. In fact, Z is the initial object in the category of rings: this is a restatement of the
preceding discussion.

2.1.13 Example If R is a ring, the polynomial ring Rrxs is an R-algebra in a natural manner.
Each element of R is naturally viewed as a “constant polynomial.”

2.1.14 Example The field of complex numbers C is an R-algebra.

2.1.15 Example For any ring R, we can consider the polynomial ring Rrx1, . . . , xns which
consists of the polynomials in n variables with coefficients in R. This can be defined inductively
as pRrx1, . . . , xn´1sqrxns, where the procedure of adjoining a single variable comes from the
previous ??.

We shall see a more general form of this procedure in Example 2.1.16.

Here is an example that generalizes the case of the polynomial ring.
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2.1.16 Example If R is a ring and G a commutative monoid,1 then the set RrGs of formal finite
sums

ř

rigi with ri P R, gi P G is a commutative ring, called the monoid ring or group ring
when G is a group. Alternatively, we can think of elements of RrGs as infinite sums

ř

gPG rgg
with R-coefficients, such that almost all the rg are zero. We can define the multiplication law
such that

´

ÿ

rgg
¯´

ÿ

sgg
¯

“
ÿ

h

¨

˝

ÿ

gg1“h

rgsg1

˛

‚h.

This process is called convolution. We can think of the multiplication law as extended the group
multiplication law (because the product of the ring-elements corresponding to g, g1 is the ring
element corresponding to gg1 P G).

The case of G “ N is the polynomial ring. In some cases, we can extend this notion to formal
infinite sums, as in the case of the formal power series ring; see definition 1.3.5 below.

2.1.17 Remark The ring Z is an initial object in the category of rings. That is, for any ring
R, there is a unique morphism of rings Z Ñ R. We discussed this briefly earlier; show more
generally that A is the initial object in the category of A-algebras for any ring A.

2.1.18 Remark The ring where 0 “ 1 (the zero ring) is a final object in the category of rings.
That is, every ring admits a unique map to the zero ring.

2.1.19 Remark Let C be a category and F : C Ñ Sets a covariant functor. Recall that F is
said to be corepresentable if F is naturally isomorphic to X Ñ homCpU,Xq for some object
U P C. For instance, the functor sending everything to a one-point set is corepresentable if and
only if C admits an initial object.

Prove that the functor Ring Ñ Sets assigning to each ring its underlying set is representable.
(Hint: use a suitable polynomial ring.)

The category of rings is both complete and cocomplete. To show this in full will take more
work, but we can here describe what certain cases (including all limits) look like. As we saw in
remark 2.1.19, the forgetful functor RingÑ Sets is corepresentable. Thus, if we want to look for
limits in the category of rings, here is the approach we should follow: we should take the limit
first of the underlying sets, and then place a ring structure on it in some natural way.

2.1.20 Example (Products) The product of two rings R1, R2 is the set-theoretic product
R1 ˆ R2 with the multiplication law pr1, r2qps1, s2q “ pr1s1, r2s2q. It is easy to see that this
is a product in the category of rings. More generally, we can easily define the product of any
collection of rings.

To describe the coproduct is more difficult: this will be given by the tensor product to be
developed in the sequel.

2.1.21 Example (Equalizers) Let f, g : R Ñ S be two ring-homomorphisms. Then we can
construct the equalizer of f, g as the subring of R consisting of elements x P R such that
fpxq “ gpxq. This is clearly a subring, and one sees quickly that it is the equalizer in the
category of rings.

1That is, there is a commutative multiplication on G with an identity element, but not necessarily with inverses.

108



I.2. Rings and modules 2.2. Further examples

As a result, we find:

2.1.22 Proposition The category Ring is complete.

As we said, we will not yet show that Ring is cocomplete. But we can describe filtered colimits. In
fact, filtered colimits will be constructed just as in the set-theoretic fashion. That is, the forgetful
functor RingÑ Sets commutes with filtered colimits (though not with general colimits).

2.1.23 Example (Filtered colimits) Let I be a filtering category, F : I Ñ Ring a functor.
We can construct lim

ÝÑI
F as follows. An object is an element px, iq for i P I and x P F piq, modulo

equivalence; we say that px, iq and py, jq are equivalent if there is a k P I with maps iÑ k, j Ñ k
sending x, y to the same thing in the ring F pkq.

To multiply px, iq and py, jq, we find some k P I receiving maps from i, j, and replace x, y with
elements of F pkq. Then we multiply those two in F pkq. One easily sees that this is a well-defined
multiplication law that induces a ring structure, and that what we have described is in fact the
filtered colimit.

Zerodivisors

Let R be a commutative ring.

2.1.24 Definition If r P R, then r is called a zero divisor if there is s P R, s ‰ 0 with sr “ 0.
Otherwise r is called a non-zero-divisor.

As an example, we prove a basic result on the zero divisors in a polynomial ring.

2.1.25 Proposition Let A “ Rrxs. Let f “ anx
n ` ¨ ¨ ¨ ` a0 P A. If there is a non-zero

polynomial g P A such that fg “ 0, then there exists r P Rr t0u such that f ¨ r “ 0.

So all the coefficients are zero divisors.

Proof. Choose g to be of minimal degree, with leading coefficient bxd. We may assume that
d ą 0. Then f ¨ b ‰ 0, lest we contradict minimality of g. We must have aig ‰ 0 for some i.
To see this, assume that ai ¨ g “ 0, then aib “ 0 for all i and then fb “ 0. Now pick j to be
the largest integer such that ajg ‰ 0. Then 0 “ fg “ pa0 ` a1x ` ¨ ¨ ¨ ajx

jqg, and looking at
the leading coefficient, we get ajb “ 0. So degpajgq ă d. But then f ¨ pajgq “ 0, contradicting
minimality of g.

2.1.26 Remark The product of two non-zero-divisors is a non-zero-divisor, and the product of
two zero divisors is a zero divisor. It is, however, not necessarily true that the sum of two zero
divisors is a zero divisor.

2.2. Further examples

We now illustrate a few important examples of commutative rings. The section is in large measure
an advertisement for why one might care about commutative algebra; nonetheless, the reader is
encouraged at least to skim this section.
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Rings of holomorphic functions

The following subsec may be omitted without impairing understanding.

There is a fruitful analogy in number theory between the rings Z and Crts, the latter being the
polynomial ring over C in one variable (??). Why are they analogous? Both of these rings have
a theory of unique factorization: that is, factorization into primes or irreducible polynomials.
(In the latter, the irreducible polynomials have degree one.) Indeed we know:

1. Any nonzero integer factors as a product of primes (possibly times ´1).

2. Any nonzero polynomial factors as a product of an element of C˚ “ C´t0u and polynomials
of the form t´ a, a P C.

There is another way of thinking of Crts in terms of complex analysis. This is equal to the ring
of holomorphic functions on C which are meromorphic at infinity. Alternatively, consider the
Riemann sphere C Y t8u; then the ring Crts consists of meromorphic functions on the sphere
whose poles (if any) are at 8. This description admits generalizations. Let X be a Riemann
surface. (Example: take the complex numbers modulo a lattice, i.e. an elliptic curve.) Suppose
that x P X. Define Rx to be the ring of meromorphic functions on X which are allowed poles
only at x (so are everywhere else holomorphic).

2.2.1 Example Fix the notations of the previous discussion. Fix y ‰ x P X. Let Rx be the
ring of meromorphic functions on the Riemann surface X which are holomorphic on X ´txu, as
before. Then the collection of functions that vanish at y forms an ideal in Rx.

There are lots of other ideals. For instance, fix two points y0, y1 ‰ x; we look at the ideal of Rx
that vanish at both y0, y1.

For any Riemann surface X, the conclusion of Dedekind’s theorem (??) applies. In
other words, the ring Rx as defined in the example admits unique factorization of ideals. We
shall call such rings Dedekind domains in the future.

2.2.2 Example Keep the preceding notation.

Let f P Rx, nonzero. By definition, f may have a pole at x, but no poles elsewhere. f vanishes at
finitely many points y1, . . . , ym. When X was the Riemann sphere, knowing the zeros of f told us
something about f . Indeed, in this case f is just a polynomial, and we have a nice factorization
of f into functions in Rx that vanish only at one point. In general Riemann surfaces, this is not
generally possible. This failure turns out to be very interesting.

Let X “ C{Λ be an elliptic curve (for Λ Ă C2 a lattice), and suppose x “ 0. Suppose we are
given y1, y2, . . . , ym P X that are nonzero; we ask whether there exists a function f P Rx having
simple zeros at y1, . . . , ym and nowhere else. The answer is interesting, and turns out to recover
the group structure on the lattice.

2.2.3 Proposition A function f P Rx with simple zeros only at the tyiu exists if and only if
y1 ` y2 ` ¨ ¨ ¨ ` yn “ 0 (modulo Λ).
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So this problem of finding a function with specified zeros is equivalent to checking that the
specific zeros add up to zero with the group structure.

In any case, there might not be such a nice function, but we have at least an ideal I of functions
that have zeros (not necessarily simple) at y1, . . . , yn. This ideal has unique factorization into
the ideals of functions vanishing at y1, functions vanishing at y2, so on.

Ideals and varieties

We saw in the previous subsec that ideals can be thought of as the vanishing of functions.
This, like divisibility, is another interpretation, which is particularly interesting in algebraic
geometry.

Recall the ring Crts of complex polynomials discussed in the last subsec. More generally, if R is
a ring, we saw in ?? that the set Rrts of polynomials with coefficients in R is a ring. This is a
construction that can be iterated to get a polynomial ring in several variables over R.

2.2.4 Example Consider the polynomial ring Crx1, . . . , xns. Recall that before we thought of
the ring Crts as a ring of meromorphic functions. Similarly each element of the polynomial ring
Crx1, . . . , xns gives a function Cn Ñ C; we can think of the polynomial ring as sitting inside the
ring of all functions Cn Ñ C.

A question you might ask: What are the ideals in this ring? One way to get an ideal is to pick
a point x “ px1, . . . , xnq P Cn; consider the collection of all functions f P Crx1, . . . , xns which
vanish on x; by the usual argument, this is an ideal.

There are, of course, other ideals. More generally, if Y Ă Cn, consider the collection of polynomial
functions f : Cn Ñ C such that f ” 0 on Y . This is easily seen to be an ideal in the polynomial
ring. We thus have a way of taking a subset of Cn and producing an ideal. Let IY be the ideal
corresponding to Y .

This construction is not injective. One can have Y ‰ Y 1 but IY “ IY 1 . For instance, if Y is
dense in Cn, then IY “ p0q, because the only way a continuous function on Cn can vanish on Y
is for it to be zero.

There is a much closer connection in the other direction. You might ask whether all ideals can
arise in this way. The quick answer is no—not even when n “ 1. The ideal px2q Ă Crxs cannot
be obtained in this way. It is easy to see that the only way we could get this as IY is for Y “ t0u,
but IY in this case is just pxq, not px2q. What’s going wrong in this example is that px2q is not
a radical ideal.

2.2.5 Definition An ideal I Ă R is radical if whenever x2 P I, then x P I.

The ideals IY in the polynomial ring are all radical. This is obvious. You might now ask whether
this is the only obstruction. We now state a theorem that we will prove later.
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2.2.6 Theorem (Hilbert’s Nullstellensatz) If I Ă Crx1, . . . , xns is a radical ideal, then I “
IY for some Y Ă Cn. In fact, the canonical choice of Y is the set of points where all the functions
in Y vanish.2

This will be one of the highlights of the present course. But before we can get to it, there is
much to do.

2.2.7 Remark Assuming the Nullstellensatz, show that any maximal ideal in the polynomial
ring Crx1, . . . , xns is of the form px1 ´ a1, . . . , xn ´ anq for a1, . . . , an P C. An ideal of a ring is
called maximal if the only ideal that contains it is the whole ring (and it itself is not the whole
ring).

As a corollary, deduce that if I Ă Crx1, . . . , xns is a proper ideal (an ideal is called proper if it
is not equal to the entire ring), then there exists px1, . . . , xnq P Cn such that every polynomial
in I vanishes on the point px1, . . . , xnq. This is called the weak Nullstellensatz.

2.3. Ideals

2.3.1 An ideal in a ring is analogous to a normal subgroup of a group. As we shall see, one
may quotient by ideals just as one quotients by normal subgroups. The idea is that one wishes
to have a suitable equivalence relation on a ring R such that the relevant maps (addition and
multiplication) factor through this equivalence relation. It is easy to check that any such relation
arises via an ideal, more precisely a two-sided ideal. Note that in the case where the ring is not
assumed to be commutative

2.3.2 Definition Let R be a ring. An ideal in R is a subset I Ă R that satisfies the following.

(I1) pI,`, 0q is a subgroup of pR,`, 0q that is 0 P I and x` y P I for all x, y P I.

(I2) If x P I and y, z P R, then xy P I and yz P I.

2.3.3 There is a simple way of obtaining ideals, which we now describe. Given elements
x1, . . . , xn P R, we denote by px1, . . . , xnq Ă R the subset of linear combinations

řn
i“1 rixisi,

where r1, s1, . . . , rn, sn P R. This is clearly an ideal, and in fact the smallest one containing all
xi. It is called the ideal generated by x1, . . . , xn. A principal ideal pxq is one generated by a
single x P R.

2.3.4 Example Ideals generalize the notion of divisibility. Note that in Z, the set of elements
divisible by n P Z forms the ideal I “ nZ “ pnq. We shall see that every ideal in Z is of this
form: Z is a principal ideal domain.

Indeed, one can think of an ideal as axiomatizing the notions that “divisibility” ought to satisfy.
Clearly, if two elements are divisible by something, then their sum and product should also be
divisible by it. More generally, if an element is divisible by something, then the product of that

2Such a subset is called an algebraic variety.
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element with anything else should also be divisible. In general, we will extend (in the chapter
on Dedekind domains) much of the ordinary arithmetic with Z to arithmetic with ideals (e.g.
unique factorization).

2.3.5 Example We saw in examples 2.1.5 that if X is a set and R a ring, then the set RX of
functions X Ñ R is naturally a ring. If Y Ă X is a subset, then the subset of functions vanishing
on Y is an ideal.

2.3.6 Remark Show that the ideal p2, 1`
?
´5q Ă Zr

?
´5s is not principal.

Operations on ideals

There are a number of simple operations that one may do with ideals, which we now describe.

2.3.7 Definition The sum I ` J of two ideals I, J Ă R is defined as the set of sums

tx` y : x P I, y P Ju .

2.3.8 Definition The product IJ of two ideals I, J Ă R is defined as the smallest ideal con-
taining the products xy for all x P I, y P J . This is just the set

!

ÿ

xiyi : xi P I, yi P J
)

.

We leave the basic verification of properties as an exercise:

2.3.9 Remark Given ideals I, J Ă R, verify the following.

1. I ` J is the smallest ideal containing I and J .

2. IJ is contained in I and J .

3. I X J is an ideal.

2.3.10 Example In Z, we have the following for any m,n.

1. pmq ` pnq “ pgcdtm,nuq,

2. pmqpnq “ pmnq,

3. pmq X pnq “ plcmtm,nuq.

2.3.11 Proposition For ideals I, J,K Ă R, we have the following.

1. Distributivity: IpJ `Kq “ IJ ` IK.
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Quotient rings

We next describe a procedure for producing new rings from old ones. If R is a ring and
I Ă R an ideal, then the quotient group R{I is a ring in its own right. If a ` I, b ` I are
two cosets, then the multiplication is pa ` Iqpb ` Iq “ ab ` I. It is easy to check that this
does not depend on the coset representatives a, b. In other words, as mentioned earlier, the
arithmetic operations on R factor through the equivalence relation defined by I.

As one easily checks, this becomes to a multiplication

R{I ˆR{I Ñ R{I

which is commutative and associative, and whose identity element is 1 ` I. In particular,
R{I is a ring, under multiplication pa` Iqpb` Iq “ ab` I.

2.3.12 Definition R{I is called the quotient ring by the ideal I.

The process is analogous to quotienting a group by a normal subgroup: again, the point
is that the equivalence relation induced on the algebraic structure—either the group or the
ring—by the subgroup (or ideal)—is compatible with the algebraic structure, which thus
descends to the quotient.

The reduction map φ : R Ñ R{I is a ring-homomorphism with a universal property.
Namely, for any ring B, there is a map

hompR{I,Bq Ñ hompR,Bq

on the hom-sets by composing with the ring-homomorphism φ; this map is injective and the
image consists of all homomorphisms R Ñ B which vanish on I. Stated alternatively, to
map out of R{I (into some ring B) is the same thing as mapping out of R while killing the
ideal I Ă R.

This is best thought out for oneself, but here is the detailed justification. The reason is that
any map R{I Ñ B pulls back to a map RÑ R{I Ñ B which annihilates I since RÑ R{I
annihilates I. Conversely, if we have a map

f : RÑ B

killing I, then we can define R{I Ñ B by sending a ` I to fpaq; this is uniquely defined
since f annihilates I.

2.3.13 Remark If R is a commutative ring, an element e P R is said to be idempotent
if e2 “ e. Define a covariant functor Rings Ñ Sets sending a ring to its idempotents.
Prove that it is corepresentable. (Answer: the corepresenting object is ZrXs{pX ´X2q.)

2.3.14 Remark Show that the functor assigning to each ring the set of elements annihi-
lated by 2 is corepresentable.

2.3.15 Remark If I Ă J Ă R, then J{I is an ideal of R{I, and there is a canonical
isomorphism

pR{Iq{pJ{Iq » R{J.
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2. I X pJ `Kq “ I X J ` I XK if I Ą J or I Ą K.

3. If I ` J “ R, I X J “ IJ .

Proof. 1 and 2 are clear. For 3, note that pI ` JqpI X Jq “ IpI X Jq ` JpI X Jq Ă IJ . Since
IJ Ă I X J , the result follows.

2.3.16 Remark There is a contravariant functor Rings Ñ Sets that sends each ring to its
set of ideals. Given a map f : R Ñ S and an ideal I Ă S, we define an ideal f´1pIq Ă R;
this defines the functoriality. This functor is not representable, as it does not send the initial
object in Rings to the one-element set. We will later use a subfunctor of this functor, the Spec
construction, when we replace ideals with “prime” ideals.

2.4. Introduction

In this chapter we will introduce the notions of a ring and that of a module over a ring. The
focus of the present book will be on commutative rings, though, and the spaces represented by
them. Most of the chapter will be definitions.

We begin with a few historical remarks on the origin of commutative ring theory. Fermat’s last
theorem states that the equation

xn ` yn “ zn

has no nontrivial solutions in the integers, for n ě 3. We could try to prove this by factoring the
expression on the left hand side. We can write

px` yqpx` ζyqpx` ζ2yq . . . px` ζn´1yq “ zn,

where ζ is a primitive nth root of unity. Unfortunately, the factors lie in Zrζs, not the integers
Z. Though Zrζs is still a ring where we have notions of primes and factorization, just as in Z,
we will see that prime factorization is not always unique in Zrζs. (If it were always unique, then
we could at least one important case of Fermat’s last theorem rather easily; see the introductory
chapter of ? for an argument.)

For instance, consider the ring Zr
?
´5s of complex numbers of the form a`b

?
´5, where a, b P Z.

Then we have the two factorizations

6 “ 2 ¨ 3 “ p1`
?
´5qp1´

?
´5q.

Both of these are factorizations of 6 into irreducible factors, but they are fundamentally differ-
ent.

In part, commutative algebra grew out of the need to understand this failure of unique factoriza-
tion more generally. We shall have more to say on factorization in the future, but here we just
focus on the formalism. The basic definition for studying this problem is that of a ring, which
we now introduce.
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2.5. Modules over a ring

We will now establish some basic terminology about modules. Throughout this section, R denotes
always a ring.

Definitions

2.5.1 Definition A left R-module M is an abelian group pM,`q together with a map ¨ : R ˆ
M ÑM , which is usually called the scalar multiplication and written px,mq ÞÑ xm, such that

(Mod1) Scalar multiplication is associative, i.e. pxyqm “ xpymq for all x, y P R and m PM .

(Mod2) The unit 1 P R acts as identity that means 1 ¨m “ m for all m PM .

(Mod3) There are distributive laws on both sides:
px` yqm “ xm` ym and xpm` nq “ xm` xn for all x, y P R and m,n PM .

A right R-module N is an abelian group pN,`q together with a map ¨ : N ˆ R Ñ N , which is
usually called scalar multiplication as well and written pn, yq ÞÑ ny, such that

(Mod 1)˝ Scalar multiplication is associative, i.e. npxyq “ pnxqy for all x, y P R and n P N .

(Mod 2)˝ The unit 1 P R acts as identity that means n ¨ 1 “ n for all n P N .

(Mod 3)˝ There are distributive laws on both sides:
npx` yq “ nx` ny and pm` nqy “ my ` ny for all x, y P R and m,n P N .

By an R-module we always understand a left R-module if not explicitely mentioned differently.

2.5.2 Remark Another definition of a left R module can be given as follows. If M is an
abelian group, EndpMq is the set of homomorphisms f : M Ñ M . This can be made into a
(noncommutative) ring. Addition is defined pointwise, and multiplication is by composition. The
identity element is the identity function idM . If R is a ring and RÑ EndpMq a homomorphism,
then M is made into a left R-module, and vice versa.

2.5.3 Examples (a) If R is a ring, then R is a left R-module by multiplication on the left, and
a right R-module by multiplication on the right.

(b) A Z-module is the same thing as an abelian group.

2.5.4 Definition If M is a left (respectively right) R-module, a non-empty subset N Ă M is
a submodule if it is an additive subgroup (meaning closed under addition and inversion) and is
closed under multiplication by elements of R, i.e. aN Ă N (respectively Na Ă N) for a P R. A
submodule is a left (respectively right) R-module in its own right. If N Ă M is a submodule,
there is a commutative diagram:

RˆM0

��

//M0

��
RˆM //M

respectively N ˆR

��

// N

��
M ˆR //M ,
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depending on whetherM is a left or right R-module. Here the horizontal maps are multiplication
by scalars.

2.5.5 Examples (a) Let R be a commutative ring; then an ideal in R is the same thing as a
submodule of R.

(b) If R is a commutative ring, an R-algebra is an R-module in an obvious way. More generally,
if R is a commutative ring and A is an R-algebra, any A-module becomes an R-module by pulling
back the multiplication map via RÑ A.

Dual to submodules is the notion of a quotient module, which we define next.

2.5.6 Definition Suppose M is an R-module and N a submodule. Then the abelian group
M{N “ tm`N P PpMq | m PMu (of cosets) is an R-module, called the quotient module of M
by by N . Multiplication is as follows. If one has a coset m`N P M{N , one multiplies this by
a P R to get the coset ax`M0. This does not depend on the coset representative.

The categorical structure on modules

So far, we have talked about modules, but we have not discussed morphisms between modules,
and have yet to make the class of modules over a given ring into a category. This we do next.

Let us thus introduce a few more basic notions.

2.5.7 Definition Let R be a ring. Suppose M,N are R-modules. A map f : M Ñ N is
a module-homomorphism if it preserves all the relevant structures. Namely, it must be a
homomorphism of abelian groups, fpx` yq “ fpxq` fpyq, and second it must preserve multipli-
cation:

fpaxq “ afpxq

for a P R, x PM .

A simple way of getting plenty of module-homomorphisms is simply to consider multiplication
by a fixed element of the ring.

2.5.8 Example If R is a commutative ring, M an R-module, and a P R, then multiplication by
a is a module-homomorphism M

a
Ñ M for any R-module M . Such homomorphisms are called

homotheties. When one considers modules over noncommutative rings, this is no longer true.

If M f
Ñ N and N

g
Ñ P are module-homomorphisms, their composite M g˝f

Ñ P clearly is too.
Thus, for any commutative ring R, the class of R-modules and module-homomorphisms forms a
category.

2.5.9 Remark The initial object in this category is the zero module, and this is also the final
object.

In general, a category where the initial object and final object are the same (that is, isomorphic)
is called a pointed category. The common object is called the zero object. In a pointed category
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C, there is a morphism X Ñ Y for any two objects X,Y P C: if ˚ is the zero object, then we can
take X Ñ ˚ Ñ Y . This is well-defined and is called the zero morphism. One can easily show
that the composition (on the left or the right) of a zero morphism is a zero morphism (between
a possibly different set of objects).

In the case of the category of modules, the zero object is clearly the zero module, and the zero
morphism M Ñ N sends m ÞÑ 0 for each m PM .

2.5.10 Definition Let f : M Ñ N be a module homomorphism. In this case, the kernel Ker f
of f is the set of elements m PM with fpmq “ 0. This is a submodule of M , as is easy to see.

The image Im f of f (the set-theoretic image, i.e. the collection of all fpxq, x P M) is also a
submodule of N .

The cokernel of f is defined by N{ Impfq.

2.5.11 Remark The universal property of the kernel is as follows. Let M f
Ñ N be a morphism

with kernel K Ă M . Let T Ñ M be a map. Then T Ñ M factors through the kernel K Ñ M
if and only if its composition with f (a morphism T Ñ N) is zero. That is, an arrow T Ñ K
exists in the diagram (where the dotted arrow indicates we are looking for a map that need not
exist)

T

~~ ��
K //M

f // N

if and only if the composite T Ñ N is zero. In particular, if we think of the hom-sets as abelian
groups (i.e. Z-modules)

homRpT,Kq “ ker phomRpT,Mq Ñ homRpT,Nqq .

In other words, one may think of the kernel as follows. If X f
Ñ Y is a morphism, then the kernel

kerpfq is the equalizer of f and the zero morphism X
0
Ñ Y .

2.5.12 Remark What is the universal property of the cokernel?

2.5.13 Remark On the category of modules, the functor assigning to each module M its un-
derlying set is corepresentable (cf. remark 2.1.19). What is the corepresenting object?

We shall now introduce the notions of direct sum and direct product. Let I be a set, and suppose
that for each i P I, we are given an R-module Mi.

2.5.14 Definition The direct product
ś

Mi is set-theoretically the cartesian product. It is
given the structure of an R-module by addition and multiplication pointwise on each factor.

2.5.15 Definition The direct sum
À

IMi is the set of elements in the direct product such
that all but finitely many entries are zero. The direct sum is a submodule of the direct product.
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2.5.16 Example The direct product is a product in the category of modules, and the direct
sum is a coproduct. This is easy to verify: given maps fi : M Ñ Mi, then we get get a unique
map f : M Ñ

ś

Mi by taking the product in the category of sets. The case of a coproduct is
dual: given maps gi : Mi Ñ N , then we get a map

À

Mi Ñ N by taking the sum g of the gi:
on a family pmiq P

À

Mi, we take gpmiq “
ř

I gipmiq; this is well-defined as almost all the mi

are zero.

example 2.5.16 shows that the category of modules over a fixed commutative ring has products
and coproducts. In fact, the category of modules is both complete and cocomplete (see defini-
tion 1.5.68 for the definition). To see this, it suffices to show that (by ?? and its dual) that this
category admits equalizers and coequalizers.

The equalizer of two maps

M
f,g
Ñ N

is easily checked to be the submodule of M consisting of m PM such that fpmq “ gpmq, or, in
other words, the kernel of f ´ g. The coequalizer of these two maps is the quotient module of N
by the submodule tfpmq ´ gpmq,m PMu, or, in other words, the cokernel of f ´ g.

Thus:

2.5.17 Proposition If R is a ring, the category of R-modules is complete and cocomplete.

2.5.18 Example Note that limits in the category of R-modules are calculated in the same way
as they are for sets, but colimits are not. That is, the functor from R-modules to Sets, the
forgetful functor, preserves limits but not colimits. Indeed, we will see that the forgetful functor
is a right adjoint (proposition 2.8.3), which implies it preserves limits (by proposition 1.7.10).

Exactness

Finally, we introduce the notion of exactness.

2.5.19 Definition Let f : M Ñ N be a morphism of R-modules. Suppose g : N Ñ P is
another morphism of R-modules. The pair of maps is a complex if g ˝ f “ 0 : M Ñ N Ñ P .
This is equivalent to the condition that Impfq Ă Kerpgq.

This complex is exact (or exact at N) if Impfq “ Kerpgq. In other words, anything that is killed
when mapped to P actually comes from something in M .

We shall often write pairs of maps as sequences

A
f
Ñ B

g
Ñ C

and say that the sequence is exact if the pair of maps is, as in Definition 2.5.19. A longer (possibly
infinite) sequence of modules

A0 Ñ A1 Ñ A2 Ñ . . .

will be called a complex if each set of three consecutive terms is a complex, and exact if it is
exact at each step.
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2.5.20 Example The sequence 0 Ñ A
f
Ñ B is exact if and only if the map f is injective.

Similarly, A f
Ñ B Ñ 0 is exact if and only if f is surjective. Thus, 0 Ñ A

f
Ñ B Ñ 0 is exact if

and only if f is an isomorphism.

One typically sees this definition applied to sequences of the form

0 ÑM 1 f
ÑM

g
ÑM2 Ñ 0,

which, if exact, is called a short exact sequence. Exactness here means that f is injective, g is
surjective, and f maps onto the kernel of g. So M2 can be thought of as the quotient M{M 1.

2.5.21 Example Conversely, if M is a module and M 1 ĂM a submodule, then there is a short
exact sequence

0 ÑM 1 ÑM ÑM{M 1 Ñ 0.

So every short exact sequence is of this form.

Suppose F is a functor from the category of R-modules to the category of S-modules, where
R,S are rings. Then:

2.5.22 Definition 1. F is called additive if F preserves direct sums.

2. F is called exact if F is additive and preserves exact sequences.

3. F is called left exact if F is additive and preserves exact sequences of the form 0 ÑM 1 Ñ

M ÑM2. Equivalently, F preserves kernels.

4. F is right exact if F is additive and F preserves exact sequences of the form M 1 ÑM Ñ

M2 Ñ 0, i.e. F preserves cokernels.

The reader should note that much of homological algebra can be developed using the more
general setting of an abelian category, which axiomatizes much of the standard properties of the
category of modules over a ring. Such a generalization turns out to be necessary when many
natural categories, such as the category of chain complexes or the category of sheaves on a
topological space, are not naturally categories of modules. We do not go into this here, cf. ?.

A functor F is exact if and only if it is both left and right exact. This actually requires proof,
though it is not hard. Namely, right-exactness implies that F preserves cokernels. Left-exactness
implies that F preserves kernels. F thus preserves images, as the image of a morphism is the
kernel of its cokernel. So if

AÑ B Ñ C

is a short exact sequence, then the kernel of the second map is equal to the image of the first;
we have just seen that this is preserved under F .

From this, one can check that left-exactness is equivalent to requiring that F preserve finite
limits (as an additive functor, F automatically preserves products, and we have just seen that
F is left-exact iff it preserves kernels). Similarly, right-exactness is equivalent to requiring that
F preserve finite colimits. So, in any category with finite limits and colimits, we can talk about
right or left exactness of a functor, but the notion is used most often for categories with an
additive structure (e.g. categories of modules over a ring).
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2.5.23 Remark Suppose whenever 0 Ñ A1 Ñ A Ñ A2 Ñ 0 is short exact, then FA1 Ñ
FA Ñ FA2 Ñ 0 is exact. Prove that F is right-exact. So we get a slightly weaker criterion for
right-exactness.

Do the same for left-exact functors.

Split exact sequences

Let f : A Ñ B be a map of sets which is injective. Then there is a map g : A Ñ B such that
the composite g ˝ f : A

f
Ñ B

g
Ñ A is the identity. Namely, we define g to be the inverse of f on

fpAq and arbitrarily on B ´ fpAq. Conversely, if f : AÑ B admits an element g : B Ñ A such
that g ˝ f “ 1A, then f is injective. This is easy to see, as any a P A can be “recovered” from
fpaq (by applying g).

In general, however, this observation does not generalize to arbitrary categories.

2.5.24 Definition Let C be a category. A morphism A
f
Ñ B is called a split injection if there

is g : B Ñ A with g ˝ f “ 1A.

2.5.25 Remark (General nonsense) Suppose f : AÑ B is a split injection. Show that f is
a categorical monomorphism. (Idea: the map hompC,Aq Ñ hompC,Bq becomes a split injection
of sets thanks to g.)

add: what is a categorical monomorphism? Maybe omit the exercise

In the category of sets, we have seen above that any monomorphism is a split injection. This is
not true in other categories, in general.

2.5.26 Remark Consider the morphism ZÑ Z given by multiplication by 2. Show that this is
not a split injection: no left inverse g can exist.

We are most interested in the case of modules over a ring.

2.5.27 Proposition A morphism f : AÑ B in the category of R-modules is a split injection if
and only if:

1. f is injective.

2. fpAq is a direct summand in B.

The second condition means that there is a submodule B1 Ă B such that B “ B1‘fpAq (internal
direct sum). In other words, B “ B1 ` fpAq and B1 X fpAq “ t0u.

121



I.2. Rings and modules 2.5. Modules over a ring

Proof. Suppose the two conditions hold, and we have a module B1 which is a complement to
fpAq. Then we define a left inverse

B
g
Ñ A

by letting g|fpAq “ f´1 (note that f becomes an isomorphism A Ñ fpAq) and g|B1 “ 0. It is
easy to see that this is indeed a left inverse, though in general not a right inverse, as g is likely
to be non-injective.

Conversely, suppose f : A Ñ B admits a left inverse g : B Ñ A. The usual argument (as for
sets) shows that f is injective. The essentially new observation is that fpAq is a direct summand
in B. To define the complement, we take kerpgq Ă B. It is easy to see (as g ˝ f “ 1A) that
kerpgq X fpAq “ t0u. Moreover, kerpgq ` fpAq fills B: given b P B, it is easy to check that

b´ fpgpbqq P kerpgq.

Thus we find that the two conditions are satisfied.

add: further explanation, exactness of filtered colimits

The five lemma

The five lemma will be a useful tool for us in proving that maps are isomorphisms. Often this
argument is used in inductive proofs. Namely, we will see that often “long exact sequences”
(extending infinitely in one or both directions) arise from short exact sequences in a natural way.
In such events, the five lemma will allow us to prove that certain morphisms are isomorphisms
by induction on the dimension.

2.5.28 Theorem Suppose given a commutative diagram

A

��

// B

��

// C

��

// D

��

// E

��
A1 // B1 // C 1 // D1 // E1

such that the rows are exact and the four vertical maps A Ñ A1, B Ñ B1, D Ñ D1, E Ñ E1 are
isomorphisms. Then C Ñ C 1 is an isomorphism.

This is the type of proof that goes by the name of “diagram-chasing,” and is best thought out
visually for oneself, even though we give a complete proof.

Proof. We have the diagram

A
k //

a
��

B
l //

b
��

C
m //

g

��

D
n //

d
��

E

e
��

F p
// G q

// H r
// I s

// J

where the rows are exact at B,C,D,G,H, I and the squares commute. In addition, suppose that
a, b, d, e are isomorphisms. We will show that g is an isomorphism.
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We show that g is surjective:

Suppose that h P H. Since d is surjective, there exists an element d P D such that rphq “ dpdq P I.
By the commutativity of the rightmost square, sprphqq “ epnpdqq. The exactness at I means
that Im r “ ker s, so hence epnpdqq “ sprphqq “ 0. Because e is injective, npdq “ 0. Then
d P Kerpnq “ Impmq by exactness at D. Therefore, there is some c P C such that mpcq “ d.
Now, dpmpcqq “ dpdq “ rphq and by the commutativity of squares, dpmpcqq “ rpgpcqq, so therefore
rpgpcqq “ rphq. Since r is a homomorphism, rpgpcq ´ hq “ 0. Hence gpcq ´ h P ker r “ Im q by
exactness at H.

Therefore, there exists g P G such that qpgq “ gpcq ´ h. b is surjective, so there is some
b P B such that bpbq “ g and hence qpbpbqq “ gpcq ´ h. By the commutativity of squares,
qpbpbqq “ gplpbqq “ gpcq ´ h. Hence h “ gpcq ´ gplpbqq “ gpc´ lpbqq, and therefore g is surjective.

So far, we’ve used that b and g are surjective, e is injective, and exactness at D, H, I.

We show that g is injective:

Suppose that c P C and gpcq “ 0. Then rpgpcqq “ 0, and by the commutativity of squares,
dpmpcqq “ 0. Since d is injective, mpcq “ 0, so c P kerm “ Im l by exactness at C. Therefore,
there is b P B such that lpbq “ c. Then gplpbqq “ gpcq “ 0, and by the commutativity of squares,
qpbpbqq “ 0. Therefore, bpbq P ker q, and by exactness at G, bpbq P ker q “ Im p.

There is now f P F such that ppfq “ bpbq. Since a is surjective, this means that there is a P A such
that f “ apaq, so then bpbq “ ppapaqq. By commutativity of squares, bpbq “ ppapaqq “ bpkpaqq,
and hence bpkpaq ´ bq “ 0. Since b is injective, we have kpaq ´ b “ 0, so kpaq “ b. Hence
b P Im k “ ker l by commutativity of squares, so lpbq “ 0. However, we defined b to satisfy
lpbq “ c, so therefore c “ 0 and hence g is injective.

Here, we used that a is surjective, b, d are injective, and exactness at B,C,G.

Putting the two statements together, we see that g is both surjective and injective, so g is an
isomorphism. We only used that b, d are isomorphisms and that a is surjective, e is injective, so
we can slightly weaken the hypotheses; injectivity of a and surjectivity of e were unnecessary.

2.6. Ideals in commutative rings

The notion of an ideal has already been defined. Now we will introduce additional terminology
related to the theory of ideals.

Prime and maximal ideals

Recall that the notion of an ideal generalizes that of divisibility. In elementary number theory,
though, one finds that questions of divisibility basically reduce to questions about primes. The
notion of a “prime ideal” is intended to generalize the familiar idea of a prime number.

2.6.1 Definition An ideal I Ă R is said to be prime if
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(PI1) 1 R I (by convention, 1 is not a prime number).

(PI2) If xy P I, either x P I or y P I.

2.6.2 Example If R “ Z and p P R, then ppq Ă Z is a prime ideal if and only if p or ´p is a
prime number in N or if p is zero.

2.6.3 Example If R is any commutative ring, there are two obvious ideals. These obvious ones
are the zero ideal p0q consisting only of the zero element, and the unit element p1q consisting of
all of R.

2.6.4 Definition An ideal I Ă R is called maximal if

(MI1) 1 R I.

(MI2) Any larger ideal contains 1 (i.e., is all of R).

2.6.5 Remark So a maximal ideal is a maximal element in the partially ordered set of proper
ideals. Recall that an ideal is called proper if it does not contain 1.

2.6.6 Remark Find the maximal ideals in Crts.

2.6.7 Proposition A maximal ideal is prime.

Proof. First, a maximal ideal does not contain 1.

Let I Ă R be a maximal ideal. We need to show that if xy P I, then one of x, y is in I. If
x R I, then pI, xq “ I`pxq (the ideal generated by I and x) strictly contains I, so by maximality
contains 1. In particular, 1 P I ` pxq, so we can write

1 “ a` xb

where a P I, b P R. Multiply both sides by y:

y “ ay ` bxy.

Both terms on the right here are in I (a P I and xy P I), so we find that y P I.

Given a ring R, what can we say about the collection of ideals in R? There are two obvious
ideals in R, namely p0q and p1q. These are the same if and only if 0 “ 1, i.e. R is the zero ring.
So for any nonzero commutative ring, we have at least two distinct ideals.

Next, we show that maximal ideals always do exist, except in the case of the zero ring.

2.6.8 Proposition Let R be a commutative ring. Let I Ă R be a proper ideal. Then I is
contained in a maximal ideal.

124



I.2. Rings and modules 2.6. Ideals in commutative rings

Proof. This requires the axiom of choice in the form of Zorn’s lemma. Let P be the collection
of all ideals J Ă R such that I Ă J and J ‰ R. Then P is a poset with respect to inclusion. P
is nonempty because it contains I. Note that given a (nonempty) linearly ordered collection of
ideals Jα P P , the union

Ť

Jα Ă R is an ideal: this is easily seen in view of the linear ordering
(if x, y P

Ť

Jα, then both x, y belong to some Jγ , so x ` y P Jγ ; multiplicative closure is even
easier). The union is not all of R because it does not contain 1.

This implies that P has a maximal element by Zorn’s lemma. This maximal element may be
called M; it’s a proper element containing I. I claim that M is a maximal ideal, because if it
were contained in a larger ideal, that would be in P (which cannot happen by maximality) unless
it were all of R.

2.6.9 Corollary Let R be a nonzero commutative ring. Then R has a maximal ideal.

Proof. Apply the lemma to the zero ideal.

2.6.10 Corollary Let R be a nonzero commutative ring. Then x P R is invertible if and only if
it belongs to no maximal ideal m Ă R.

Proof. Indeed, x is invertible if and only if pxq “ 1. That is, if and only if pxq is not a proper
ideal; now proposition 2.6.8 finishes the argument.

Fields and integral domains

Recall:

2.6.11 Definition A commutative ring R is called a field if 1 ‰ 0 and for every x P R ´ t0u
there exists an inverse x´1 P R such that xx´1 “ 1.

This condition has an obvious interpretation in terms of ideals.

2.6.12 Proposition A commutative ring with 1 ‰ 0 is a field iff it has only the two ideals
p1q, p0q.

Alternatively, a ring is a field if and only if p0q is a maximal ideal.

Proof. Assume R is a field. Suppose I Ă R. If I ‰ p0q, then there is a nonzero x P I. Then
there is an inverse x´1. We have x´1x “ 1 P I, so I “ p1q. In a field, there is thus no room for
ideals other than p0q and p1q.

To prove the converse, assume every ideal of R is p0q or p1q. Then for each x P R, pxq “ p0q or
p1q. If x ‰ 0, the first cannot happen, so that means that the ideal generated by x is the unit
ideal. So 1 is a multiple of x, implying that x has a multiplicative inverse.

So fields also have an uninteresting ideal structure.

2.6.13 Corollary If R is a ring and I Ă R is an ideal, then I is maximal if and only if R{I is
a field.
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Proof. The basic point here is that there is a bijection between the ideals of R{I and ideals of
R containing I.

Denote by φ : R Ñ R{I the reduction map. There is a construction mapping ideals of R{I to
ideals of R. This sends an ideal in R{I to its inverse image. This is easily seen to map to ideals
of R containing I. The map from ideals of R{I to ideals of R containing I is a bijection, as one
checks easily.

It follows that R{I is a field precisely if R{I has precisely two ideals, i.e. precisely if there are
precisely two ideals in R containing I. These ideals must be p1q and I, so this holds if and only
if I is maximal.

There is a similar characterization of prime ideals.

2.6.14 Definition A commutative ring R is an integral domain if for all x, y P R, x ‰ 0 and
y ‰ 0 imply xy ‰ 0.

2.6.15 Proposition An ideal I Ă R is prime iff R{I is a domain.

2.6.16 Remark Prove proposition 2.6.15.

Any field is an integral domain. This is because in a field, nonzero elements are invertible, and
the product of two invertible elements is invertible. This statement translates in ring theory to
the statement that a maximal ideal is prime.

Finally, we include an example that describes what some of the prime ideals in a polynomial
ring look like.

2.6.17 Example Let R be a ring and P a prime ideal. We claim that PRrxs Ă Rrxs is a prime
ideal.

Consider the map φ̃ : Rrxs Ñ pR{P qrxs with φ̃pa0`¨ ¨ ¨`anx
nq “ pa0`P q`¨ ¨ ¨`pan`P qx

n. This
is clearly a homomorphism because φ : RÑ R{P is, and its kernel consists of those polynomials
a0`¨ ¨ ¨`anx

n with a0, . . . , an P P , which is precisely P rxs. Thus Rrxs{P rxs » pR{P qrxs, which
is an integral domain because R{P is an integral domain. Thus P rxs is a prime ideal.

However, if P is a maximal ideal, then P rxs is never a maximal ideal because the ideal P rxs`pxq
(the polynomials with constant term in P ) always strictly contains P rxs (because if x P P rxs
then 1 P P , which is impossible). Note that P rxs` pxq is the kernel of the composition of φ̃ with
evaluation at 0, i.e pev0 ˝ φ̃q : Rrxs Ñ R{P , and this map is a surjection and R{P is a field, so
that P rxs ` pxq is the maximal ideal in Rrxs containing P rxs.

2.6.18 Remark Let R be a domain. Consider the set of formal quotients a{b, a, b P R with
b ‰ 0. Define addition and multiplication using usual rules. Show that the resulting object KpRq
is a ring, and in fact a field. The natural map RÑ KpRq, r Ñ r{1, has a universal property. If
R ãÑ L is an injection of R into a field L, then there is a unique morphism KpRq Ñ L of fields
extending R Ñ L. This construction will be generalized when we consider localization. This
construction is called the quotient field.

Note that a non-injective map RÑ L will not factor through the quotient field!
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2.6.19 Remark Let R be a commutative ring. Then the Jacobson radical of R is the inter-
section

Ş

m of all maximal ideals m Ă R. Prove that an element x is in the Jacobson radical if
and only if 1´ yx is invertible for all y P R.

Prime avoidance

The following fact will come in handy occasionally. We will, for instance, use it much later to
show that an ideal consisting of zero divisors on a module M is contained in associated prime.

2.6.20 Theorem (Prime avoidance) Let I1, . . . , In Ă R be ideals. Let A Ă R be a subset
which is closed under addition and multiplication. Assume that at least n ´ 2 of the ideals are
prime. If A Ă I1 Y ¨ ¨ ¨ Y In, then A Ă Ij for some j.

The result is frequently used in the following specific case: if an ideal I is contained in a finite
union

Ť

pi of primes, then I Ă pi for some i.

Proof. Induct on n. If n “ 1, the result is trivial. The case n “ 2 is an easy argument: if
a1 P Ar I1 and a2 P Ar I2, then a1 ` a2 P Ar pI1 Y I2q.

Now assume n ě 3. We may assume that for each j, A Ć I1 Y ¨ ¨ ¨ Y Îj Y ¨ ¨ ¨ In.3 Fix an element
aj P A r pI1 Y ¨ ¨ ¨ Y Îj Y ¨ ¨ ¨ Inq. Then this aj must be contained in Ij since A Ă

Ť

Ij . Since
n ě 3, one of the Ij must be prime. We may assume that I1 is prime. Define x “ a1`a2a3 ¨ ¨ ¨ an,
which is an element of A. Let’s show that x avoids all of the Ij . If x P I1, then a2a3 ¨ ¨ ¨ an P I1,
which contradicts the fact that ai R Ij for i ‰ j and that I1 is prime. If x P Ij for j ě 2. Then
a1 P Ij , which contradicts ai R Ij for i ‰ j.

The Chinese remainder theorem

Let m,n be relatively prime integers. Suppose a, b P Z; then one can show that the two congru-
ences x ” a mod m and x ” b mod n can be solved simultaneously in x P Z. The solution is
unique, moreover, modulo mn. The Chinese remainder theorem generalizes this fact:

2.6.21 Theorem (Chinese remainder theorem) Let I1, . . . In be ideals in a ring R which
satisfy Ii ` Ij “ R for i ‰ j. Then we have I1 X ¨ ¨ ¨ X In “ I1 . . . In and the morphism of rings

RÑ
à

R{Ii

is an epimorphism with kernel I1 X ¨ ¨ ¨ X In.

Proof. First, note that for any two ideals I1 and I2, we have I1I2 Ă I1XI2 and pI1`I2qpI1XI2q Ă

I1I2 (because any element of I1` I2 multiplied by any element of I1X I2 will clearly be a sum of
products of elements from both I1 and I2). Thus, if I1 and I2 are coprime, i.e. I1`I2 “ p1q “ R,
then p1qpI1 X I2q “ pI1 X I2q Ă I1I2 Ă I1 X I2, so that I1 X I2 “ I1I2. This establishes the result
for n “ 2.

3The hat means omit Ij .
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If the ideals I1, . . . , In are pairwise coprime and the result holds for n´ 1, then

n´1
č

i“1

Ii “
n´1
ź

i“1

Ii.

Because In ` Ii “ p1q for each 1 ď i ď n ´ 1, there must be xi P In and yi P Ii such that
xi ` yi “ 1. Thus, zn “

śn´1
i“1 yi “

śn´1
i“1 p1´ xiq P

śn´1
i“1 Ii, and clearly zn ` In “ 1` In since

each xi P In. Thus In `
śn´1
i“1 Ii “ In `

Şn´1
i“1 Ii “ p1q, and we can now apply the n “ 2 case to

conclude that
Şn
i“1 Ii “

śn
i“1 Ii.

Note that for any i, we can construct a zi with zi P Ij for j ‰ i and zi` Ii “ 1` Ii via the same
procedure.

Define φ : R Ñ
À

R{Ii by φpaq “ pa ` I1, . . . , a ` Inq. The kernel of φ is
Şn
i“1 Ii, because

a` Ii “ 0` Ii iff a P Ii, so that φpaq “ p0` I1, . . . , 0` Inq iff a P Ii for all i, that is, a P
Şn
i“1 Ii.

Combined with our previous result, the kernel of φ is
śn
i“1 Ii.

Finally, recall that we constructed zi P R such that zi`Ii “ 1`Ii, and z`Ij “ 0`Ij for all j ‰ i,
so that φpziq “ p0` I1, . . . , 1` Ii, . . . , 0` Inq. Thus, φpa1z1`¨ ¨ ¨`anznq “ pa1` I1, . . . , an` Inq
for all ai P R, so that φ is onto. By the first isomorphism theorem, we have that R{I1 ¨ ¨ ¨ In »
Àn

i“1R{Ii.

2.7. Some special classes of domains

Principal ideal domains

2.7.1 Definition A ring R is a principal ideal domain or PID if R ‰ 0, R is not a field, R
is a domain, and every ideal of R is principal.

These have the next simplest theory of ideals. Each ideal is very simple—it’s principal—though
there might be a lot of ideals.

2.7.2 Example Z is a PID. The only nontrivial fact to check here is that:

2.7.3 Proposition Any nonzero ideal I Ă Z is principal.

Proof. If I “ p0q, then this is obvious. Else there is n P I ´ t0u; we can assume n ą 0. Choose
n P I as small as possible and positive. Then I claim that the ideal I is generated by pnq. Indeed,
we have pnq Ă I obviously. If m P I is another integer, then divide m by n, to find m “ nb` r
for r P r0, nq. We find that r P I and 0 ď r ă n, so r “ 0, and m is divisible by n. And I Ă pnq.

So I “ pnq.

A module M is said to be finitely generated if there exist elements x1, . . . , xn PM such that any
element of M is a linear combination (with coefficients in R) of the xi. (We shall define this
more formally below.) One reason that PIDs are so convenient is:
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2.7.4 Theorem (Structure theorem) If M is a finitely generated module over a principal
ideal domain R, then M is isomorphic to a direct sum

M »

n
à

i“1

R{ai,

for various ai P R (possibly zero).

add: at some point, the proof should be added. This is important!

Unique factorization domains

The integers Z are especially nice because of the fundamental theorem of arithmetic, which
states that every integer has a unique factorization into primes. This is not true for every
integral domain.

2.7.5 Definition An element of a domain R is irreducible if it cannot be written as the product
of two non-unit elements of R.

2.7.6 Example Consider the integral domain Zr
?
´5s. We saw earlier that

6 “ 2 ¨ 3 “ p1`
?
´5qp1´

?
´5q,

which means that 6 was written as the product of two non-unit elements in different ways.
Zr
?
´5s does not have unique factorization.

2.7.7 Definition A domain R is a unique factorization domain or UFD if every non-unit
x P R satisfies

1. x can be written as a product x “ p1p2 ¨ ¨ ¨ pn of irreducible elements pi P R

2. if x “ q1q2 ¨ ¨ ¨ qm where qi P R are irreducible then the pi and qi are the same up to order
and multiplication by units.

2.7.8 Example Z is a UFD, while Zr
?
´5s is not. In fact, many of our favorite domains have

unique factorization. We will prove that all PIDs are UFDs. In particular, in remark 2.7.13 and
remark 2.7.14, we saw that Zris and F rts are PIDs, so they also have unique factorization.

2.7.9 Theorem Every principal ideal domain is a unique factorization domain.

Proof. Suppose that R is a principal ideal domain and x is an element of R. We first demonstrate
that x can be factored into irreducibles. If x is a unit or an irreducible, then we are done.
Therefore, we can assume that x is reducible, which means that x “ x1x2 for non-units x1, x2 P R.
If there are irreducible, then we are again done, so we assume that they are reducible and repeat
this process. We need to show that this process terminates.

Suppose that this process continued infinitely. Then we have an infinite ascending chain of ideals,
where all of the inclusions are proper: pxq Ă px1q Ă px11q Ă ¨ ¨ ¨ Ă R. We will show that this
is impossible because any infinite ascending chain of ideals I1 Ă I2 Ă ¨ ¨ ¨ Ă R of a principal
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ideal domain eventually becomes stationary, i.e. for some n, Ik “ In for k ě n. Indeed, let
I “

Ť8
i“1 Ii. This is an ideal, so it is principally generated as I “ paq for some a. Since a P I,

we must have a P IN for some N , which means that the chain stabilizes after IN .

It remains to prove that this factorization of x is unique. We induct on the number of irreducible
factors n of x. If n “ 0, then x is a unit, which has unique factorization up to units. Now,
suppose that x “ p1 ¨ ¨ ¨ pn “ q1 ¨ ¨ ¨ qm for some m ě n. Since p1 divides x, it must divide the
product q1 ¨ ¨ ¨ qm and by irreducibility, one of the factors qi. Reorder the qi so that p1 divides q1.
However, q1 is irreducible, so this means that p1 and q1 are the same up to multiplication by a unit
u. Canceling p1 from each of the two factorizations, we see that p2 ¨ ¨ ¨ pn “ uq2 ¨ ¨ ¨ qm “ q12 ¨ ¨ ¨ qm.
By induction, this shows that the factorization of x is unique up to order and multiplication by
units.

Euclidean domains

A euclidean domain is a special type of principal ideal domain. In practice, it will often happen
that one has an explicit proof that a given domain is euclidean, while it might not be so trivial
to prove that it is a UFD without the general implication below.

2.7.10 Definition An integral domain R is a euclidean domain if there is a function | ¨ | :
RÑ Zě0 (called the norm) such that the following hold.

1. |a| “ 0 iff a “ 0.

2. For any nonzero a, b P R there exist q, r P R such that b “ aq ` r and |r| ă |a|.

In other words, the norm is compatible with division with remainder.

2.7.11 Theorem A euclidean domain is a principal ideal domain.

Proof. Let R be an euclidean domain, I Ă R and ideal, and b be the nonzero element of smallest
norm in I. Suppose a P I. Then we can write a “ qb ` r with 0 ď r ă |b|, but since b has
minimal nonzero absolute value, r “ 0 and b|a. Thus I “ pbq is principal.

As we will see, this implies that any euclidean domain admits unique factorization.

2.7.12 Proposition Let F be a field. Then the polynomial ring F rts is a euclidean domain. In
particular, it is a PID.

Proof. We define add:

2.7.13 Remark Prove that Zris is principal. (Define the norm as Npa` ibq “ a2 ` b2.)

2.7.14 Remark Prove that the polynomial ring F rts for F a field is principal.

It is not true that a PID is necessarily euclidean. Nevertheless, it was shown in ? that the
converse is “almost” true. Namely, ? defines the notion of an almost euclidean domain. A
domain R is almost euclidean if there is a function d : RÑ Zě0 such that
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1. dpaq “ 0 iff a “ 0.

2. dpabq ě dpaq if b ‰ 0.

3. If a, b P R´ t0u, then either b | a or there is r P pa, bq with dprq ă dpbq.

It is easy to see by the same argument that an almost euclidean domain is a PID. (Indeed, let R
be an almost euclidean domain, and I Ă R a nonzero ideal. Then choose x P I ´ t0u such that
dpxq is minimal among elements in I. Then if y P I ´ t0u, either x | y or px, yq Ă I contains an
element with smaller d. The latter cannot happen, so the former does.) However, in fact:

2.7.15 Proposition (?) A domain is a PID if and only if it is almost euclidean.

Proof. Indeed, let R be a PID. Then R is a UFD (theorem 2.7.9), so for any x P R, there is
a factorization into prime elements, unique up to units. If x factors into n elements, we define
dpxq “ n; we set dp0q “ 0. The first two conditions for an almost euclidean domain are then
evident.

Let x “ p1 . . . pm and y “ q1 . . . qn be two elements of R, factored into irreducibles. Suppose
x - y. Choose a generator b of the (principal) ideal px, yq; then obviously y | b so dpyq ď dpbq.
But if dpyq “ dpbq, then the number of factors of y and b is the same, so y | b would imply that
y and b are associates. This is a contradiction, and implies that dpyq ă dpbq.

2.7.16 Remark We have thus seen that a euclidean domain is a PID, and a PID is a UFD.
Both converses, however, fail. By Gauß’s lemma (??), the polynomial ring ZrXs has unique
factorization, though the ideal p2, Xq is not principal.

In ?, it is shown that the ring Zr1`
?
´19

2 s is a PID but not euclidean (i.e. there is no euclidean
norm on it).

According to ?, sec. 8.3, proposition 2.7.15 actually goes back to Hasse (and these norms are
sometimes called “Dedekind-Hasse norms”).

2.8. Basic properties of modules

Free modules

We now describe a simple way of constructing modules over a ring, and an important class of
modules.

2.8.1 Definition A module M is free if it is isomorphic to RpSq “
À

S R for some index set S.
The cardinality of S is called the rank of the free module.

2.8.2 Example R is the simplest example of a free module.

131



I.2. Rings and modules 2.8. Basic properties of modules

Free modules have a universal property. Namely, recall that if M is an R-module, then to give
a homomorphism

RÑM

is equivalent to giving an element m P M (the image of 1). By the universal product of the
direct sum (which is the coproduct in the category of modules), it follows that to give a map

à

I

ÑM

is the same as giving a map of sets I ÑM . In particular:

2.8.3 Proposition The functor S ÞÑ
À

S R from Ens to R-modules is the left adjoint to the
forgetful functor U from R-modules to Ens.

The claim now is that the notion of “rank” is well-defined for a free module. To see this, we
will have to use the notion of a maximal ideal (definition 2.6.4) and corollary 2.6.13. Indeed,
suppose

À

I R and
À

J R are isomorphic; we must show that I and J have the same cardinality.
Choose a maximal ideal m Ă R. Then, by applying the functor M Ñ M{mM , we find that the
R{m-vector spaces

à

I

R{m,
à

J

R{m

are isomorphic. By linear algebra, I and J have the same cardinality.

Free modules have a bunch of nice properties. The first is that it is very easy to map out of a
free module.

2.8.4 Example Let I be an indexing set, and M an R-module. Then to give a morphism
à

I

RÑM

is equivalent to picking an element ofM for each i P I. Indeed, given such a collection of elements
tmiu, we send the generator of

À

I R with a 1 in the ith spot and zero elsewhere to mi.

2.8.5 Example In a domain, every principal ideal (other than zero) is a free module of rank
one.

Another way of saying this is that the free module
À

I R represents the functor on modules
sending M to the set M I . We have already seen a special case of this for I a one-element set
(remark 2.5.13).

The next claim is that free modules form a reasonably large class of the category of R-modules.

2.8.6 Proposition Given an R-module M , there is a free module F and a surjection

F �M.

Proof. We let F to be the free R-module on the elements em, one for each m P M . We define
the map

F ÑM

by describing the image of each of the generators em: we just send each em to m PM . It is clear
that this map is surjective.
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We close by making a few remarks on matrices. Let M be a free module of rank n, and fix an
isomorphism M » Rn. Then we can do linear algebra with M , even though we are working
over a ring and not necessarily a field, at least to some extent. For instance, we can talk
about n-by-n matrices over the ring R, and then each of them induces a transformation, i.e. a
module-homomorphism, M Ñ M ; it is easy to see that every module-homomorphism between
free modules is of this form. Moreover, multiplication of matrices corresponds to composition of
homomorphisms, as usual.

2.8.7 Example Let us consider the question of when the transformation induced by an n-by-n
matrix is invertible. The answer is similar to the familiar one from linear algebra in the case of
a field. Namely, the condition is that the determinant be invertible.

Suppose that an nˆn matrix A over a ring R is invertible. This means that there exists A´1 so
that AA´1 “ I, so hence 1 “ det I “ detpAA´1q “ pdetAqpdetA´1q, and therefore, detA must
be a unit in R.

Suppose instead that an n ˆ n matrix A over a ring R has an invertible determinant. Then,
using Cramer’s rule, we can actually construct the inverse of A.

We next show that if R is a commutative ring, the category of modules over R contains enough
information to reconstruct R. This is a small part of the story of Morita equivalence, which we
shall not enter into here.

2.8.8 Example Suppose R is a commutative ring, and let C be the category of R-modules. The
claim is that C, as an abstract category, determines R. Indeed, the claim is that R is canonically
the ring of endomorphisms of the identity functor 1C .

Such an endomorphism is given by a natural transformation φ : 1C Ñ 1C . In other words,
one requires for each R-module M , a homomorphism of R-modules φM : M Ñ M such that if
f : M Ñ N is any homomorphism of modules, then there is a commutative square

M

f
��

φM //M

��
N

φN // N.

Here is a simple way of obtaining such endomorphisms. Given r P R, we consider the map
r : M Ñ m which just multiplies each element by r. This is a homomorphism, and it is clear
that it is natural in the above sense. There is thus a map RÑ Endp1Cq (note that multiplication
corresponds to composition of natural transformations). This map is clearly injective; different
r, s P R lead to different natural transformations (e.g. on the R-module R).

The claim is that any natural transformation of 1C is obtained in this way. Namely, let φ :
1C Ñ 1C be such a natural transformation. On the R-module R, φ must be multiplication by
some element r P R (because homRpR,Rq is given by such homotheties). Consequently, one sees
by drawing commutative diagrams that φ : R‘S Ñ R‘S is of this form for any set S. So φ is
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multiplication by r on any free R-module. Since any module M is a quotient of a free module
F , we can draw a diagram

F

��

φF // F

��
M

φM //M.

Since the vertical arrows are surjective, we find that φF must be given by multiplication by r
too.

Finitely generated modules

The notion of a “finitely generated” module is analogous to that of a finite-dimensional vector
space.

2.8.9 Definition An R-module M is finitely generated if there exists a surjection Rn Ñ M
for some n. In other words, it has a finite number of elements whose “span” contains M .

The basic properties of finitely generated modules follow from the fact that they are stable under
extensions and quotients.

2.8.10 Proposition Let 0 ÑM 1 ÑM ÑM2 Ñ 0 be an exact sequence. If M 1,M2 are finitely
generated, so is M .

Proof. Suppose 0 Ñ M 1 f
Ñ M

g
Ñ M2 Ñ 0 is exact. Then g is surjective, f is injective, and

kerpgq “ impfq. Now suppose M 1 is finitely generated, say by ta1, . . . , asu, and M2 is finitely
generated, say by tb1, . . . , btu. Because g is surjective, each g´1pbiq is non-empty. Thus, we can
fix some ci P g´1pbiq for each i.

For any m P M , we have gpmq “ r1b1 ` ¨ ¨ ¨ ` rtbt for some ri P R because gpmq P M2 and M2

is generated by the bi. Thus gpmq “ r1gpciq ` ¨ ¨ ¨ rtgpctq “ gpr1c1 ` ¨ ¨ ¨ ` rtctq, and because g is
a homomorphism we have m´ pr1c1 ` ¨ ¨ ¨ ` rtctq P kerpgq “ impfq. But M 1 is generated by the
ai, so the submodule impfq ĂM is finitely generated by the di “ fpaiq.

Thus, any m PM has m´ pr1c1 ` ¨ ¨ ¨ ` rtctq “ rt`1d1 ` ¨ ¨ ¨ ` rt`sds for some r1, . . . , rt`s, thus
M is finitely generated by c1, . . . , ct, d1, . . . , ds.

The converse is false. It is possible for finitely generated modules to have submodules which are
not finitely generated. As we shall see in chapter III.2, this does not happen over noetherian
rings.

2.8.11 Example Consider the ring R “ CrX1, X2, . . . , s and the ideal pX1, X2, . . . q. This ideal
is a submodule of the finitely generated R-module R, but it is not finitely generated.

2.8.12 Remark Show that a quotient of a finitely generated module is finitely generated.

2.8.13 Remark Consider a split exact sequence 0 Ñ M 1 Ñ M Ñ M2 Ñ 0. In this case, show
that if M is finitely generated, so is M 1.
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Finitely presented modules

Over messy rings, the notion of a finitely presented module is often a good substitute for that
of a finitely generated one. In fact, we are going to see (??) that there is a general method
of reducing questions about finitely presented modules over arbitrary rings to finitely generated
modules over finitely generated Z-algebras.

Throughout, fix a ring R.

2.8.14 Definition An R-module M is finitely presented if there is an exact sequence

Rm Ñ Rn ÑM Ñ 0.

The point of this definition is thatM is the quotient of a free module Rn by the “relations” given
by the images of the vectors in Rm. Since Rm is finitely generated, M can be represented via
finitely many generators and finitely many relations.

The reader should compare this with the definition of a finitely generated module; there we
only require an exact sequence

Rn ÑM Ñ 0.

As usual, we establish the usual properties of finitely presented modules.

We start by showing that if a finitely presented moduleM is generated by finitely many elements,
the “module of relations” among these generators is finitely generated itself. The condition of
finite presentation only states that there is one such set of generators such that the module of
generators is finitely generated.

2.8.15 Proposition Suppose M is finitely presented. Then if Rm � M is a surjection, the
kernel is finitely generated.

Proof. Let K be the kernel of Rm �M . Consider an exact sequence

F 1 Ñ F ÑM Ñ 0

where F 1, F are finitely generated and free, which we can do as M is finitely presented. Draw a
commutative and exact diagram

F 1 // F //

��

M //

��

0

0 // K // Rm //M // 0

The dotted arrow F Ñ Rm exists as F is projective. There is induced a map F 1 Ñ K. We get
a commutative and exact diagram

F 1 //

f
��

F //

g

��

M //

��

0

0 // K // Rm //M // 0

,

135



I.2. Rings and modules 2.8. Basic properties of modules

to which we can apply the snake lemma. There is an exact sequence

0 Ñ cokerpfq Ñ cokerpgq Ñ 0,

which gives an isomorphism cokerpfq » cokerpgq. However, cokerpgq is finitely generated, as a
quotient of Rm. Thus cokerpfq is too. Since we have an exact sequence

0 Ñ Impfq Ñ K Ñ cokerpfq Ñ 0,

and Impfq is finitely generated (as the image of a finitely generated object, F 1), we find by
proposition 2.8.10 that cokerpfq is finitely generated.

2.8.16 Proposition Given an exact sequence

0 ÑM 1 ÑM ÑM2 Ñ 0,

if M 1,M2 are finitely presented, so is M .

In general, it is not true that if M is finitely presented, then M 1 and M2 are. For instance, it is
possible that a submodule of the free, finitely generated module R (i.e. an ideal), might fail to
be finitely generated. We shall see in chapter III.2 that this does not happen over a noetherian
ring.

Proof. Indeed, suppose we have exact sequences

F 11 Ñ F 10 ÑM 1 Ñ 0

and
F 21 Ñ F 20 ÑM2 Ñ 0

where the F ’s are finitely generated and free. We need to get a similar sequence for M . Let us
stack these into a diagram

F 11

��

F 21

��
F 10

��

F 20

��
0 //M 1 //M //M2 // 0

However, now, using general facts about projective modules (??), we can splice these presenta-
tions into a resolution

F 11 ‘ F
2
1 Ñ F 10 ‘ F

2
0 ÑM Ñ 0,

which proves the assertion.

2.8.17 Corollary The (finite) direct sum of finitely presented modules is finitely presented.

Proof. Immediate from proposition 2.8.16
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Modules of finite length

A much stronger condition on modules that of finite generation is that of finite length. Here,
basically any operation one does will eventually terminate.

Let R be a commutative ring, M an R-module.

2.8.18 Definition M is simple if M ‰ 0 and M has no nontrivial submodules.

2.8.19 Remark A torsion-free abelian group is never a simple Z-module.

2.8.20 Proposition M is simple if and only if it is isomorphic to R{m for m Ă R a maximal
ideal.

Proof. Let M be simple. Then M must contain a cyclic submodule Rx generated by some
x PM ´t0u. So it must contain a submodule isomorphic to R{I for some ideal I, and simplicity
implies that M » R{I for some I. If I is not maximal, say properly contained in J , then we will
get a nontrivial submodule J{I of R{I »M . Conversely, it is easy to see that R{m is simple for
m maximal.

2.8.21 Remark (Schur’s lemma) Let f : M Ñ N be a module-homomorphism, where M,N
are both simple. Then either f “ 0 or f is an isomorphism.

2.8.22 Definition M is of finite length if there is a finite filtration 0 ĂM0 Ă ¨ ¨ ¨ ĂMn “M
where each M i{M i´1 is simple.

2.8.23 Remark Modules of finite length are closed under extensions (that is, if 0 Ñ M 1 Ñ

M ÑM2 Ñ 0 is an exact sequence, then if M 1,M2 are of finite length, so is M).

In the next result (which will not be used in this chapter), we shall use the notions of a noetherian
and an artinian module. These notions will be developed at length in ??, and we refer the reader
there for more explanation. A module is noetherian if every ascending chain M1 ĂM2 Ă . . . of
submodules stabilizes, and it is artinian if every descending chain stabilizes.

2.8.24 Proposition M is finite length iff M is both noetherian and artinian.

Proof. Any simple module is obviously both noetherian and artinian: there are two submodules.
So if M is finite length, then the finite filtration with simple quotients implies that M is noethe-
rian and artinian, since these two properties are stable under extensions (proposition 2.1.7 and
proposition 2.4.5 of chapter III.2).

Suppose M ‰ 0 is noetherian and artinian. Let M1 Ă M be a minimal nonzero submodule,
which exists as M is artinian. This is necessarily simple. Then we have a filtration

0 “M0 ĂM1.

If M1 “M , then the filtration goes up to M , and we have that M is of finite length. If not, find
a submodule M2 that contains M1 and is minimal among submodules containing M1; then the
quotient M2{M1 is simple. We have the filtration

0 “M0 ĂM1 ĂM2,

which we can keep continuing until at some point we reach M . Note that since M is noetherian,
we cannot continue this strictly ascending chain forever.
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2.8.25 Remark In particular, any submodule or quotient module of a finite length module is
of finite length. Note that the analog is not true for finitely generated modules unless the ring
in question is noetherian.

Our next goal is to show that the length of a filtration of a module with simple quotients is
well-defined. For this, we need:

2.8.26 Lemma Let 0 “M0 ĂM1 Ă ¨ ¨ ¨ ĂMn “M be a filtration of M with simple quotients.
Let N ĂM . Then the filtration 0 “M0XN ĂM1XN Ă ¨ ¨ ¨ Ă N has simple or zero quotients.

Proof. Indeed, for each i, pN XMiq{pN XMi´1q is a submodule of Mi{Mi´1, so is either zero or
simple.

2.8.27 Theorem (Jordan-Hölder) Let M be a module of finite length. In this case, any two
filtrations on M with simple quotients have the same length.

2.8.28 Definition This number is called the length of M and is denoted `pMq.

Proof of theorem 2.8.27. Let us introduce a temporary definition: lpMq is the length of the
minimal filtration on M . We will show that any filtration of M (with simple quotients) is of
length lpMq. This is the proposition in another form.

The proof of this claim is by induction on lpMq. Suppose we have a filtration

0 “M0 ĂM1 Ă ¨ ¨ ¨ ĂMn “M

with simple quotients. We would like to show that n “ lpMq. By definition of lpMq, there is
another filtration

0 “ N0 Ă ¨ ¨ ¨ Ă NlpMq “M.

If lpMq “ 0, 1, then M is zero or simple, which will necessarily imply that n “ 0, 1 respectively.
So we can assume lpMq ě 2. We can also assume that the result is known for strictly smaller
submodules of M .

There are two cases:

1. Mn´1 “ NlpMq´1. Then Mn´1 “ NlpMq´1 has l at most lpMq ´ 1. Thus by the inductive
hypothesis any two filtrations onMn´1 have the same length, so n´1 “ lpMq´1, implying
what we want.

2. We have Mn´1 XNlpMq´1 ĹMn´1, NlpMq´1. Call this intersection K.

Now we have two filtrations of these modules Mn´1, NlpMq´1 whose quotients are simple.
We can replace them such that the next term before them is K. To do this, consider the
filtrations

0 “M0 XK ĂM1 Ă K Ă . . .Mn´1 XK “ K ĂMn´1

and
0 “ N0 XK ĂM1 Ă K Ă . . . NlpMq´1 XK “ K Ă NlpMq´1.

These filtrations have simple or zero quotients by lemma 2.8.26, and since Mn´1{K “

Mn´1{Mn´1 XNlpMq´1 “M{Mn´1 is simple, and similarly for NlpMq´1{K. We can throw
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out redundancies to eliminate the zero terms. So we get two new filtrations of Mn´1 and
NlpMq´1 whose second-to-last term is K.

By the inductive hypothesis any two filtrations on either of these proper submodules
Mn´1, NlpMq´1 have the same length. Thus the lengths of the two new filtrations are
n´1 and lpMq´1, respectively. So we find that n´1 “ lpKq`1 and lpMq´1 “ lpKq`1
by the inductive hypothesis. This implies what we want.

2.8.29 Remark Prove that the successive quotients Mi{Mi´1 are also determined (up to per-
mutation).
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3.1. Introduction

In this chapter, we shall discuss the theory of fields. Recall that a field is an integral domain for
which all non-zero elements are invertible; equivalently, the only two ideals of a field are p0q and
p1q since any nonzero element is a unit. Consequently fields will be the simplest cases of much
of the theory developed later.

The theory of field extensions has a different feel from standard commutative algebra since, for
instance, any morphism of fields is injective. Nonetheless, it turns out that questions involving
rings can often be reduced to questions about fields. For instance, any integral domain can be
embedded in a field (its quotient field), and any local ring (that is, a ring with a unique maximal
ideal; we have not defined this term yet) has associated to it its residue field (that is, its quotient
by the maximal ideal). A knowledge of field extensions will thus be useful.

3.2. Fields

Recall once again:

3.2.1 Definition A field is an integral domain where every non-zero element is invertible. Al-
ternatively, it is a set K, endowed with binary operations of addition ` and multiplication ¨ and
two elements 0 and 1, such that the usual axioms of a field are satisfied:

(Fld1) K together with addition ` and the element 0 is an abelian group.

(Fld2) K together with multiplication ¨ and the element 1 is an abelian monoid such that every
non-zero element of K is invertible.

(Fld3) Multiplication distributes from the left and the right over addition that is

a ¨ pb` cq “ a ¨ b` a ¨ c and pa` bq ¨ c “ a ¨ c` a ¨ b for all a, b, c P K .

(Fld4) The neutral elements 0 and 1 are not equal.

A subfield of a field is a subset closed under these operations and containing 0 and 1. Equivalently,
it is a subring that is itself a field.

For a field K, we write K˚ for the subset Kz t0u. This generalizes the usual notation ??, where
R˚ refers to the group of invertible elements in a ring R.
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Examples

To get started, let us begin by providing several examples of fields. The reader should recall
(corollary 2.6.13) that if R is a ring and I Ă R an ideal, then R{I is a field precisely when I is
maximal.

3.2.2 Example One of the most familiar examples of a field is the rational numbers Q.

3.2.3 Example If p is a prime number, then Z{ppq is a field, denoted Fp. Indeed, ppq is a
maximal ideal in Z. Thus, fields may be finite: Fp contains p elements.

3.2.4 Example (Quotients of the polynomial ring) In a principal ideal domain, every prime
ideal is principal. Now, by 2.7.12, if k is a field, then the polynomial ring krxs is a PID. It follows
that if P P krxs is an irreducible polynomial (that is, a nonconstant polynomial that does not
admit a factorization into terms of smaller degrees), then krxs{pP q is a field. It contains a copy
of k in a natural way.

This is a very general way of constructing fields. For instance, the complex numbers C can be
constructed as Rrxs{px2 ` 1q.

3.2.5 Remark What is Crxs{px2 ` 1q?

3.2.6 Example (Quotient fields) Recall from remark 2.6.18 that, given an integral domain A,
there is an imbedding A ãÑ KpAq into a fieldKpAq formally constructed as quotients a{b, a, b P A
(and b ‰ 0) modulo an evident equivalence relation. This is called the quotient field. The
quotient field has the following universal property: given an injection φ : A ãÑ K for a field
K, there is a unique map ψ : KpAq Ñ K making the diagram commutative (i.e. a map of
A-algebras). Indeed, it is clear how to define such a map: we set

ψpa{bq “ φpaq{φpbq,

where injectivity of φ assures that φpbq ‰ 0 if b ‰ 0.

If the map is not injective, then such a factorization may not exist. Consider the imbedding
Z Ñ Q into its quotient field, and consider the map Z Ñ Fp: this last map goes from Z into a
field, but it does not factor through Q (as p is invertible in Q and zero in Fp!).

3.2.7 Example (Rational function field) If k is a field, then we can consider the field kpxq
of rational functions over k. This is the quotient field of the polynomial ring krxs; in other
words, it is the set of quotients F {G for F,G P krxs with the obvious equivalence relation.

Here is a fancier example of a field.

3.2.8 Example Let X be a Riemann surface.1 Let CpXq denote the set of meromorphic func-
tions on X; clearly CpXq is a ring under multiplication and addition of functions. It turns out
that in fact CpXq is a field; this is because if a nonzero function fpzq is meromorphic, so is
1{fpzq. For example, let S2 be the Riemann sphere; then we know from complex analysis that
the ring of meromorphic functions CpS2q is the field of rational functions Cpzq.

1Readers not familiar with Riemann surfaces may ignore this example.
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One reason fields are so nice from the point of view of most other chapters in this book is that
the theory of k-modules (i.e. vector spaces), for k a field, is very simple. Namely:

3.2.9 Proposition If k is a field, then every k-module is free.

Proof. Indeed, by linear algebra we know that a k-module (i.e. vector space) V has a basis
B Ă V , which defines an isomorphism from the free vector space on B to V .

3.2.10 Corollary Every exact sequence of modules over a field splits.

Proof. This follows from ?? and proposition 3.2.9, as every vector space is projective.

This is another reason why much of the theory in future chapters will not say very much about
fields, since modules behave in such a simple manner. Note that corollary 3.2.10 is a statement
about the category of k-modules (for k a field), because the notion of exactness is inherently
arrow-theoretic (i.e. makes use of purely categorical notions, and can in fact be phrased within
a so-called abelian category).

Henceforth, since the study of modules over a field is linear algebra, and since the ideal theory
of fields is not very interesting, we shall study what this chapter is really about: extensions of
fields.

The characteristic of a field

In the category of rings, there is an initial object Z: any ring R has a map from Z into it in
precisely one way. For fields, there is no such initial object. Nonetheless, there is a family of
objects such that every field can be mapped into in exactly one way by exactly one of them, and
in no way by the others.

Let F be a field. As Z is the initial object of the category of rings, there is a ring map f : ZÑ F ,
see 2.1.17. The image of this ring map is an integral domain (as a subring of a field) hence the
kernel of f is a prime ideal in Z, see 2.6.15. Hence the kernel of f is either p0q or ppq for some
prime number p, see 2.6.2.

In the first case we see that f is injective, and in this case we think of Z as a subring of F .
Moreover, since every nonzero element of F is invertible we see that it makes sense to talk about
p{q P F for p, q P Z with q “ 0. Hence in this case we may and we do think of Q as a subring of
F . One can easily see that this is the smallest subfield of F in this case.

In the second case, i.e., when Kerpfq “ ppq we see that Z{ppq “ Fp is a subring of F . Clearly it
is the smallest subfield of F .

Arguing in this way we see that every field contains a smallest subfield which is either Q or finite
equal to Fp for some prime number p.

3.2.11 Definition The characteristic of a field F is 0 if Z Ă F , or is a prime p if p “ 0 in F .
The prime subfield of F is the smallest subfield of F which is either Q Ă F if the characteristic
is zero, or Fp Ă F if the characteristic is p ą 0.
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It is easy to see that if E is a field containing k, then the characteristic of E is the same as the
characteristic of k.

3.2.12 Example The characteristic of Z{p is p, and that of Q is 0. This is obvious from the
definitions.

3.3. Field extensions

Preliminaries

In general, though, we are interested not so much in fields by themselves but in field extensions.
This is perhaps analogous to studying not rings but algebras over a fixed ring. The nice thing for
fields is that the notion of a “field over another field” just recovers the notion of a field extension,
by the next result.

3.3.1 Proposition If F is a field and R is any ring, then any ring homomorphism f : F Ñ R
is either injective or the zero map (in which case R “ 0).

Proof. Indeed, kerpfq is an ideal in F . But there are only two ideals in F , namely p0q and p1q.
If f is identically zero, then 1 “ fp1q “ 0 in R, so R “ 0 too.

3.3.2 Definition If F is a field contained in a field G, then G is said to be a field extension
of F . We shall write G{F to indicate that G is an extension of F .

So if F, F 1 are fields, and F Ñ F 1 is any ring-homomorphism, we see by proposition 3.3.1 that
it is injective,2 and F 1 can be regarded as an extension of F , by a slight abuse of notation.
Alternatively, a field extension of F is just an F -algebra that happens to be a field. This is
completely different than the situation for general rings, since a ring homomorphism is not
necessarily injective.

Let k be a field. There is a category of field extensions of k. An object of this category is an
extension E{k, that is a (necessarily injective) morphism of fields

k Ñ E,

while a morphism between extensions E{k,E1{k is a k-algebra morphism E Ñ E1; alternatively,
it is a commutative diagram

E // E1

k

??__ .

3.3.3 Definition A tower of field extensions E1{E{k consists of an extension E{k and an
extension E1{E.

2The zero ring is not a field!
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It is easy to see that any morphism E Ñ E1 in the category of k-extensions gives a tower.

Let us give a few examples of field extensions.

3.3.4 Example Let k be a field, and P P krxs an irreducible polynomial. We have seen that
krxs{pP q is a field (3.2.7). Since it is also a k-algebra in the obvious way, it is an extension of k.

3.3.5 Example If X is a Riemann surface, then the field of meromorphic functions CpXq (see
example 3.2.8) is an extension field of C, because any element of C induces a meromorphic—
indeed, holomorphic—constant function on X.

Let F {k be a field extension. Let S Ă F be any subset. Then there is a smallest subextension
of F (that is, a subfield of F containing k) that contains S. To see this, consider the family of
subfields of F containing S and k, and take their intersection; one easily checks that this is a
field. It is easy to see, in fact, that this is the set of elements of F that can be obtained via
a finite number of elementary algebraic operations (addition, multiplication, subtraction, and
division) involving elements of k and S.

3.3.6 Definition If F {k is an extension and S Ă F , we write kpSq for the smallest subextension
of F containing S. We will say that S generates the extension kpSq{k.

For instance, C is generated by i over R.

3.3.7 Remark Show that C does not have a countable set of generators over Q.

Let us now classify extensions generated by one element.

3.3.8 Proposition (Simple extensions of a field) If an extension F {k is generated by one
element, then it is F is k-isomorphic either to the rational function field kptq{k or to one of the
extensions krts{pP q for P P krts irreducible.

We will see that many of the most important cases of field extensions are generated by one
element, so this is actually useful.

Proof. Let α P F be such that F “ kpαq; by assumption, such an α exists. There is a morphism
of rings

krts Ñ F

sending the indeterminate t to α. The image is a domain, so the kernel is a prime ideal. Thus,
it is either p0q or pP q for P P krts irreducible.

If the kernel is pP q for P P krts irreducible, then the map factors through krts{pP q, and induces
a morphism of fields krts{pP q Ñ F . Since the image contains α, we see easily that the map is
surjective, hence an isomorphism. In this case, krts{pP q » F .

If the kernel is trivial, then we have an injection krts Ñ F . One may thus define a morphism of
the quotient field kptq into F ; given a quotient Rptq{Qptq with Rptq, Qptq P krts, we map this to
Rpαq{Qpαq. The hypothesis that krts Ñ F is injective implies that Qpαq ‰ 0 unless Q is the zero
polynomial. The quotient field of krts is the rational function field kptq, so we get a morphism
kptq Ñ F whose image contains α. It is thus surjective, hence an isomorphism.
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Finite extensions

If F {E is a field extension, then evidently F is also a vector space over E (the scalar action is
just multiplication in F ).

3.3.9 Definition The dimension of F considered as an E-vector space is called the degree of
the extension and is denoted rF : Es. If rF : Es ă 8 then F is said to be a finite extension.

3.3.10 Example C is obviously a finite extension of R (of degree 2).

Let us now consider the degree in the most important special example, that given by proposi-
tion 3.3.8, in the next two examples.

3.3.11 Example (Degree of a simple transcendental extension) If k is any field, then
the rational function field kptq is not a finite extension. The elements ttn, n P Zu are linearly
independent over k.

In fact, if k is uncountable, then kptq is uncountably dimensional as a k-vector space. To show
this, we claim that the family of elements t1{pt´ αq, α P ku Ă kptq is linearly independent over
k. A nontrivial relation between them would lead to a contradiction: for instance, if one works
over C, then this follows because 1

t´α , when considered as a meromorphic function on C, has a
pole at α and nowhere else. Consequently any sum

ř

ci
1

t´αi
for the ci P k˚, and αi P k distinct,

would have poles at each of the αi. In particular, it could not be zero.

(Amusingly, this leads to a quick if suboptimal proof of the Hilbert Nullstellensatz; see ??.)

3.3.12 Example (Degree of a simple algebraic extension) Consider a monogenic field ex-
tension E{k of the form in 3.2.7, say E “ krts{pP q for P P krts an irreducible polynomial. Then
the degree rE : ks is just the degree degP . Indeed, without loss of generality, we can assume P
monic, say

P “ tn ` a1t
n´1 ` ¨ ¨ ¨ ` a0. (3.3.1)

It is then easy to see that the images of 1, t, . . . , tn´1 in krts{pP q are linearly independent over
k, because any relation involving them would have degree strictly smaller than that of P , and P
is the element of smallest degree in the ideal pP q.

Conversely, the set S “
 

1, t, . . . , tn´1
(

(or more properly their images) spans krts{pP q as a
vector space. Indeed, we have by (3.3.1) that tn lies in the span of S. Similarly, the relation
tP ptq “ 0 shows that the image of tn`1 lies in the span of t1, t, . . . , tnu—by what was just shown,
thus in the span of S. Working upward inductively, we find that the image of tM for M ě n lies
in the span of S.

This confirms the observation that rC : Rs “ 2, for instance. More generally, if k is a field, and
α P k is not a square, then the irreducible polynomial x2 ´ α P krxs allows one to construct an
extension krxs{px2 ´ αq of degree two. We shall write this as kp

?
αq. Such extensions will be

called quadratic, for obvious reasons.

The basic fact about the degree is that it is multiplicative in towers.
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3.3.13 Proposition (Multiplicativity) Suppose given a tower F {E{k. Then

rF : ks “ rF : EsrE : ks.

Proof. Let α1, . . . , αn P F be an E-basis for F . Let β1, . . . , βm P E be a k-basis for E. Then the
claim is that the set of products tαiβj , 1 ď i ď n, 1 ď j ď mu is a k-basis for F . Indeed, let us
check first that they span F over k.

By assumption, the tαiu span F over E. So if f P F , there are ai P E with

f “
ÿ

aiαi,

and, for each i, we can write ai “
ř

bijβj for some bij P k. Putting these together, we find

f “
ÿ

i,j

bijαiβj ,

proving that the tαiβju span F over k.

Suppose now that there existed a nontrivial relation
ÿ

i,j

cijαiβj “ 0

for the cij P k. In that case, we would have

ÿ

i

αi

˜

ÿ

j

cijβj

¸

“ 0,

and the inner terms lie in E as the βj do. Now E-linear independence of the tαiu shows that the
inner sums are all zero. Then k-linear independence of the tβju shows that the cij all vanish.

We sidetrack to a slightly tangential definition:

3.3.14 Definition A field extensions K of Q is said to be a number field if it is a finite
extension of Q.

Number fields are the basic objects in algebraic number theory. We shall see later that, for the
analog of the integers Z in a number field, something kind of like unique factorization still holds
(though strict unique factorization generally does not!).

Algebraic extensions

Consider a field extension F {E.

3.3.15 Definition An element α P F is said to be algebraic over E if α is the root of some
polynomial with coefficients in E. If all elements of F are algebraic then F is said to be an
algebraic extension.
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By proposition 3.3.8, the subextension Epαq is isomorphic either to the rational function field
Eptq or to a quotient ring Erts{pP q for P P Erts an irreducible polynomial. In the latter case, α
is algebraic over E (in fact, it satisfies the polynomial P !); in the former case, it is not.

3.3.16 Example C is algebraic over R.

3.3.17 Example Let X be a compact Riemann surface, and f P CpXq ´ C any nonconstant
meromorphic function on X (see example 3.2.8). Then it is known that CpXq is algebraic over
the subextension Cpfq generated by f . We shall not prove this.

We now show that there is a deep connection between finiteness and being algebraic.

3.3.18 Proposition A finite extension is algebraic. In fact, an extension E{k is algebraic if
and only if every subextension kpαq{k generated by some α P E is finite.

In general, it is very false that an algebraic extension is finite.

Proof. Let E{k be finite, say of degree n. Choose α P E. Then the elements t1, α, . . . , αnu
are linearly dependent over E, or we would necessarily have rE : ks ą n. A relation of linear
dependence now gives the desired polynomial that α must satisfy.

For the last assertion, note that a monogenic extension kpαq{k is finite if and only α is algebraic
over k, by example 3.3.11 and example 3.3.12. So if E{k is algebraic, then each kpαq{k, α P E,
is a finite extension, and conversely.

We can extract a corollary of the last proof (really of example 3.3.11 and example 3.3.12): a
monogenic extension is finite if and only if it is algebraic. We shall use this observation in the
next result.

3.3.19 Corollary Let k be a field, and let α1, α2, . . . , αn be elements of some extension field
such that each αi is finite over k. Then the extension kpα1, . . . , αnq{k is finite. That is, a finitely
generated algebraic extension is finite.

Proof. Indeed, each kpα1, . . . , αi`1q{kpα1, . . . , αiq is monogenic and algebraic, hence finite.

The set of complex numbers that are algebraic over Q are simply called the algebraic numbers.
For instance,

?
2 is algebraic, i is algebraic, but π is not. It is a basic fact that the algebraic

numbers form a field, although it is not obvious how to prove this from the definition that
a number is algebraic precisely when it satisfies a nonzero polynomial equation with rational
coefficients (e.g. by polynomial equations).

3.3.20 Corollary Let E{k be a field extension. Then the elements of E algebraic over k form
a field.

Proof. Let α, β P E be algebraic over k. Then kpα, βq{k is a finite extension by corollary 3.3.19.
It follows that kpα` βq Ă kpα, βq is a finite extension, which implies that α` β is algebraic by
proposition 3.3.18.
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Many nice properties of field extensions, like those of rings, will have the property that they will
be preserved by towers and composita.

3.3.21 Proposition (Towers) Let E{k and F {E be algebraic. Then F {k is algebraic.

Proof. Choose α P F . Then α is algebraic over E. The key observation is that α is algebraic
over a finitely generated subextension of k. That is, there is a finite set S Ă E such that α is
algebraic over kpSq: this is clear because being algebraic means that a certain polynomial in
Erxs that α satisfies exists, and as S we can take the coefficients of this polynomial.

It follows that α is algebraic over kpSq. In particular, kpS, αq{kpSq is finite. Since S is a finite
set, and kpSq{k is algebraic, corollary 3.3.19 shows that kpSq{k is finite. Together we find that
kpS, αq{k is finite, so α is algebraic over k.

The method of proof in the previous argument—that being algebraic over E was a property that
descended to a finitely generated subextension of E—is an idea that recurs throughout algebra,
and will be put to use more generality in ??.

Minimal polynomials

Let E{k be a field extension, and let α P E be algebraic over k. Then α satisfies a (nontrivial)
polynomial equation in krxs. Consider the set of polynomials P pxq P krxs such that P pαq “ 0;
by hypothesis, this set does not just contain the zero polynomial. It is easy to see that this set
is an ideal. Indeed, it is the kernel of the map

krxs Ñ E, x ÞÑ α.

Since krxs is a PID, there is a generator mpxq P krxs of this ideal. If we assumem monic, without
loss of generality, then m is uniquely determined.

3.3.22 Definition mpxq as above is called the minimal polynomial of α over k.

The minimal polynomial has the following characterization: it is the monic polynomial, of small-
est degree, that annihilates α. (Any nonconstant multiple of mpxq will have larger degree, and
only multiples of mpxq can annihilate α.) This explains the name minimal.

Clearly the minimal polynomial is irreducible. This is equivalent to the assertion that the ideal
in krxs consisting of polynomials annihilating α is prime. But this follows from the fact that the
map krxs Ñ E, x ÞÑ α is a map into a domain (even a field), so the kernel is a prime ideal.

3.3.23 Proposition The degree of the minimal polynomial is rkpαq : ks.

Proof. This is just a restatement of the argument in ??: the observation is that if mpxq is the
minimal polynomial of α, then the map

krxs{pmpxqq Ñ kpαq, x ÞÑ α

is an isomorphism as in the aforementioned proof, and we have counted the degree of such an
extension (see example 3.3.12).

So the observation of the above proof is that if α P E is algebraic, then kpαq Ă E is isomorphic
to krxs{pmpxqq.
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Algebraic closure

Now we want to define a “universal” algebraic extension of a field. Actually, we should be careful:
the algebraic closure is not a universal object. That is, the algebraic closure is not unique up to
unique isomorphism: it is only unique up to isomorphism. But still, it will be very handy, if not
functorial.

3.3.24 Definition Let F be a field. An algebraic closure of F is a field F containing F such
that:

(AC1) F is algebraic over F .

(AC2) F is algebraically closed (that is, every non-constant polynomial in F rXs has a root in
F ).

The “fundamental theorem of algebra” states that C is algebraically closed. While the easiest
proof of this result uses Liouville’s theorem in complex analysis, we shall give a mostly algebraic
proof below (??).

We now prove the basic existence result.

3.3.25 Theorem Every field has an algebraic closure.

The proof will mostly be a red herring to the rest of the chapter. However, we will want to know
that it is possible to embed a field inside an algebraically closed field, and we will often assume
it done.

Proof. Let K be a field and Σ be the set of all monic irreducibles in Krxs. Let A “ Krtxf : f P
Σus be the polynomial ring generated by indeterminates xf , one for each f P Σ. Then let a be
the ideal of A generated by polynomials of the form fpxf q for each f P Σ.

Claim 1. a is a proper ideal.

Proof of claim 1. Suppose a “ p1q, so there exist finitely many polynomials fi P Σ and gi P A
such that 1 “ f1pxf1qg1 ` ¨ ¨ ¨ ` fkpxfkqgk. Each gi uses some finite collection of indeterminates
Vitxfi1 , . . . , xfiki

u. This notation is ridiculous, so we simplify it.

We can take the union of all the Vi, together with the indeterminates xf1 , . . . , xfk to get a larger
but still finite set of indeterminates V “ txf1 , . . . , xfnu for some n ě k (ordered so that the
original xf1 , . . . , xfk agree the first k elements of V ). Now we can regard each gi as a polynomial
in this new set of indeterminates V . Then, we can write 1 “ f1pxf1qg1 ` ¨ ¨ ¨ ` fnpxfnqgn where
for each i ą k, we let gi “ 0 (so that we’ve adjoined a few zeroes to the right hand side of
the equality). Finally, we define xi “ xfi , so that we have 1 “ f1px1qg1px1, . . . , xnq ` ¨ ¨ ¨ `
fnpxnqgnpx1, . . . , xnq.

Suppose n is the minimal integer such that there exists an expression of this form, so that

b “ pf1px1q, . . . , fn´1pxn´1qq
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is a proper ideal of B “ Krx1, . . . , xn´1s, but

pf1px1q, . . . , fnpxnqq

is the unit ideal inBrxns. Let B̂ “ B{b (observe that this ring is nonzero). We have a composition
of maps

Brxns Ñ B̂rxns Ñ B̂rxns{p{fnpxnqq

where the first map is reduction of coefficients modulo b, and the second map is the quotient
by the principal ideal generated by the image {fnpxnq of fnpxnq in B̂rxns. We know B̂ is a
nonzero ring, so since fn is monic, the top coefficient of {fnpxnq is still 1 P B̂. In particular, the
top coefficient cannot be nilpotent. Furthermore, since fn was irreducible, it is not a constant
polynomial, so by the characterization of units in polynomial rings, {fnpxnq is not a unit, so it
does not generate the unit ideal. Thus the quotient B̂rxns{p{fnpxnqq should not be the zero ring.

On the other hand, observe that each fipxiq is in the kernel of this composition, so in fact the
entire ideal pf1px1q, . . . , fnpxnqq is contained in the kernel. But this ideal is the unit ideal, so all
of Brxns is in the kernel of this composition. In particular, 1 P Brxns is in the kernel, and since
ring maps preserve identity, this forces 1 “ 0 in B̂rxns{p{fnpxnqq, which makes this the the zero
ring. This contradicts our previous observation, and proves the claim that a is a proper ideal.

Now, given claim 1, there exists a maximal ideal m of A containing a. Let K1 “ A{m. This is
an extension field of K via the inclusion given by

K Ñ AÑ A{m

(this map is automatically injective as it is a map between fields). Furthermore every f P Σ has
a root in K1. Specifically, the coset xf `m in A{m “ K1 is a root of f since

fpxf `mq “ fpxf q `m “ 0.

Inductively, given Kn for some n ě 1, repeat the construction with Kn in place of K to get an
extension field Kn`1 of Kn in which every irreducible f P Knrxs has a root. Let L “

Ť8
n“1Kn.

Claim 2. Every f P Lrxs splits completely into linear factors in L.

Proof of claim 2. We induct on the degree of f . In the base case, when f itself is linear, there
is nothing to prove. Inductively, suppose every polynomial in Lrxs of degree less than n splits
completely into linear factors, and suppose

f “ a0 ` a1x` ¨ ¨ ¨ ` anx
n P Lrxs

has degree n. Then each ai P Kni for some ni, so let n “ maxni and regard f as a polynomial
in Knrxs. If f is reducible in Knrxs, then we have a factorization f “ gh with the degree of g, h
strictly less than n. Therefore, inductively, they both split into linear factors in Lrxs, so f must
also. On the other hand, if f is irreducible, then by our construction, it has a root a P Kn`1, so
we have f “ px ´ aqg for some g P Kn`1rxs of degree n ´ 1. Again inductively, we can split g
into linear factors in L, so clearly we can do the same with f also. This completes the proof of
claim 2.
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Let K̄ be the set of algebraic elements in L. Clearly K̄ is an algebraic extension of K. If
f P K̄rxs, then we have a factorization of f in Lrxs into linear factors

f “ bpx´ a1qpx´ a2q ¨ ¨ ¨ px´ anq.

for b P K̄ and, a priori, ai P L. But each ai is a root of f , which means it is algebraic over K̄,
which is an algebraic extension of K; so by transitivity of "being algebraic," each ai is algebraic
over K. So in fact we conclude that ai P K̄ already, since K̄ consisted of all elements algebraic
over K. Therefore, since K̄ is an algebraic extension of K such that every f P K̄rxs splits into
linear factors in K̄, K̄ is the algebraic closure of K.

add: two algebraic closures are isomorphic

Let K be an algebraically closed field. Then the ring Krxs has a very simple ideal structure.
Since every polynomial P P Krxs has a root, it follows that there is always a decomposition (by
dividing repeatedly)

P “ cpx´ α1q . . . px´ αnq,

where c is the constant term and the tαiu Ă k are the roots of P . In particular:

3.3.26 Proposition For K algebraically closed, the only irreducible polynomials in Krxs are
the linear polynomials cpx´ αq, c, α P K (and c ‰ 0).

In particular, two polynomials in Krxs are relatively prime (i.e., generate the unit ideal) if and
only if they have no common roots. This follows because the maximal ideals of Krxs are of the
form px´ αq, α P K. So if F,G P Krxs have no common root, then pF,Gq cannot be contained
in any px´ αq (as then they would have a common root at α).

If k is not algebraically closed, then this still gives information about when two polynomials in
krxs generate the unit ideal.

3.3.27 Definition If k is any field, we say that two polynomials in krxs are relatively prime
if they generate the unit ideal in krxs.

3.3.28 Proposition Two polynomials in krxs are relatively prime precisely when they have no
common roots in an algebraic closure k of k.

Proof. The claim is that any two polynomials P,Q generate p1q in krxs if and only if they generate
p1q in krxs. This is a piece of linear algebra: a system of linear equations with coefficients in k
has a solution if and only if it has a solution in any extension of k. Consequently, we can reduce
to the case of an algebraically closed field, in which case the result is clear from what we have
already proved.

3.4. Separability and normality

Separable extensions

Throughout, F Ă K is a finite field extension. We fix once and for all an algebraic closure F for
F and an embedding of F in M .
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3.4.1 Definition For an element α P K with minimal polynomial q P F rxs, we say q and α are
separable if q has distinct roots (in some algebraic closure F !), and we say K is separable if
this holds for all α P K.

By proposition 3.3.28, separability of a polynomial P P F rxs is equivalent to pP, P 1q “ 1 in
F rxs. Indeed, this follows from the fact that P has no multiple roots if and only if P, P 1 have no
common roots.

3.4.2 Lemma qpxq P F rxs is separable if and only if gcdpq, q1q “ 1, where q1 is the formal
derivative of q.

Purely inseparable extensions

3.4.3 Definition For an element α P K with minimal polynomial q, we say α is purely insep-
arable if q has only one root. We say K is splitting if each q splits in K.

3.4.4 Definition If K “ F pαq for some α with minimal polynomial qpxq P F rxs, then by 3.5.3,
qpxq “ rpxp

d
q, where p “ charF (or 1 if charF “ 0) and r is separable; in this case we also

denote degspK{F q “ degprq, degipK{F q “ pd.

3.5. Galois theory

Definitions

Throughout, F Ă K is a finite field extension. We fix once and for all an algebraic closure M
for both and an embedding of F in M . When necessary, we write K “ F pα1, . . . , αnq, and
K0 “ F,Ki “ F pα1, . . . , αiq, qi the minimal polynomial of αi over Fi´1, Qi that over F .

3.5.1 Definition AutpK{F q denotes the group of automorphisms of K which fix F (pointwise!).
EmbpK{F q denotes the set of embeddings of K into M respecting the chosen embedding of F .

3.5.2 Definition By degpK{F q we mean the dimension of K as an F -vector space. We denote
Ks{F the set of elements of K whose minimal polynomials over F have distinct roots; by 3.5.13
this is a subfield, and degpKs{F q “ degspK{F q and degpK{Ksq “ degipK{F q by definition.

Theorems

3.5.3 Lemma If charF “ 0 then Ks “ K. If charF “ p ą 0, then for any irreducible
qpxq P Krxs, there is some d ě 0 and polynomial rpxq P Krxs such that qpxq “ rpxp

d
q, and r is

separable and irreducible.

152



I.3. Fields and extensions 3.5. Galois theory

Proof. By formal differentiation, q1pxq has positive degree unless each exponent is a multiple of
p; in characteristic zero this never occurs. If this is not the case, since q is irreducible, it can
have no factor in common with q1 and therefore has distinct roots by 3.4.2.

If p ą 0, let d be the largest integer such that each exponent of q is a multiple of pd, and define r
by the above equation. Then by construction, r has at least one exponent which is not a multiple
of p, and therefore has distinct roots.

3.5.4 Corollary In the statement of 3.5.3, q and r have the same number of roots.

Proof. α is a root of q if and only if αpd is a root of r; i.e. the roots of q are the roots of xpd ´β,
where β is a root of r. But if α is one such root, then px ´ αqp

d
“ xp

d
´ αp

d
“ xp

d
´ β since

charK “ p, and therefore α is the only root of xpd ´ β.

3.5.5 Lemma The correspondence which to each g P EmbpK{F q assigns the n-tuple pgpα1q, . . . , gpαnqq
of elements of M is a bijection from EmbpK{F q to the set of tuples of βi PM , such that βi is a
root of qi over Kpβ1, . . . , βi´1q.

Proof. First take K “ F pαq “ F rxs{pqq, in which case the maps g : K ÑM over F are identified
with the elements β PM such that qpβq “ 0 (where gpαq “ β).

Now, considering the tower K “ Kn{Kn´1{ . . . {K0 “ F , each extension of which is primitive,
and a given embedding g, we define recursively g1 P EmbpK1{F q by restriction and subsequent
gi by identifying Ki´1 with its image and restricting g to Ki. By the above paragraph each gi
corresponds to the image βi “ gipαiq, each of which is a root of qi. Conversely, given such a set
of roots of the qi, we define g recursively by this formula.

3.5.6 Corollary |EmbpK{F q| “
śn
i“1 degspqiq.

Proof. This follows immediately by induction from 3.5.5 by 3.5.4.

3.5.7 Lemma For any f P EmbpK{F q, the map AutpK{F q Ñ EmbpK{F q given by σ ÞÑ f ˝ σ
is injective.

Proof. This is immediate from the injectivity of f .

3.5.8 Corollary AutpK{F q is finite.

Proof. By 3.5.7, AutpK{F q injects into EmbpK{F q, which by 3.5.6 is finite.

3.5.9 Proposition The inequality

|AutpK{F q| ď |EmbpK{F q|

is an equality if and only if the qi all split in K.

Proof. The inequality follows from 3.5.7 and from 3.5.8. Since both sets are finite, equality holds
if and only if the injection of 3.5.7 is surjective (for fixed f P EmbpK{F q).
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If surjectivity holds, let β1, . . . , βn be arbitrary roots of q1, . . . , qn in the sense of 3.5.5, and extract
an embedding g : K ÑM with gpαiq “ βi. Since the correspondence f ÞÑ f ˝ σ (σ P AutpK{F q)
is a bijection, there is some σ such that g “ f ˝ σ, and therefore f and g have the same image.
Therefore the image of K in M is canonical, and contains β1, . . . , βn for any choice thereof.

If the qi all split, let g P EmbpK{F q be arbitrary, so the gpαiq are roots of qi in M as in 3.5.5.
But the qi have all their roots in K, hence in the image fpKq, so f and g again have the same
image, and f´1˝g P AutpK{F q. Thus g “ f ˝pf´1˝gq shows that the map of 3.5.7 is surjective.

3.5.10 Corollary Define

DpK{F q “
n
ź

i“1

degspKi{Ki´1q.

Then the chain of equalities and inequalities

|AutpK{F q| ď |EmbpK{F q| “ DpK{F q ď degpK{F q

holds; the first inequality is an equality if and only if each qi splits in K, and the second if and
only if each qi is separable.

Proof. The statements concerning the first inequality are just 3.5.9; the interior equality is just
3.5.6; the latter inequality is obvious from the multiplicativity of the degrees of field extensions;
and the deduction for equality follows from the definition of degs.

3.5.11 Corollary The qi respectively split and are separable in K if and only if the Qi do and
are.

Proof. The ordering of the αi is irrelevant, so we may take each i “ 1 in turn. Then Q1 “ q1

and if either of the equalities in 3.5.10 holds then so does the corresponding statement here.
Conversely, clearly each qi divides Qi, so splitting or separability for the latter implies that for
the former.

3.5.12 Corollary Let α P K have minimal polynomial q; if the Qi are respectively split, sepa-
rable, and purely inseparable over F then q is as well.

Proof. We may take α as the first element of an alternative generating set for K{F . The numer-
ical statement of 3.5.10 does not depend on the particular generating set, hence the conditions
given hold of the set containing α if and only if they hold of the canonical set α1, . . . , αn.

For purely inseparable, if the Qi all have only one root then |EmbpK{F q| “ 1 by 3.5.10, and
taking α as the first element of a generating set as above shows that q must have only one root
as well for this to hold.

3.5.13 Corollary Ks is a field and degpKs{F q “ DpK{F q.

Proof. Assume charF “ p ą 0, for otherwise Ks “ K. Using 3.5.3, write each Qi “ Ripx
pdi q,

and let βi “ αp
di

i . Then the βi have Ri as minimal polynomials and the αi satisfy si “ xp
di
´ βi

over K 1 “ F pβ1, . . . , βnq. Therefore the αi have minimal polynomials over K 1 dividing the si
and hence those polynomials have but one distinct root.
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By 3.5.12, the elements of K 1 are separable, and those of K 1 purely inseparable over K 1. In par-
ticular, since these minimal polynomials divide those over F , none of these elements is separable,
so K 1 “ Ks.

The numerical statement follows by computation:

degpK{K 1q “

n
ź

i“1

pdi “
n
ź

i“1

degpKi{Ki´1q

degspKi{Ki´1q
“

degpK{F q

DpK{F q
.

3.5.14 Theorem The following inequality holds:

|AutpK{F q| ď |EmbpK{F q| “ degspK{F q ď degpK{F q.

Equality holds on the left if and only if K{F is splitting; it holds on the right if and only if K{F
is separable.

Proof. The numerical statement combines 3.5.10 and 3.5.13. The deductions combine 3.5.11 and
3.5.12.

Definitions

Throughout, we will denote as before K{F a finite field extension, and G “ AutpK{F q, H a
subgroup of G. L{F is a subextension of K{F .

3.5.15 Definition When K{F is separable and splitting, we say it is Galois and write G “

GalpK{F q, the Galois group of K over F .

3.5.16 Definition The fixed field of H is the field KH of elements fixed by the action of H on
K. Conversely, GL is the fixing subgroup of L, the subgroup of G whose elements fix L.

Theorems

3.5.17 Lemma A polynomial qpxq P Krxs which splits in K lies in KHrxs if and only if its
roots are permuted by the action of H. In this case, the sets of roots of the irreducible factors of
q over KH are the orbits of the action of H on the roots of q (counting multiplicity).

Proof. Since H acts by automorphisms, we have σqpxq “ qpσxq as a functional equation on K,
so σ permutes the roots of q. Conversely, since the coefficients of σ are the elementary symmetric
polynomials in its roots, H permuting the roots implies that it fixes the coefficients.

Clearly q is the product of the polynomials qi whose roots are the orbits of the action of H on
the roots of q, counting multiplicities, so it suffices to show that these polynomials are defined
over KH and are irreducible. Since H acts on the roots of the qi by construction, the former is
satisfied. If some qi factored over KH , its factors would admit an action of H on their roots by
the previous paragraph. The roots of qi are distinct by construction, so its factors do not share
roots; hence the action on the roots of qi would not be transitive, a contradiction.
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3.5.18 Corollary Let qpxq P Krxs; if it is irreducible, then H acts transitively on its roots;
conversely, if q is separable and H acts transitively on its roots, then qpxq P KHrxs is irreducible.

Proof. Immediate from 3.5.17.

3.5.19 Lemma If K{F is Galois, so is K{L, and GalpK{Lq “ GL..

Proof. K{F Galois means that the minimal polynomial over F of every element of K is separable
and splits in K; the minimal polynomials over L “ KH divide those over F , and therefore this is
true of K{L as well; hence K{L is likewise a Galois extension. GalpK{Lq “ AutpK{Lq consists
of those automorphisms σ of K which fix L; since F Ă L we have a fortiori that σ fixes F , hence
GalpK{Lq Ă G and consists of the subgroup which fixes L; i.e. GL.

3.5.20 Corollary If K{F and L{F are Galois, then the action of G on elements of L defines
a surjection of G onto GalpL{F q. Thus GL is normal in G and GalpL{F q – G{GL. Conversely,
if N Ă G is normal, then KN{F is Galois.

Proof. L{F is splitting, so by 3.5.17 the elements of G act as endomorphisms (hence automor-
phisms) of L{F , and the kernel of this action is GL. By 3.5.19, we have GL “ GalpK{Lq, so
|GL| “ |GalpK{Lq| “ rK : Ls “ rK : F s{rL : F s, or rearranging and using that K{F is Galois,
we get |G|{|GL| “ rL : F s “ |GalpL{F q|. Thus the map G Ñ GalpL{F q is surjective and thus
the induced map G{GL Ñ GalpL{F q is an isomorphism.

Conversely, let N be normal and take α P KN . For any conjugate β of α, we have β “ gpαq for
some g P G; let n P N . Then npβq “ pngqpαq “ gpg´1ngqpαq “ gpαq “ β, since g´1ng P N by
normality of N . Thus β P KN , so KN is splitting, i.e., Galois.

3.5.21 Proposition If K{F is Galois and H “ GL, then KH “ L.

Proof. By 3.5.19, K{L and K{KH are both Galois. By definition, GalpK{Lq “ GL “ H;
since H fixes KH we certainly have H ă GalpK{KHq, but since L Ă KH we have a fortiori
that GalpK{KHq ă GalpK{Lq “ H, so GalpK{KHq “ H as well. It follows from 3.5.14 that
degpK{Lq “ |H| “ degpK{KHq, so that KH “ L.

3.5.22 Lemma If K is a finite field, then K˚ is cyclic.

Proof. K is then a finite extension of Fp for p “ charK, hence has order pn, n “ degpK{Fpq.
Thus αpn “ α for all α P K, since |K˚| “ pn ´ 1. It follows that every element of K is a root of
qnpxq “ xp

n
´ x. For any d ă n, the elements of order at most pd´ 1 satisfy qdpxq, which has pd

roots. It follows that there are at least pnpp´ 1q ą 0 elements of order exactly pn ´ 1, so K˚ is
cyclic.

3.5.23 Corollary If K is a finite field, then GalpK{F q is cyclic, generated by the Frobenius
automorphism.

Proof. First take F “ Fp. Then the map fipαq “ αp
i is an endomorphism, injective since K is

a field, and surjective since it is finite, hence an automorphism. Since every α satisfies αpn “ α,
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fn “ 1, but by 3.5.22, fn´1 is nontrivial (applied to the generator). Since n “ degpK{F q, f “ f1

generates GalpK{F q.

If F is now arbitrary, by 3.5.21 we have GalpK{F q “ GalpK{FpqF , and every subgroup of a
cyclic group is cyclic.

3.5.24 Corollary If K is finite, K{F is primitive.

Proof. No element of G fixes the generator α of K˚, so it cannot lie in any proper subfield.
Therefore F pαq “ K.

3.5.25 Proposition If F is infinite and K{F has only finitely many subextensions, then it is
primitive.

Proof. We proceed by induction on the number of generators of K{F .

If K “ F pαq we are done. If not, K “ F pα1, . . . , αnq “ F pα1, . . . , αn´1qpαnq “ F pβ, αnq by
induction, so we may assume n “ 2. There are infinitely many subfields F pα1 ` tα2q, with
t P F , hence two of them are equal, say for t1 and t2. Thus, α1 ` t2α2 P F pα1 ` t1α2q. Then
pt2´t1qα2 P F pα1`t1α2q, hence α2 lies in this field, hence α1 does. ThereforeK “ F pα1`t1α2q.

3.5.26 Corollary If K{F is separable, it is primitive, and the generator may be taken to be a
linear combination of any finite set of generators of K{F .

Proof. We may embed K{F in a Galois extension M{F by adjoining all the conjugates of its
generators. Subextensions of K{F are as well subextensions of K 1{F and by 3.5.21 the map
H ÞÑ pK 1qH is a surjection from the subgroups of G to the subextensions of K 1{F , which are
hence finite in number. By 3.5.24 we may assume F is infinite. The result now follows from
3.5.25.

3.5.27 Corollary If K{F is Galois and H Ă G, then if L “ KH , we have H “ GL.

Proof. Let α be a primitive element for K{L. The polynomial
ś

hPHpx ´ hpαqq is fixed by H,
and therefore has coefficients in L, so α has |H| conjugate roots over L. But since α is primitive,
we have K “ Lpαq, so the minimal polynomial of α has degree degpK{Lq, which is the same as
the number of its roots. Thus |H| “ degpK{Lq. Since H Ă GL and |GL| “ degpK{Lq, we have
equality.

3.5.28 Theorem The correspondences H ÞÑ KH , L ÞÑ GL define inclusion-reversing inverse
maps between the set of subgroups of G and the set of subextensions of K{F , such that normal
subgroups and Galois subfields correspond.

Proof. This combines 3.5.21, 3.5.27, and 3.5.20.

3.6. Transcendental Extensions

There is a distinguished type of transcendental extension: those that are “purely transcenden-
tal.”
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3.6.1 Definition A field extension E1{E is purely transcendental if it is obtained by adjoining
a set B of algebraically independent elements. A set of elements is algebraically independent
over E if there is no nonzero polynomialP with coefficients in E such that P pb1, b2, ¨ ¨ ¨ bnq “ 0
for any finite subset of elements b1, . . . , bn P B.

3.6.2 Example The field Qpπq is purely transcendental; in particular, Qpπq – Qpxq with the
isomorphism fixing Q.

Similar to the degree of an algebraic extension, there is a way of keeping track of the number
of algebraically independent generators that are required to generate a purely transcendental
extension.

3.6.3 Definition Let E1{E be a purely transcendental extension generated by some set of al-
gebraically independent elements B. Then the transcendence degree trdegpE1{Eq “ #pBq and
B is called a transcendence basis for E1{E (we will see later that trdegpE1{Eq is independent of
choice of basis).

In general, let F {E be a field extension, we can always construct an intermediate extension
F {E1{E such that F {E1 is algebraic and E1{E is purely transcendental. Then if B is a transcen-
dence basis for E1, it is also called a transcendence basis for F . Similarly, trdegpF {Eq is defined
to be trdegpE1{Eq.

3.6.4 Theorem Let F {E be a field extension, a transcendence basis exists.

Proof. Let A be an algebraically independent subset of F . Now pick a subset G Ă F that
generates F {E, we can find a transcendence basis B such that A Ă B Ă G. Define a collection
of algebraically independent sets B whose members are subsets of G that contain A. The set can
be partially ordered inclusion and contains at least one element, A. The union of elements of
B is algebraically independent since any algebraic dependence relation would have occurred in
one of the elements of B since the polynomial is only allowed to be over finitely many variables.
The union also satisfies A Ă

Ť

B Ă G so by Zorn’s lemma, there is a maximal element B P B.
Now we claim F is algebraic over EpBq. This is because if it wasn’t then there would be
a transcendental element f P G (since EpGq “ F )such that B Y tfu wold be algebraically
independent contradicting the maximality of B. Thus B is our transcendence basis.

Now we prove that the transcendence degree of a field extension is independent of choice of
basis.

3.6.5 Theorem Let F {E be a field extension. Any two transcendence bases for F {E have the
same cardinality. This shows that the trdegpE{F q is well defined.

Proof. Let B and B1 be two transcendence bases. Without loss of generality, we can assume
that #pB1q ď #pBq. Now we divide the proof into two cases: the first case is that B is an
infinite set. Then for each α P B1, there is a finite set Bα such that α is algebraic over EpBαq
since any algebraic dependence relation only uses finitely many indeterminates. Then we define
B˚ “

Ť

αPB1 Bα. By construction, B˚ Ă B, but we claim that in fact the two sets are equal.
To see this, suppose that they are not equal, say there is an element β P BzB˚. We know β
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is algebraic over EpB1q which is algebraic over EpB˚q. Therefor β is algebraic over EpB˚q, a
contradiction. So #pBq ď

ř

αPB1 #pBαq. Now if B1 is finite, then so is B so we can assume B1

is infinite; this means

#pBq ď
ÿ

αPB1

#pBαq “ #p
ž

Bαq ď #pB1 ˆ Zq “ #pB1q (3.6.1)

with the inequality #p
š

Bαq ď #pB1 ˆ Zq given by the correspondence bαi ÞÑ pα, iq P B1 ˆ Z
with Bα “ tbα1 , bα2 ¨ ¨ ¨ bαnα u Therefore in the infinite case, #pBq “ #pB1q.

Now we need to look at the case where B is finite. In this case, B1 is also finite, so suppose B “
tα1, ¨ ¨ ¨αnu and B1 “ tβ1, ¨ ¨ ¨βmu with m ď n. We perform induction on m: if m “ 0 then F {E
is algebraic so B “ so n “ 0, otherwise there is an irreducible polynomial f P Erx, y1, ¨ ¨ ¨ yns such
that fpβ1, α1, ¨ ¨ ¨αnq “ 0. Since β1 is not algebraic over E, f must involve some yi so without loss
of generality, assume f uses y1. Let B˚ “ tβ1, α2, ¨ ¨ ¨αnu. We claim that B˚ is a basis for F {E.
To prove this claim, we see that we have a tower of algebraic extensions F {EpB˚, α1q{EpB

˚q

since α1 is algebraic over EpB˚q. Now we claim that B˚ (counting multiplicity of elements)
is algebraically independent over E because if it weren’t, then there would be an irreducible
g P Erx, y2, ¨ ¨ ¨ yns such that gpβ1, α2, ¨ ¨ ¨αnq “ 0 which must involve x making β1 algebraic
over Epα2, ¨ ¨ ¨αnq which would make α1 algebraic over Epα2, ¨ ¨ ¨αnq which is impossible. So this
means that tα2, ¨ ¨ ¨αnu and tβ2, ¨ ¨ ¨βmu are bases for F over Epβ1q which means by induction,
m “ n.

3.6.6 Example Consider the field extension Qpe, πq formed by adjoining the numbers e and π.
This field extension has transcendence degree at least 1 since both e and π are transcendental
over the rationals. However, this field extension might have transcendence degree 2 if e and
π are algebraically independent. Whether or not this is true is unknown and the problem of
determining trdegpQpe, πqq is an open problem.

3.6.7 Example let E be a field and F “ Eptq{E. Then ttu is a transcendence basis since
F “ Eptq. However, tt2u is also a transcendence basis since Eptq{Ept2q is algebraic. This
illustrates that while we can always decompose an extension F {E into an algebraic extension
F {E1 and a purely transcendental extension E1{E, this decomposition is not unique and depends
on choice of transcendence basis.

3.6.8 Remark If we have a tower of fieldsG{F {E, then trdegpG{Eq “ trdegpF {Eq`trdegpG{F q.

3.6.9 Example Let X be a compact Riemann surface. Then the function field CpXq (see
example 3.2.8) has transcendence degree one over C. In fact, any finitely generated extension of
C of transcendence degree one arises from a Riemann surface. There is even an equivalence of
categories between the category of compact Riemann surfaces and (non-constant) holomorphic
maps and the opposite category of finitely generated extensions of C and morphisms of C-
algebras. See ?.

There is an algebraic version of the above statement as well. Given an (irreducible) algebraic
curve in projective space over an algebraically closed field k (e.g. the complex numbers), one
can consider its “field of rational functions:” basically, functions that look like quotients of
polynomials, where the denominator does not identically vanish on the curve. There is a similar
anti-equivalence of categories between smooth projective curves and non-constant morphisms of
curves and finitely generated extensions of k of transcendence degree one. See ?.
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Linearly Disjoint Field Extensions

Let k be a field, K and L field extensions of k. Suppose also that K and L are embedded in
some larger field Ω.

3.6.10 Definition The compositum of K and L written KL is kpK Y Lq “ LpKq “ KpLq.

3.6.11 Definition K and L are said to be linearly disjoint over k if the following map is injective:

θ : K bk LÑ KL (3.6.2)

defined by xb y ÞÑ xy.
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There are three functors that will be integral to our study of commutative algebra in the future:
localization, the tensor product, and hom. While localization is an exact functor, the tensor
product and hom are not. The failure of exactness in those cases leads to the theory of flatness
and projectivity (and injectivity), and eventually the derived functors Tor and Ext that crop up
in commutative algebra.

4.1. Localization

Localization is the process of making invertible a collection of elements in a ring. It is a gener-
alization of the process of forming a quotient field of an integral domain.

Geometric intuition

We first start off with some of the geometric intuition behind the idea of localization. Suppose
we have a Riemann surface X (for example, the Riemann sphere). Let ApUq be the ring of
holomorphic functions over some neighborhood U Ă X. Now, for holomorphicity to hold, all
that is required is that a function doesn’t have a pole inside of U , thus when U “ X, this
condition is the strictest and as U gets smaller functions begin to show up that may not arise
from the restriction of a holomorphic function over a larger domain. For example, if we want to
study holomorphicity “near a point z0” all that we should require is that the function doesn’t
pole at z0. This means that we should consider quotients of holomorphic functions f{g where
gpz0q ‰ 0. This process of inverting a collection of elements is expressed through the algebraic
construction known as “localization.”

Localization at a multiplicative subset

Let R be a commutative ring. We start by constructing the notion of localization in the most
general sense.

We have already implicitly used this definition, but nonetheless, we make it formally:

4.1.1 Definition A subset S Ă R is a multiplicative subset if 1 P S and if x, y P S implies
xy P S.

We now define the notion of localization. Formally, this means inverting things. This will give
us a functor from R-modules to R-modules.
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4.1.2 Definition IfM is an R-module, we define the module S´1M as the set of formal fractions

tm{s,m PM, s P Su

modulo an equivalence relation: where m{s „ m1{s1 if and only if

tps1m´m1sq “ 0

for some t P S. The reason we need to include the t in the definition is that otherwise the relation
would not be transitive (i.e. would not be an equivalence relation).

So two fractions agree if they agree when clearing denominators and multiplication.

It is easy to check that this is indeed an equivalence relation. Moreover S´1M is an abelian
group with the usual addition of fractions

m

s
`
m1

s1
“
s1m` sm1

ss1

and it is easy to check that this is a legitimate abelian group.

4.1.3 Definition LetM be an R-module and S Ă R a multiplicative subset. The abelian group
S´1M is naturally an R-module. We define

xpm{sq “ pxmq{s, x P R.

It is easy to check that this is well-defined and makes it into a module.

Finally, we note that localization is a functor from the category of R-modules to itself. Indeed,

given f : M Ñ N , there is a naturally induced map S´1M
S´1f
Ñ S´1N .

We now consider the special case when the localized module is the initial ring itself. Let M “ R.
Then S´1R is an R-module, and it is in fact a commutative ring in its own right. The ring
structure is quite tautological:

px{sqpy{s1q “ pxy{ss1q.

There is a map RÑ S´1R sending xÑ x{1, which is a ring-homomorphism.

4.1.4 Definition For S Ă R a multiplicative set, the localization S´1R is a commutative ring
as above. In fact, it is an R-algebra; there is a natural map φ : RÑ S´1R sending r Ñ r{1.

We can, in fact, describe φ : R Ñ S´1R by a universal property. Note that for each s P S, φpsq
is invertible. This is because φpsq “ s{1 which has a multiplicative inverse 1{s. This property
characterizes S´1R.

For any commutative ring B, hompS´1R,Bq is naturally isomorphic to the subset of hompR,Bq
that send S to units. The map takes S´1R Ñ B to the pull-back R Ñ S´1R Ñ B. The proof
of this is very simple. Suppose that f : RÑ B is such that fpsq P B is invertible for each s P S.
Then we must define S´1R Ñ B by sending r{s to fprqfpsq´1. It is easy to check that this is
well-defined and that the natural isomorphism as claimed is true.
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Let R be a ring, M an R-module, S Ă R a multiplicatively closed subset. We defined a ring of
fractions S´1R and an R-module S´1M . But in fact this is a module over the ring S´1R. We
just multiply px{tqpm{sq “ pxm{stq.

In particular, localization at S gives a functor from R-modules to S´1R-modules.

4.1.5 Remark (exercise) Let R be a ring, S a multiplicative subset. Let T be the R-algebra
RrtxsusPSs{ptsxs ´ 1uq. This is the polynomial ring in the variables xs, one for each s P S,
modulo the ideal generated by sxs “ 1. Prove that this R-algebra is naturally isomorphic to
S´1R, using the universal property.

4.1.6 Remark (exercise) Define a functor Rings Ñ Sets sending a ring to its set of units,
and show that it is corepresentable (use ZrX,X´1s).

Local rings

A special case of great importance in the future is when the multiplicative subset is the comple-
ment of a prime ideal, and we study this in the present subsec. Such localizations will be “local
rings” and geometrically correspond to the process of zooming at a point.

4.1.7 Example Let R be an integral domain and let S “ R´t0u. This is a multiplicative subset
because R is a domain. In this case, S´1R is just the ring of fractions by allowing arbitrary
nonzero denominators; it is a field, and is called the quotient field. The most familiar example
is the construction of Q as the quotient field of Z.

We’d like to generalize this example.

4.1.8 Example Let R be arbitrary and p is a prime ideal. This means that 1 R p and x, y P R´p
implies that xy P R´ p. Hence, the complement S “ R´ p is multiplicatively closed. We get a
ring S´1R.

4.1.9 Definition This ring is denoted Rp and is called the localization at p. If M is an
R-module, we write Mp for the localization of M at R´ p.

This generalizes the previous example (where p “ p0q).

There is a nice property of the rings Rp. To elucidate this, we start with a lemma.

4.1.10 Lemma Let R be a nonzero commutative ring. The following are equivalent:

1. R has a unique maximal ideal.

2. If x P R, then either x or 1´ x is invertible.

4.1.11 Definition In this case, we call R local. A local ring is one with a unique maximal
ideal.
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Proof of the lemma. First we prove p2q ùñ p1q.

Assume R is such that for each x, either x or 1´ x is invertible. We will find the maximal ideal.
Let M be the collection of noninvertible elements of R. This is a subset of R, not containing 1,
and it is closed under multiplication. Any proper ideal must be a subset of M, because otherwise
that proper ideal would contain an invertible element.

We just need to check that M is closed under addition. Suppose to the contrary that x, y PM
but x` y is invertible. We get (with a “ x{px` yq)

1 “
x

x` y
`

y

x` y
“ a` p1´ aq.

Then one of a, 1´ a is invertible. So either xpx` yq´1 or ypx` yq´1 is invertible, which implies
that either x, y is invertible, contradiction.

Now prove the reverse direction. Assume R has a unique maximal ideal M. We claim that M
consists precisely of the noninvertible elements. To see this, first note that M can’t contain any
invertible elements since it is proper. Conversely, suppose x is not invertible, i.e. pxq Ĺ R. Then
pxq is contained in a maximal ideal by 2.6.8, so pxq Ă M since M is unique among maximal
ideals. Thus x PM.

Suppose x P R; we can write 1 “ x` p1´ xq. Since 1 RM, one of x, 1´ x must not be in M, so
one of those must not be invertible. So p1q ùñ p2q. The lemma is proved.

Let us give some examples of local rings.

4.1.12 Example Any field is a local ring because the unique maximal ideal is p0q.

4.1.13 Example Let R be any commutative ring and p Ă R a prime ideal. Then Rp is a local
ring.

We state this as a result.

4.1.14 Proposition Rp is a local ring if p is prime.

Proof. Let m Ă Rp consist of elements x{s for x P p and s P R´ p. It is left as an exercise (using
the primality of p) to the reader to see that whether the numerator belongs to p is independent
of the representation x{s used for it.

Then I claim that m is the unique maximal ideal. First, note that m is an ideal; this is evident
since the numerators form an ideal. If x{s, y{s1 belong to m with appropriate expressions, then
the numerator of

xs1 ` ys

ss1

belongs to p, so this sum belongs to m. Moreover, m is a proper ideal because 1
1 is not of the

appropriate form.

I claim that m contains all other proper ideals, which will imply that it is the unique maximal
ideal. Let I Ă Rp be any proper ideal. Suppose x{s P I. We want to prove x{s P m. In other
words, we have to show x P p. But if not x{s would be invertible, and I “ p1q, contradiction.
This proves locality.
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4.1.15 Remark (exercise) Any local ring is of the form Rp for some ring R and for some prime
ideal p Ă R.

4.1.16 Example Let R “ Z. This is not a local ring; the maximal ideals are given by ppq for p
prime. We can thus construct the localizations Zppq of all fractions a{b P Q where b R ppq. Here
Zppq consists of all rational numbers that don’t have powers of p in the denominator.

4.1.17 Remark (exercise) A local ring has no idempotents other than 0 and 1. (Recall that
e P R is idempotent if e2 “ e.) In particular, the product of two rings is never local.

It may not yet be clear why localization is such a useful process. It turns out that many problems
can be checked on the localizations at prime (or even maximal) ideals, so certain proofs can reduce
to the case of a local ring. Let us give a small taste.

4.1.18 Proposition Let f : M Ñ N be a homomorphism of R-modules. Then f is injective if
and only if for every maximal ideal m Ă R, we have that fm : Mm Ñ Nm is injective.

Recall that, by definition, Mm is the localization at R´m.

There are many variants on this (e.g. replace with surjectivity, bijectivity). This is a general
observation that lets you reduce lots of commutative algebra to local rings, which are easier to
work with.

Proof. Suppose first that each fm is injective. I claim that f is injective. Suppose x PM ´ t0u.
We must show that fpxq ‰ 0. If fpxq “ 0, then fmpxq “ 0 for every maximal ideal m. Then by
injectivity it follows that x maps to zero in each Mm. We would now like to get a contradiction.

Let I “ ta P R : ax “ 0 PMu. This is proper since x ‰ 0. So I is contained in some maximal
ideal m. Then xmaps to zero inMm by the previous paragraph; this means that there is s P R´m
with sx “ 0 PM . But s R I, contradiction.

Now let us do the other direction. Suppose f is injective and m a maximal ideal; we prove fm
injective. Suppose fmpx{sq “ 0 P Nm. This means that fpxq{s “ 0 in the localized module, so
that fpxq PM is killed by some t P R´m. We thus have fptxq “ tpfpxqq “ 0 PM . This means
that tx “ 0 P M since f is injective. But this in turn means that x{s “ 0 P Mm. This is what
we wanted to show.

Localization is exact

Localization is to be thought of as a very mild procedure.

The next result says how inoffensive localization is. This result is a key tool in reducing problems
to the local case.

4.1.19 Proposition Suppose f : M Ñ N, g : N Ñ P and M Ñ N Ñ P is exact. Let S Ă R be
multiplicatively closed. Then

S´1M Ñ S´1N Ñ S´1P

is exact.
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Or, as one can alternatively express it, localization is an exact functor.

Before proving it, we note a few corollaries:

4.1.20 Corollary If f : M Ñ N is surjective, then S´1M Ñ S´1N is too.

Proof. To say that A Ñ B is surjective is the same as saying that A Ñ B Ñ 0 is exact. From
this the corollary is evident.

Similarly:

4.1.21 Corollary If f : M Ñ N is injective, then S´1M Ñ S´1N is too.

Proof. To say that A Ñ B is injective is the same as saying that 0 Ñ A Ñ B is exact. From
this the corollary is evident.

Proof of the proposition. We adopt the notation of the proposition. If the composite g ˝ f is
zero, clearly the localization S´1M Ñ S´1N Ñ S´1P is zero too. Call the maps S´1M Ñ

S´1N,S´1N Ñ S´1P as φ, ψ. We know that ψ ˝ φ “ 0 so kerpψq Ą impφq. Conversely, suppose
something belongs to kerpψq. This can be written as a fraction

x{s P kerpψq

where x P N, s P S. This is mapped to

gpxq{s P S´1P,

which we’re assuming is zero. This means that there is t P S with tgpxq “ 0 P P . This means
that gptxq “ 0 as an element of P . But tx P N and its image of g vanishes, so tx must come
from something in M . In particular,

tx “ fpyq for some y PM.

In particular,
x

s
“
tx

ts
“
fpyq

ts
“ φpy{tsq P impφq.

This proves that anything belonging to the kernel of ψ lies in impφq.

Nakayama’s lemma

We now state a very useful criterion for determining when a module over a local ring is zero.

4.1.22 Lemma (Nakayama’s lemma) If R is a local ring with maximal ideal m. Let M be a
finitely generated R-module. If mM “M , then M “ 0.

Note that mM is the submodule generated by products of elements of m and M .
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4.1.23 Remark Once one has the theory of the tensor product, this equivalently states that if
M is finitely generated, then

M bR R{m “M{mM ‰ 0.

So to prove that a finitely generated module over a local ring is zero, you can reduce to studying
the reduction to R{m. This is thus a very useful criterion.

Nakayama’s lemma highlights why it is so useful to work over a local ring. Thus, it is useful to
reduce questions about general rings to questions about local rings. Before proving it, we note a
corollary.

4.1.24 Corollary Let R be a local ring with maximal ideal m, andM a finitely generated module.
If N ĂM is a submodule such that N `mN “M , then N “M .

Proof. Apply Nakayama above (lemma 4.1.22) to M{N .

We shall prove more generally:

4.1.25 Proposition Suppose M is a finitely generated R-module, J Ă R an ideal. Suppose
JM “M . Then there is a P 1` J such that aM “ 0.

If J is the maximal ideal of a local ring, then a is a unit, so that M “ 0.

Proof. Suppose M is generated by tx1, . . . , xnu ĂM . This means that every element of M is a
linear combination of elements of xi. However, each xi P JM by assumption. In particular, each
xi can be written as

xi “
ÿ

aijxj , where aij P m.

If we let A be the matrix taiju, then A sends the vector pxiq into itself. In particular, I ´A kills
the vector pxiq.

Now I ´A is an n-by-n matrix in the ring R. We could, of course, reduce everything modulo J
to get the identity; this is because A consists of elements of J . It follows that the determinant
must be congruent to 1 modulo J .

In particular, a “ detpI ´Aq lies in 1`J . Now by familiar linear algebra, aI can be represented
as the product of A and the matrix of cofactors; in particular, aI annihilates the vector pxiq, so
that aM “ 0.

Before returning to the special case of local rings, we observe the following useful fact from ideal
theory:

4.1.26 Proposition Let R be a commutative ring, I Ă R a finitely generated ideal such that
I2 “ I. Then I is generated by an idempotent element.

Proof. We know that there is x P 1` I such that xI “ 0. If x “ 1` y, y P I, it follows that

yt “ t

for all t P I. In particular, y is idempotent and pyq “ I.
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4.1.27 Remark (exercise) 4.1.26 fails if the ideal is not finitely generated.

4.1.28 Remark (exercise) Let M be a finitely generated module over a ring R. Suppose
f : M Ñ M is a surjection. Then f is an isomorphism. To see this, consider M as a module
over Rrts with t acting by f ; since ptqM “M , argue that there is a polynomial Qptq P Rrts such
that Qptqt acts as the identity on M , i.e. Qpfqf “ 1M .

4.1.29 Remark (exercise) Give a counterexample to the conclusion of Nakayama’s lemma
when the module is not finitely generated.

4.1.30 Remark (exercise) Let M be a finitely generated module over the ring R. Let I be
the Jacobson radical of R (cf. 2.6.19). If IM “M , then M “ 0.

4.1.31 Remark (exercise) [A converse to Nakayama’s lemma] Suppose conversely that R is
a ring, and a Ă R an ideal such that aM ‰ M for every nonzero finitely generated R-module.
Then a is contained in every maximal ideal of R.

4.1.32 Remark (exercise) Here is an alternative proof of Nakayama’s lemma. Let R be local
with maximal ideal m, and let M be a finitely generated module with mM “ M . Let n be
the minimal number of generators for M . If n ą 0, pick generators x1, . . . , xn. Then write
x1 “ a1x1` ¨ ¨ ¨ ` anxn where each ai P m. Deduce that x1 is in the submodule generated by the
xi, i ě 2, so that n was not actually minimal, contradiction.

Let M,M 1 be finitely generated modules over a local ring pR,mq, and let φ : M Ñ M 1 be a
homomorphism of modules. Then Nakayama’s lemma gives a criterion for φ to be a surjection:
namely, the map φ : M{mM Ñ M 1{mM 1 must be a surjection. For injections, this is false. For
instance, if φ is multiplication by any element of m, then φ is zero but φ may yet be injective.
Nonetheless, we give a criterion for a map of free modules over a local ring to be a split injection.

4.1.33 Proposition Let R be a local ring with maximal ideal m. Let F, F 1 be two finitely gen-
erated free R-modules, and let φ : F Ñ F 1 be a homomorphism. Then φ is a split injection if
and only if the reduction φ

F {mF
φ
Ñ F 1{mF 1

is an injection.

Proof. One direction is easy. If φ is a split injection, then it has a left inverse ψ : F 1 Ñ F such
that ψ ˝ φ “ 1F . The reduction of ψ as a map F 1{mF 1 Ñ F {mF is a left inverse to φ, which is
thus injective.

Conversely, suppose φ injective. Let e1, . . . , er be a “basis” for F , and let f1, . . . , fr be the images
under φ in F 1. Then the reductions f1, . . . , fr are linearly independent in the R{m-vector space
F 1{mF 1. Let us complete this to a basis of F 1{mF 1 by adding elements g1, . . . , gs P F

1{mF 1,
which we can lift to elements g1, . . . , gs P F

1. It is clear that F 1 has rank r` s since its reduction
F 1{mF 1 does.

We claim that the set tf1, . . . , fr, g1, . . . , gsu is a basis for F 1. Indeed, we have a map

Rr`s Ñ F 1
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of free modules of rank r ` s. It can be expressed as an r ` s-by-r ` s matrix M ; we need
to show that M is invertible. But if we reduce modulo m, it is invertible since the reductions
of f1, . . . , fr, g1, . . . , gs form a basis of F 1{mF 1. Thus the determinant of M is not in m, so by
locality it is invertible. The claim about F 1 is thus proved.

We can now define the left inverse F 1 Ñ F of φ. Indeed, given x P F 1, we can write it uniquely as
a linear combination

ř

aifi `
ř

bjgj by the above. We define ψp
ř

aifi `
ř

bjgjq “
ř

aiei P F .
It is clear that this is a left inverse

We next note a slight strenghtening of the above result, which is sometimes useful. Namely, the
first module does not have to be free.

4.1.34 Proposition Let R be a local ring with maximal ideal m. Let M,F be two finitely
generated R-modules with F free, and let φ : M Ñ F 1 be a homomorphism. Then φ is a split
injection if and only if the reduction φ

M{mM
φ
Ñ F {mF

is an injection.

It will in fact follow that M is itself free, because M is projective (see ?? below) as it is a direct
summand of a free module.

Proof. Let L be a “free approximation” to M . That is, choose a basis x1, . . . , xn for M{mM (as
an R{m-vector space) and lift this to elements x1, . . . , xn PM . Define a map

L “ Rn ÑM

by sending the ith basis vector to xi. Then L{mLÑM{mM is an isomorphism. By Nakayama’s
lemma, LÑM is surjective.

Then the composite map L Ñ M Ñ F is such that the L{mL Ñ F {mF is injective, so L Ñ F
is a split injection (by proposition 4.1.33). It follows that we can find a splitting F Ñ L, which
when composed with LÑM is a splitting of M Ñ F .

4.1.35 Remark (exercise) Let A be a local ring, and B a ring which is finitely generated and
free as an A-module. Suppose A Ñ B is an injection. Then A Ñ B is a split injection. (Note
that any nonzero morphism mapping out of a field is injective.)

4.2. The functor hom

In any category, the morphisms between two objects form a set.1 In many categories, however,
the hom-sets have additional structure. For instance, the hom-sets between abelian groups
are themselves abelian groups. The same situation holds for the category of modules over a
commutative ring.

1Strictly speaking, this may depend on your set-theoretic foundations.
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4.2.1 Definition LetR be a commutative ring andM,N to beR-modules. We write homRpM,Nq
for the set of all R-module homomorphisms M Ñ N . homRpM,Nq is an R-module because one
can add homomorphisms f, g : M Ñ N by adding them pointwise: if f, g are homomorphisms
M Ñ N , define f ` g : M Ñ N via pf ` gqpmq “ fpmq ` gpmq; similarly, one can multiply
homomorphisms f : M Ñ N by elements a P R: one sets pafqpmq “ apfpmqq.

Recall that in any category, the hom-sets are functorial. For instance, given f : N Ñ N 1,
post-composition with f defines a map homRpM,Nq Ñ homRpM,N 1q for any M . Similarly
precomposition gives a natural map homRpN

1,Mq Ñ homRpN,Mq. In particular, we get a
bifunctor hom, contravariant in the first variable and covariant in the second, of R-modules into
R-modules.

Left-exactness of hom

We now discuss the exactness properties of this construction of forming hom-sets. The following
result is basic and is, in fact, a reflection of the universal property of the kernel.

4.2.2 Proposition If M is an R-module, then the functor

N Ñ homRpM,Nq

is left exact (but not exact in general).

This means that if
0 Ñ N 1 Ñ N Ñ N2

is exact, then
0 Ñ homRpM,N 1q Ñ homRpM,Nq Ñ homRpM,N2q

is exact as well.

Proof. First, we have to show that the map homRpM,N 1q Ñ homRpM,Nq is injective; this is
because N 1 Ñ N is injective, and composition with N 1 Ñ N can’t kill any nonzero M Ñ N 1.
Similarly, exactness in the middle can be checked easily, and follows from 2.5.11; it states simply
that a map M Ñ N has image landing inside N 1 (i.e. factors through N 1) if and only if it
composes to zero in N2.

This functor homRpM, ¨q is not exact in general. Indeed:

4.2.3 Example Suppose R “ Z, and consider the R-module (i.e. abelian group) M “ Z{2Z.
There is a short exact sequence

0 Ñ 2ZÑ ZÑ Z{2ZÑ 0.

Let us apply homRpM, ¨q. We get a complex

0 Ñ hompZ{2Z, 2Zq Ñ hompZ{2Z,Zq Ñ hompZ{2Z,Z{2Zq Ñ 0.

The second-to-last term is Z{2Z; everything else is zero. Thus the sequence is not exact, and in
particular the functor homZpZ{2,´q is not an exact functor.
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We have seen that homming out of a module is left-exact. Now, we see the same for homming
into a module.

4.2.4 Proposition If M is a module, then homRp´,Mq is a left-exact contravariant functor.

We write this proof in slightly more detail than proposition 4.2.2, because of the contravariance.

Proof. We want to show that homp¨,Mq is a left-exact contravariant functor, which means that
if A u

ÝÑ B
v
ÝÑ C Ñ 0 is exact, then so is

0 Ñ hompC,Mq
v
ÝÑ hompB,Mq

u
ÝÑ hompA,Mq

is exact. Here, the bold notation refers to the induced maps of u, v on the hom-sets: if f P
hompB,Mq and g P hompC,Mq, we define u and v via vpgq “ g ˝ v and upfq “ f ˝ u.

Let us show first that v is injective. Suppose that g P hompC,Mq. If vpgq “ g ˝ v “ 0 then
pg ˝ vqpbq “ 0 for all b P B. Since v is a surjection, this means that gpCq “ 0 and hence g “ 0.
Therefore, v is injective, and we have exactness at hompC,Mq.

Since v ˝ u “ 0, it is clear that u ˝ u “ 0.

Now, suppose that f P kerpuq Ă hompB,Mq. Then upfq “ f ˝ u “ 0. Thus f : B Ñ M factors
through B{ impuq. However, impuq “ kerpvq, so f factors through B{ kerpvq. Exactness shows
that there is an isomorphism B{ kerpvq » C. In particular, we find that f factors through C.
This is what we wanted.

4.2.5 Remark (exercise) Come up with an example where homRp´,Mq is not exact.

4.2.6 Remark (exercise) Over a field, hom is always exact.

Projective modules

Let M be an R-module for a fixed commutative ring R. We have seen that homRpM,´q is
generally only a left-exact functor. Sometimes, however, we do have exactness. We axiomatize
this with the following.

4.2.7 Definition An R-module M is called projective if the functor homRpM, ¨q is exact.2

One may first observe that a free module is projective. Indeed, let F “ RI for an indexing
set. Then the functor N Ñ homRpF,Nq is naturally isomorphic to N Ñ N I . It is easy to
see that this functor preserves exact sequences (that is, if 0 Ñ A Ñ B Ñ C Ñ 0 is exact, so
is 0 Ñ AI Ñ BI Ñ CI Ñ 0). Thus F is projective. One can also easily check that a direct
summand of a projective module is projective.

It turns out that projective modules have a very clean characterization. They are precisely the
direct summands in free modules.

add: check this
2It is possible to define a projective module over a noncommutative ring. The definition is the same, except that
the hom-sets are no longer modules, but simply abelian groups.
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4.2.8 Proposition The following are equivalent for an R-module M :

1. M is projective.

2. Given any map M Ñ N{N 1 from M into a quotient of R-module N{N 1, we can lift it to a
map M Ñ N .

3. There is a module M 1 such that M ‘M 1 is free.

Proof. The equivalence of 1 and 2 is just unwinding the definition of projectivity, because we
just need to show that homRpM, ¨q preserves surjective maps, i.e. quotients. (homRpM, ¨q is
already left-exact, after all.) To say that homRpM,Nq Ñ homRpM,N{N 1q is surjective is just
the statement that any map M Ñ N{N 1 can be lifted to M Ñ N .

Let us show that 2 implies 3. Suppose M satisfies 2. Then choose a surjection P � M where
P is free, by proposition 2.8.6. Then we can write M » P {P 1 for a submodule P 1 Ă P . The
isomorphism map M Ñ P {P 1 leads by 2 to a lifting M Ñ P . In particular, there is a section of
P ÑM , namely this lifting. Since a section leads to a split exact sequence by ??, we find then
that P » kerpP ÑMq ‘ impM Ñ P q » kerpP ÑMq ‘M , verifying 3 since P is free.

Now let us show that 3 implies 2. Suppose M ‘ M 1 is free, isomorphic to P . Then a map
M Ñ N{N 1 can be extended to

P Ñ N{N 1

by declaring it to be trivial on M 1. But now P Ñ N{N 1 can be lifted to N because P is free,
and we have observed that a free module is projective above; alternatively, we just lift the image
of a basis. This defines P Ñ N . We may then compose this with the inclusion M Ñ P to get
the desired map M Ñ P Ñ N , which is a lifting of M Ñ N{N 1.

Of course, the lifting P Ñ N of a given map P Ñ N{N 1 is generally not unique, and in fact is
unique precisely when homRpP,N

1q “ 0.

So projective modules are precisely those with the following lifting property. Consider a dia-
gram

P

��
M //M2 // 0

where the bottom row is exact. Then, if P is projective, there is a lifting P Ñ M making
commutative the diagram

P

��}}
M //M2 // 0

4.2.9 Corollary Let M be a module. Then there is a surjection P �M , where P is projective.

Proof. Indeed, we know (2.8.6) that we can always get a surjection from a free module. Since
free modules are projective by 4.2.8, we are done.

4.2.10 Remark (exercise) Let R be a principal ideal domain, F 1 a submodule of a free module
F . Show that F 1 is free. (Hint: well-order the set of generators of F , and climb up by transfinite
induction.) In particular, any projective modules is free.
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Example: the Serre-Swan theorem

We now briefly digress to describe an important correspondence between projective modules and
vector bundles. The material in this section will not be used in the sequel.

Let X be a compact space. We shall not recall the topological notion of a vector bundle here.

We note, however, that if E is a (complex) vector bundle, then the set ΓpX,Eq of global sections
is naturally a module over the ring CpXq of complex-valued continuous functions on X.

4.2.11 Proposition If E is a vector bundle on a compact Hausdorff space X, then there is a
surjection ON � E for some N .

Here ON denotes the trivial bundle.

It is known that in the category of vector bundles, every epimorphism splits. In particular, it
follows that E can be viewed as a direct summand of the bundle ON . Since ΓpX,Eq is then a
direct summand of ΓpX,ON q “ CpXqN , we find that ΓpX,Eq is a direct summand of a projective
CpXq-module. Thus:

4.2.12 Proposition ΓpX,Eq is a finitely generated projective CpXq-module.

4.2.13 Theorem (Serre-Swan) The functor E ÞÑ ΓpX,Eq induces an equivalence of cate-
gories between vector bundles on X and finitely generated projective modules over CpXq.

Injective modules

We have given a complete answer to the question of when the functor homRpM,´q is exact. We
have shown that there are a lot of such projective modules in the category of R-modules, enough
that any module admits a surjection from one such. However, we now have to answer the dual
question: when is the functor homRp´, Qq exact?

Let us make the dual definition:

4.2.14 Definition An R-module Q is injective if the functor homRp´, Qq is exact.

Thus, a module Q over a ring R is injective if whenever M Ñ N is an injection, and one has a
map M Ñ Q, it can be extended to N Ñ Q: in other words, homRpN,Qq Ñ homRpM,Qq is
surjective. We can visualize this by a diagram

0 //M //

��

N

~~
Q

where the dotted arrow always exists if Q is injective.

The notion is dual to projectivity, in some sense, so just as every moduleM admits an epimorphic
map P Ñ M for P projective, we expect by duality that every module admits a monomorphic
map M Ñ Q for Q injective. This is in fact true, but will require some work. We start, first,
with a fact about injective abelian groups.
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4.2.15 Theorem A divisible abelian group (i.e. one where the map x Ñ nx for any n P N is
surjective) is injective as a Z-module (i.e. abelian group).

Proof. The actual idea of the proof is rather simple, and similar to the proof of the Hahn-Banach
theorem. Namely, we extend bit by bit, and then use Zorn’s lemma.

The first step is that we have a subgroup M of a larger abelian group N . We have a map of
f : M Ñ Q for Q some divisible abelian group, and we want to extend it to N .

Now we can consider the poset of pairs pf̃ ,M 1q where M 1 Ą M , and f̃ : M 1 Ñ N is a map
extending f . Naturally, we make this into a poset by defining the order as “pf̃ ,M 1q ď pf̃ 1,M2q if
M2 contains M 1 and f̃ 1 is an extension of f̃ . It is clear that every chain has an upper bound, so
Zorn’s lemma implies that we have a submodule M 1 Ă N containing M , and a map f̃ : M 1 Ñ N
extending f , such that there is no proper extension of f̃ . From this we will derive a contradiction
unless M 1 “ N .

So suppose we have M 1 ‰ N , for M 1 the maximal submodule to which f can be extended, as in
the above paragraph. Pick m P N ´M 1, and consider the submodule M 1 ` Zm Ă N . We are
going to show how to extend f̃ to this bigger submodule. First, suppose Zm XM 1 “ t0u, i.e.
the sum is direct. Then we can extend f̃ because M 1 ` Zm is a direct sum: just define it to be
zero on Zm.

The slightly harder part is what happens if ZmXM 1 ‰ t0u. In this case, there is an ideal I Ă Z
such that n P I if and only if nm P M 1. This ideal, however, is principal; let g P Z ´ t0u be a
generator. Then gm “ p P M 1. In particular, f̃pgmq is defined. We can “divide” this by g, i.e.
find u P Q such that gu “ f̃pgmq.

Now we may extend to a map f̃ 1 from Zm`M 1 into Q as follows. Choose m1 PM 1, k P Z. Define
f̃ 1pm1`kmq “ f̃pm1q`ku. It is easy to see that this is well-defined by the choice of u, and gives
a proper extension of f̃ . This contradicts maximality of M 1 and completes the proof.

4.2.16 Remark (exercise) theorem 4.2.15 works over any principal ideal domain.

4.2.17 Remark (exercise) [Baer] Let N be an R-module such that for any ideal I Ă R,
any morphism I Ñ N can be extended to R Ñ N . Then N is injective. (Imitate the above
argument.)

From this, we may prove:

4.2.18 Theorem Any R-module M can be imbedded in an injective R-module Q.

Proof. First of all, we know that any R-moduleM is a quotient of a free R-module. We are going
to show that the dual (to be defined shortly) of a free module is injective. And so since every
module admits a surjection from a free module, we will use a dualization argument to prove the
present theorem.

First, for any abelian group G, define the dual group as G_ “ homZpG,Q{Zq. Dualization is
clearly a contravariant functor from abelian groups to abelian groups. By proposition 4.2.4 and
theorem 4.2.15, an exact sequence of groups

0 Ñ AÑ B Ñ C Ñ 0
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induces an exact sequence
0 Ñ C_ Ñ B_ Ñ A_ Ñ 0.

In particular, dualization is an exact functor:

4.2.19 Proposition Dualization preserves exact sequences (but reverses the order).

Now, we are going to apply this to R-modules. The dual of a left R-module is acted upon by R.
The action, which is natural enough, is as follows. Let M be an R-module, and f : M Ñ Q{Z
be a homomorphism of abelian groups (since Q{Z has in general no R-module structure), and
r P R; then we define rf to be the map M Ñ Q{Z defined via

prfqpmq “ fprmq.

It is easy to check that M_ is thus made into an R-module.3 In particular, dualization into Q{Z
gives a contravariant exact functor from R-modules to R-modules.

Let M be as before, and now consider the R-module M_. By proposition 2.8.6, we can find a
free module F and a surjection

F ÑM_ Ñ 0.

Now dualizing gives an exact sequence of R-modules

0 ÑM__ Ñ F_.

However, there is a natural map (of R-modules) M Ñ M__: given m P M , we can define a
functional hompM,Q{Zq Ñ Q{Z by evaluation atm. One can check that this is a homomorphism.
Moreover, this morphism M ÑM__ is actually injective: if m PM were in the kernel, then by
definition every functional M Ñ Q{Z must vanish on m. It is easy to see (using Z-injectivity
of Q{Z) that this cannot happen if m ‰ 0: we could just pick a nontrivial functional on the
monogenic subgroup Zm and extend to M .

We claim now that F_ is injective. This will prove the theorem, as we have the composite of
monomorphisms M ãÑM__ ãÑ F_ that embeds M inside an injective module.

4.2.20 Lemma The dual of a free R-module F is an injective R-module.

Proof. Let 0 Ñ AÑ B be exact; we have to show that

homRpB,F
_q Ñ homRpA,F

_q Ñ 0.

is exact. Now we can reduce to the case where F is the R-module R itself. Indeed, F is a
direct sum of R’s by assumption, and taking hom’s turns them into direct products; moreover
the direct product of exact sequences is exact.

So we are reduced to showing that R_ is injective. Now we claim that

homRpB,R
_q “ homZpB,Q{Zq. (4.2.1)

In particular, homRp´, R
_q is an exact functor because Q{Z is an injective abelian group. The

proof of eq. (4.2.1) is actually “trivial.” For instance, a R-homomorphism f : B Ñ R_ induces
f̃ : B Ñ Q{Z by sending bÑ pfpbqqp1q. One checks that this is bijective.

3If R is noncommutative, this would not work: instead M_ would be an right R-module. For commutative
rings, we have no such distinction between left and right modules.
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The small object argument

There is another, more set-theoretic approach to showing that any R-moduleM can be imbedded
in an injective module. This approach, which constructs the injective module by a transfinite
colimit of push-outs, is essentially analogous to the “small object argument” that one uses in
homotopy theory to show that certain categories (e.g. the category of CW complexes) are
model categories in the sense of Quillen; see ?. While this method is somewhat abstract and
more complicated than the one of section 4.2, it is also more general. Apparently this method
originates with Baer, and was revisited by Cartan & Eilenberg (1999) and by Grothendieck
(1957b). There, Grothendieck uses it to show that many other abelian categories have enough
injectives.

We first begin with a few remarks on smallness. Let tBαu, α P A be an inductive system of
objects in some category C, indexed by an ordinal A. Let us assume that C has (small) colimits.
If A is an object of C, then there is a natural map

lim
ÝÑ

hompA,Bαq Ñ hompA, lim
ÝÑ

Bαq (4.2.2)

because if one is given a map A Ñ Bβ for some β, one naturally gets a map from A into the
colimit by composing with Bβ Ñ lim

ÝÑ
Bα. (Note that the left colimit is one of sets!)

In general, the map eq. (4.2.2) is neither injective or surjective.

4.2.21 Example Consider the category of sets. Let A “ N and Bn “ t1, . . . , nu be the inductive
system indexed by the natural numbers (where Bn Ñ Bm, n ď m is the obvious map). Then
lim
ÝÑ

Bn “ N, so there is a map
AÑ lim

ÝÑ
Bn,

which does not factor as
AÑ Bm

for any m. Consequently, lim
ÝÑ

hompA,Bnq Ñ hompA, lim
ÝÑ

Bnq is not surjective.

4.2.22 Example Next we give an example where the map fails to be injective. Let Bn “
N{ t1, 2, . . . , nu, that is, the quotient set of N with the first n elements collapsed to one element.
There are natural maps Bn Ñ Bm for n ď m, so the tBnu form an inductive system. It is easy
to see that the colimit lim

ÝÑ
Bn “ t˚u: it is the one-point set. So it follows that hompA, lim

ÝÑ
Bnq is

a one-element set.

However, lim
ÝÑ

hompA,Bnq is not a one-element set. Consider the family of maps AÑ Bn which
are just the natural projections NÑ N{ t1, 2, . . . , nu and the family of maps AÑ Bn which map
the whole of A to the class of 1. These two families of maps are distinct at each step and thus
are distinct in lim

ÝÑ
hompA,Bnq, but they induce the same map AÑ lim

ÝÑ
Bn.

Nonetheless, if A is a finite set, it is easy to see that for any sequence of sets B1 Ñ B2 Ñ . . . ,
we have

lim
ÝÑ

hompA,Bnq “ hompA, lim
ÝÑ

Bnq.
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Proof. Let f : AÑ lim
ÝÑ

Bn. The range of A is finite, containing say elements c1, . . . , cr P lim
ÝÑ

Bn.
These all come from some elements in BN for N large by definition of the colimit. Thus we can
define rf : AÑ BN lifting f at a finite stage.

Next, suppose two maps fn : A Ñ Bm, gn : A Ñ Bm define the same map A Ñ lim
ÝÑ

Bn. Then
each of the finitely many elements of A gets sent to the same point in the colimit. By definition
of the colimit for sets, there is N ě m such that the finitely many elements of A get sent to
the same points in BN under f and g. This shows that lim

ÝÑ
hompA,Bnq Ñ hompA, lim

ÝÑ
Bnq is

injective.

The essential idea is that A is “small” relative to the long chain of compositions B1 Ñ B2 Ñ . . . ,
so that it has to factor through a finite step.

Let us generalize this.

4.2.23 Definition Let C be a category, I a class of maps, and ω an ordinal. An object A P C
is said to be ω-small (with respect to I) if whenever tBαu is an inductive system parametrized
by ω with maps in I, then the map

lim
ÝÑ

hompA,Bαq Ñ hompA, lim
ÝÑ

Bαq

is an isomorphism.

Our definition varies slightly from that of ?, where only “nice” transfinite sequences tBαu are
considered.

In our applications, we shall begin by restricting ourselves to the category of R-modules for a
fixed commutative ring R. We shall also take I to be the set of monomorphisms, or injections.4

Then each of the maps
Bβ Ñ lim

ÝÑ
Bα

is an injection, so it follows that hompA,Bβq Ñ hompA, lim
ÝÑ

Bαq is one, and in particular the
canonical map

lim
ÝÑ

hompA,Bαq Ñ hompA, lim
ÝÑ

Bαq (4.2.3)

is an injection. We can in fact interpret the Bα’s as subobjects of the big module lim
ÝÑ

Bα, and
think of their union as lim

ÝÑ
Bα. (This is not an abuse of notation if we identify Bα with the image

in the colimit.)

We now want to show that modules are always small for “large” ordinals ω. For this, we have to
digress to do some set theory:

4.2.24 Definition Let ω be a limit ordinal, and κ a cardinal. Then ω is κ-filtered if every
collection C of ordinals strictly less than ω and of cardinality at most κ has an upper bound
strictly less than ω.

4.2.25 Example A limit ordinal (e.g. the natural numbers ω0) is κ-filtered for any finite car-
dinal κ.

4There are, incidentally, categories, such as the category of rings, where a categorical epimorphism may not be
a surjection of sets.
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4.2.26 Proposition Let κ be a cardinal. Then there exists a κ-filtered ordinal ω.

Proof. If κ is finite, example 4.2.25 shows that any limit ordinal will do. Let us thus assume that
κ is infinite.

Consider the smallest ordinal ω whose cardinality is strictly greater than that of κ. Then we
claim that ω is κ-filtered. Indeed, if C is a collection of at most κ ordinals strictly smaller than
ω, then each of these ordinals is of size at most κ. Thus the union of all the ordinals in C (which
is an ordinal) is of size at most κ, so is strictly smaller than ω, and it provides an upper bound
as in the definition.

4.2.27 Proposition Let M be a module, κ the cardinality of the set of its submodules. Then if
ω is κ-filtered, then M is ω-small (with respect to injections).

The proof is straightforward, but let us first think about a special case. If M is finite, then the
claim is that for any inductive system tBαu with injections between them, parametrized by a
limit ordinal, any map M Ñ lim

ÝÑ
Bα factors through one of the Bα. But this is clear. M is finite,

so since each element in the image must land inside one of the Bα, so all of M lands inside some
finite stage.

Proof. We need only show that the map eq. (4.2.3) is a surjection when ω is κ-filtered. Let
f : AÑ lim

ÝÑ
Bα be a map. Consider the subobjects tf´1pBαqu of A, where Bα is considered as a

subobject of the colimit. If one of these, say f´1pBβq, fills A, then the map factors through Bβ .

So suppose to the contrary that all of the f´1pBαq were proper subobjects of A. However, we
know that

ď

f´1pBαq “ f´1
´

ď

Bα

¯

“ A.

Now there are at most κ different subobjects of A that occur among the f´1pBαq, by hypothesis.
Thus we can find a set A of cardinality at most κ such that as α1 ranges over A, the f´1pBα1q
range over all the f´1pBαq.

However, A has an upper bound rω ă ω as ω is κ-filtered. In particular, all the f´1pBα1q are
contained in f´1pB

rωq. It follows that f´1pB
rωq “ A. In particular, the map f factors through

B
rω.

From this, we will be able to deduce the existence of lots of injectives. Let us recall the criterion
of Baer (remark 4.2.17): a module Q is injective if and only if in every commutative diagram

a

��

// Q

R

??

for a Ă R an ideal, the dotted arrow exists. In other words, we are trying to solve an extension
problem with respect to the inclusion a ãÑ R into the module M .
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If M is an R-module, then in general we may have a semi-complete diagram as above. In it, we
can form the push-out

a

��

// Q

��
R // R‘a Q

.

Here the vertical map is injective, and the diagram commutes. The point is that we can extend
aÑ Q to R if we extend Q to the larger module R‘a Q.

The point of the small object argument is to repeat this procedure transfinitely many times.

4.2.28 Theorem Let M be an R-module. Then there is an embedding M ãÑ Q for Q injective.

Proof. We start by defining a functor M on the category of R-modules. Given N , we consider
the set of all maps aÑ N for a Ă R an ideal, and consider the push-out

À

a //

��

N

��
À

R // N ‘À

a

À

R

(4.2.4)

where the direct sum of copies of R is taken such that every copy of an ideal a corresponds to
one copy of R. We define MpNq to be this push-out. Given a map N Ñ N 1, there is a natural
morphism of diagrams eq. (4.2.4), so M is a functor. Note furthermore that there is a natural
transformation

N ÑMpNq,

which is always an injection.

The key property of M is that if aÑ N is any morphism, it can be extended to RÑMpNq, by
the very construction of MpNq. The idea will now be to apply M a transfinite number of times
and to use the small object property.

We define for each ordinal ω a functor Mω on the category of R-modules, together with a
natural injection N Ñ MωpNq. We do this by transfinite induction. First, M1 “ M is the
functor defined above. Now, suppose given an ordinal ω, and suppose Mω1 is defined for ω1 ă ω.
If ω has an immediate predecessor rω, we let

Mω “M ˝M
rω.

If not, we let MωpNq “ lim
ÝÑω1ăω

Mω1pNq. It is clear (e.g. inductively) that the MωpNq form an
inductive system over ordinals ω, so this is reasonable.

Let κ be the cardinality of the set of ideals in R, and let Ω be a κ-filtered ordinal. The claim is
as follows.

4.2.29 Lemma For any N , MΩpNq is injective.

If we prove this, we will be done. In fact, we will have shown that there is a functorial embedding
of a module into an injective. Thus, we have only to prove this lemma.
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Proof. By Baer’s criterion (remark 4.2.17), it suffices to show that if a Ă R is an ideal, then any
map f : aÑMΩpNq extends to RÑMΩpNq. However, we know since Ω is a limit ordinal that

MΩpNq “ lim
ÝÑ
ωăΩ

MωpNq,

so by proposition 4.2.27, we find that

homRpa,MΩpNqq “ lim
ÝÑ
ωăΩ

homRpa,MωpNqq.

This means in particular that there is some ω1 ă Ω such that f factors through the submodule
Mω1pNq, as

f : aÑMω1pNq ÑMΩpNq.

However, by the fundamental property of the functor M, we know that the map a Ñ Mω1pNq
can be extended to

RÑMpMω1pNqq “Mω1`1pNq,

and the last object imbeds in MΩpNq. In particular, f can be extended to MΩpNq.

Split exact sequences

add: additive functors preserve split exact seq Suppose that 0 //L
ψ //M

f //N //0
is a split short exact sequence. Since HomRpD, ¨q is a left-exact functor, we see that

0 //HomRpD,Lq
ψ1 //HomRpD,Mq

f 1 //HomRpD,Nq

is exact. In addition, HomRpD,L ‘ Nq – HomRpD,Lq ‘ HomRpD,Nq. Therefore, in the case
that we start with a split short exact sequence M – L ‘N , applying HomRpD, ¨q does yield a
split short exact sequence

0 //HomRpD,Lq
ψ1 //HomRpD,Mq

f 1 //HomRpD,Nq //0 .

Now, assume that

0 //HomRpD,Lq
ψ1 //HomRpD,Mq

f 1 //HomRpD,Nq //0

is a short exact sequence of abelian groups for all R-modules D. Set D “ R and using

HomRpR,Nq – N yields that 0 //L
ψ //M

f //N //0 is a short exact sequence.

Set D “ N , so we have

0 //HomRpN,Lq
ψ1 //HomRpN,Mq

f 1 //HomRpN,Nq //0

Here, f 1 is surjective, so the identity map of HomRpN,Nq lifts to a map g P HomRpN,Mq so
that f ˝ g “ f 1pgq “ id. This means that g is a splitting homomorphism for the sequence

0 //L
ψ //M

f //N //0 , and therefore the sequence is a split short exact sequence.
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4.3. The tensor product

We shall now introduce the third functor of this chapter: the tensor product. The tensor prod-
uct’s key property is that it allows one to “linearize” bilinear maps. When taking the tensor
product of rings, it provides a categorical coproduct as well.

Bilinear maps and the tensor product

Let R be a commutative ring, as usual. We have seen that the hom-sets homRpM,Nq of R-
modules M,N are themselves R-modules. Consequently, if we have three R-modules M,N,P ,
we can think about module-homomorphisms

M
λ
Ñ homRpN,P q.

Suppose x PM,y P N . Then we can consider λpxq P homRpN,P q and thus we can consider the
element λpxqpyq P P. We denote this element λpxqpyq, which depends on the variables x PM,y P
N , by λpx, yq for convenience; it is a function of two variables M ˆN Ñ P .

There are certain properties of λp¨, ¨q that we list below. Fix x, x1 PM ; y, y1 P N ; a P R. Then:

1. λpx, y ` y1q “ λpx, yq ` λpx, y1q because λpxq is additive.

2. λpx, ayq “ aλpx, yq because λpxq is an R-module homomorphism.

3. λpx` x1, yq “ λpx, yq ` λpx1, yq because λ is additive.

4. λpax, yq “ aλpx, yq because λ is an R-module homomorphism.

Conversely, given a function λ : M ˆN Ñ P of two variables satisfying the above properties, it
is easy to see that we can get a morphism of R-modules M Ñ homRpN,P q.

4.3.1 Definition An R-bilinear map λ : M ˆ N Ñ P is a map satisfying the above listed
conditions. In other words, it is required to be R-linear in each variable separately.

The previous discussion shows that there is a bijection between R-bilinear maps M ˆ N Ñ P
with R-module mapsM Ñ homRpN,P q. Note that the first interpretation is symmetric inM,N ;
the second, by contrast, can be interpreted in terms of the old concepts of an R-module map.
So both are useful.

4.3.2 Remark (exercise) Prove that a Z-bilinear map out of Z{2 ˆ Z{3 is identically zero,
whatever the target module.

Let us keep the notation of the previous discussion: in particular, M,N,P will be modules over
a commutative ring R.

Given a bilinear map M ˆN Ñ P and a homomorphism P Ñ P 1, we can clearly get a bilinear
map M ˆN Ñ P 1 by composition. In particular, given M,N , there is a covariant functor from
R-modules to Sets sending any R-module P to the collection of R-bilinear maps M ˆN Ñ P .
As usual, we are interested in when this functor is corepresentable. As a result, we are interested
in universal bilinear maps out of M ˆN .
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4.3.3 Definition An R-bilinear map λ : M ˆN Ñ P is called universal if for all R-modules
Q, the composition of P Ñ Q with M ˆN

λ
Ñ P gives a bijection

homRpP,Qq » tbilinear maps M ˆN Ñ Qu

So, given a bilinear map M ˆN Ñ Q, there is a unique map P Ñ Q making the diagram

P

��

M ˆN

λ

;;

##
Q

Alternatively, P corepresents the functor QÑ tbilinear maps M ˆN Ñ Qu.

General nonsense says that given M,N , an universal R-bilinear map M ˆ N Ñ P is unique
up to isomorphism (if it exists). This follows from Yoneda’s lemma. For convenience, we give a
direct proof.

Suppose M ˆ N
λ
Ñ P was universal and M ˆ N

λ1
Ñ P 1 is also universal. Then by the uni-

versal property, there are unique maps P Ñ P 1 and P 1 Ñ P making the following diagram
commutative:

P

��

M ˆN

λ

::

λ1

##
P 1

OO

These compositions P Ñ P 1 Ñ P, P 1 Ñ P Ñ P 1 have to be the identity because of the uniqueness
part of the universal property. As a result, P Ñ P 1 is an isomorphism.

We shall now show that this universal object does indeed exist.

4.3.4 Proposition Given M,N , a universal bilinear map out of M ˆN exists.

Before proving it we make:

4.3.5 Definition We denote the codomain of the universal map out of M ˆ N by M bR N .
This is called the tensor product of M,N , so there is a universal bilinear map out of M ˆN
into M bR N .

Proof of 4.3.4. We will simply give a presentation of the tensor product by “generators and
relations.” Take the free R-module M bR N generated by the symbols txb yuxPM,yPN and
quotient out by the relations forced upon us by the definition of a bilinear map (for x, x1 P
M, y, y1 P N, a P R)
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1. px` x1q b y “ xb y ` x1 b y.

2. paxq b y “ apxb yq “ xb payq.

3. xb py ` y1q “ xb y ` xb y1.

We will abuse notation and denote x b y for its image in M bR N (as opposed to the symbol
generating the free module).

There is a bilinear map M ˆN ÑM bRN sending px, yq Ñ xb y; the relations imposed imply
that this map is a bilinear map. We have to check that it is universal, but this is actually quite
direct.

Suppose we had a bilinear map λ : M ˆN Ñ P . We must construct a linear map M bRN Ñ P .
To do this, we can just give a map on generators, and show that it is zero on each of the relations.
It is easy to see that to make the appropriate diagrams commute, the linear map M bN Ñ P
has to send xb y Ñ λpx, yq. This factors through the relations on xb y by bilinearity and leads
to an R-linear map M bR N Ñ P such that the following diagram commutes:

M ˆN //

λ

&&

M bR N

��
P

.

It is easy to see that M bR N Ñ P is unique because the xb y generate it.

The theory of the tensor product allows one to do away with bilinear maps and just think of
linear maps.

Given M,N , we have constructed an object M bR N . We now wish to see the functoriality of
the tensor product. In fact, pM,Nq Ñ M bR N is a covariant functor in two variables from
R-modules to R-modules. In particular, ifM ÑM 1, N Ñ N 1 are morphisms, there is a canonical
map

M bR N ÑM 1 bR N
1. (4.3.1)

To obtain eq. (4.3.1), we take the natural bilinear map M ˆN ÑM 1ˆN 1 ÑM 1bRN
1 and use

the universal property of M bR N to get a map out of it.

Basic properties of the tensor product

We make some observations and prove a few basic properties. As the proofs will show, one
powerful way to prove things about an object is to reason about its universal property. If two
objects have the same universal property, they are isomorphic.

4.3.6 Proposition The tensor product is symmetric: for R-modules M,N , we have M bRN »

N bRM canonically.

Proof. This is clear from the universal properties: giving a bilinear map out of M ˆ N is the
same as a bilinear map out NˆM . ThusMbRN and NbRN have the same universal property.
It is also clear from the explicit construction.
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4.3.7 Proposition For an R-module M , there is a canonical isomorphism M ÑM bR R.

Proof. If we think in terms of bilinear maps, this statement is equivalent to the statement that a
bilinear map λ : M ˆRÑ P is the same as a linear map M Ñ N . Indeed, to do this, restrict λ
to λp¨, 1q. Given f : M Ñ N , similarly, we take for λ as λpx, aq “ afpxq. This gives a bijection
as claimed.

4.3.8 Proposition The tensor product is associative. There are canonical isomorphisms M bR

pN bR P q » pM bR Nq bR P .

Proof. There are a few ways to see this: one is to build it explicitly from the construction given,
sending xb py b zq Ñ pxb yq b z.

More conceptually, both have the same universal property: by general categorical nonsense
(Yoneda’s lemma), we need to show that for all Q, there is a canonical bijection

homRpM b pN b P qq, Qq » homRppM bNq b P,Qq

where the R’s are dropped for simplicity. But both of these sets can be identified with the set
of trilinear maps5 M ˆN ˆ P Ñ Q. Indeed

homRpM b pN b P q, Qq » bilinear M ˆ pN b P q Ñ Q

» hompN b P,hompM,Qqq

» bilinear N ˆ P Ñ hompM,Qq

» hompN, hompP,hompM,Qqq

» trilinear maps.

The adjoint property

Finally, while we defined the tensor product in terms of a “universal bilinear map,” we saw earlier
that bilinear maps could be interpreted as maps into a suitable hom-set. In particular, fix R-
modules M,N,P . We know that the set of bilinear maps M ˆN Ñ P is naturally in bijection
with

homRpM,homRpN,P qq

as well as with
homRpMbR, N, P q.

As a result, we find:

4.3.9 Proposition For R-modules M,N,P , there is a natural bijection

homRpM, homRpN,P qq » homRpM bR N,P q.

5Easy to define.
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There is a more evocative way of phrasing the above natural bijection. Given N , let us define
the functors FN , GN via

FN pMq “M bR N, GN pP q “ homRpN,P q.

Then the above proposition states that there is a natural isomorphism

homRpFN pMq, P q » homRpM,GN pP qq.

In particular, FN and GN are adjoint functors. So, in a sense, the operations of hom and b are
dual to each other.

4.3.10 Proposition Tensoring commutes with colimits.

In particular, it follows that if tNαu is a family of modules, and M is a module, then

M bR
à

Nα “
à

M bR Nα.

4.3.11 Remark (exercise) Give an explicit proof of the above relation.

Proof. This is a formal consequence of the fact that the tensor product is a left adjoint and
consequently commutes with all colimits. add: proof

In particular, by proposition 4.3.10, the tensor product commutes with cokernels. That is, if
A Ñ B Ñ C Ñ 0 is an exact sequence of R-modules and M is an R-module, A bR M Ñ

B bR M Ñ C bR M Ñ 0 is also exact, because exactness of such a sequence is precisely a
condition on the cokernel. That is, the tensor product is right exact.

We can thus prove a simple result on finite generation:

4.3.12 Proposition If M,N are finitely generated, then M bR N is finitely generated.

Proof. Indeed, if we have surjections Rm ÑM,Rn Ñ N , we can tensor them; we get a surjection
since the tensor product is right-exact. So have a surjection Rmn “ Rm bR R

n ÑM bR N .

The tensor product as base-change

Before this, we have considered the tensor product as a functor within a fixed category. Now,
we shall see that when one takes the tensor product with a ring, one gets additional structure.
As a result, we will be able to get natural functors between different module categories.

Suppose we have a ring-homomorphism φ : RÑ R1. In this case, any R1-module can be regarded
as an R-module. In particular, there is a canonical functor of restriction

R1-modules Ñ R-modules.
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We shall see that the tensor product provides an adjoint to this functor. Namely, if M has an
R-module structure, thenM bRR

1 has an R1 module structure where R1 acts on the right. Since
the tensor product is functorial, this gives a functor in the opposite direction:

R-modules Ñ R1-modules.

Let M 1 be an R1-module and M an R-module. In view of the above, we can talk about

homRpM,M 1q

by thinking of M 1 as an R-module.

4.3.13 Proposition There is a canonical isomorphism between

homRpM,M 1q » homR1pM bR R
1,M 1q.

In particular, the restriction functor and the functor M ÑM bR R
1 are adjoints to each other.

Proof. We can describe the bijection explicitly. Given an R1-homomorphism f : M bRR
1 ÑM 1,

we get a map
f0 : M ÑM 1

sending
mÑ mb 1 Ñ fpmb 1q.

This is easily seen to be an R-module-homomorphism. Indeed,

f0paxq “ fpaxb 1q “ fpφpaqpxb 1qq “ afpxb 1q “ af0pxq

since f is an R1-module homomorphism.

Conversely, if we are given a homomorphism of R-modules

f0 : M ÑM 1

then we can define
f : M bR R

1 ÑM 1

by sending m b r1 Ñ r1f0pmq, which is a homomorphism of R1 modules. This is well-defined
because f0 is a homomorphism of R-modules. We leave some details to the reader.

4.3.14 Example In the representation theory of finite groups, the operation of tensor product
corresponds to the procedure of inducing a representation. Namely, if H Ă G is a subgroup of a
groupG, then there is an obvious restriction functor fromG-representations toH-representations.
The adjoint to this is the induction operator. Since aH-representation (resp. a G-representation)
is just a module over the group ring, the operation of induction is really a special case of the
tensor product. Note that the group rings are generally not commutative, so this should be
interpreted with some care.
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Some concrete examples

We now present several concrete computations of tensor products in explicit cases to illuminate
what is happening.

4.3.15 Example Let us compute Z{10bZ Z{12. Since 1 spans Z{p10q and 1 spans Z{p12q, we
see that 1b 1 spans Z{p10q b Z{p12q and this tensor product is a cyclic group.

Note that 1b 0 “ 1b p10 ¨ 0q “ 10b 0 “ 0b 0 “ 0 and 0b 1 “ p12 ¨ 0q b 1 “ 0b 12 “ 0b 0 “ 0.
Now, 10p1 b 1q “ 10 b 1 “ 0 b 1 “ 0 and 12p1 b 1q “ 1 b 12 “ 1 b 0 “ 0, so the cyclic group
Z{p10q b Z{p12q has order dividing both 10 and 12. This means that the cyclic group has order
dividing gcdp10, 12q “ 2.

To show that the order of Z{p10q b Z{p12q, define a bilinear map g : Z{p10q ˆ Z{p12q Ñ Z{p2q
via g : px, yq ÞÑ xy. The universal property of tensor products then says that there is a unique
linear map f : Z{p10q b Z{p12q Ñ Z{p2q making the diagram

Z{p10q ˆ Z{p12q
b //

g
))

Z{p10q b Z{p12q

f

��
Z{p2q.

commute. In particular, this means that fpx b yq “ gpx, yq “ xy. Hence, fp1 b 1q “ 1, so f is
surjective, and therefore, Z{p10q b Z{p12q has size at least two. This allows us to conclude that
Z{p10q b Z{p12q “ Z{p2q.

We now generalize the above example to tensor products of cyclic groups.

4.3.16 Example Let d “ gcdpm,nq. We will show that pZ{mZq b pZ{nZq » pZ{dZq, and thus
in particular if m and n are relatively prime, then pZ{mZq b pZ{nZq » p0q. First, note that any
ab b P pZ{mZq b pZ{nZq can be written as abp1b 1q, so that pZ{mZq b pZ{nZq is generated by
1b 1 and hence is a cyclic group. We know from elementary number theory that d “ xm` yn
for some x, y P Z. We have mp1 b 1q “ m b 1 “ 0 b 1 “ 0 and np1 b 1q “ 1 b n “ 1 b 0 “ 0.
Thus dp1b 1q “ pxm` ynqp1b 1q “ 0, so that 1b 1 has order dividing d.

Conversely, consider the map f : pZ{mZq ˆ pZ{nZq Ñ pZ{dZq defined by fpa `mZ, b ` nZq “
ab` dZ. This is well-defined, since if a1 `mZ “ a`mZ and b1 ` nZ “ b` nZ then a1 “ a`mr
and b1 “ b ` ns for some r, s and thus a1b1 ` dZ “ ab ` pmrb ` nsa `mnrsq ` dZ “ ab ` dZ
(since d “ gcdpm,nq divides m and n). This is obviously bilinear, and hence induces a map
f̃ : pZ{mZq b pZ{nZq Ñ pZ{dZq, which has f̃p1b 1q “ 1` dZ. But the order of 1` dZ in Z{dZ
is d, so that the order of 1b 1 in pZ{mZq b pZ{nZq must be at least d. Thus 1b 1 is in fact of
order d, and the map f̃ is an isomorphism between cyclic groups of order d.

Finally, we present an example involving the interaction of hom and the tensor product.

4.3.17 Example Given an R-module M , let us use the notation M˚ “ homRpM,Rq. We shall
define a functorial map

M˚ bR N Ñ homRpM,Nq,
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and show that it is an isomorphism when M is finitely generated and free.

Define ρ1 : M˚ ˆ N Ñ homRpM,Nq by ρ1pf, nqpmq “ fpmqn (note that fpmq P R, and the
multiplication fpmqn is that between an element of R and an element of N). This is bilinear,

ρ1paf`bg, nqpmq “ paf`bgqpmqn “ pafpmq`bgpmqqn “ afpmqn`bgpmqn “ aρ1pf, nqpmq`bρ1pg, nqpmq

ρ1pf, an1 ` bn2qpmq “ fpmqpan1 ` bn2q “ afpmqn1 ` bfpmqn2 “ aρ1pf, n1qpmq ` bρ
1pf, n2qpmq

so it induces a map ρ : M˚bN Ñ hompM,Nq with ρpf bnqpmq “ fpmqn. This homomorphism
is unique since the f b n generate M˚ bN .

SupposeM is free on the set ta1, . . . , aku. ThenM˚ “ hompM,Rq is free on the set tfi : M Ñ R,
fipr1a1 ` ¨ ¨ ¨ ` rkakq “ riu, because there are clearly no relations among the fi and because any
f : M Ñ R has f “ fpa1qf1`¨ ¨ ¨`fpanqfn. Also note that any element

ř

hjbpj PM
˚bN can

be written in the form
řk
i“1 fi b ni, by setting ni “

ř

hjpaiqpj , and that this is unique because
the fi are a basis for M˚.

We claim that the map ψ : homRpM,Nq ÑM˚bN defined by ψpgq “
řk
i“1 fib gpaiq is inverse

to ρ. Given any
řk
i“1 fi b ni PM

˚ bN , we have

ρp
k
ÿ

i“1

fi b niqpajq “
k
ÿ

i“1

ρpfi b niqpajq “
k
ÿ

i“1

fipajqni “ nj

Thus, ρp
řk
i“1 fibniqpaiq “ ni, and thus ψpρp

řk
i“1 fibniqq “

řk
i“1 fibni. Thus, ψ˝ρ “ idM˚bN .

Conversely, recall that for g : M Ñ N P homRpM,Nq, we defined ψpgq “
řk
i“1 fi b gpaiq. Thus,

ρpψpgqqpajq “ ρp
k
ÿ

i“1

fi b gpaiqqpajq “
k
ÿ

i“1

ρpfi b gpaiqqpajq “
k
ÿ

i“1

fipajqgpaiq “ gpajq

and because ρpψpgqq agrees with g on the ai, it is the same element of homRpM,Nq because the
ai generate M . Thus, ρ ˝ ψ “ idhomRpM,Nq.

Thus, ρ is an isomorphism.

We now interpret localization as a tensor product.

4.3.18 Proposition Let R be a commutative ring, S Ă R a multiplicative subset. Then there
exists a canonical isomorphism of functors:

φ : S´1M » S´1RbRM.
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Proof. Here is a construction of φ. If x{s P S´1M where x PM, s P S, we define

φpx{sq “ p1{sq bm.

Let us check that this is well-defined. Suppose x{s “ x1{s1; then this means there is t P S with

xs1t “ x1st.

From this we need to check that φpx{sq “ φpx1{s1q, i.e. that 1{sb x and 1{s1 b x1 represent the
same elements in the tensor product. But we know from the last statement that

1

ss1t
b xs1t “

1

ss1t
x1st P S´1RbM

and the first is just

s1tp
1

ss1t
b xq “

1

s
b x

by linearity, while the second is just
1

s1
b x1

similarly. One next checks that φ is an R-module homomorphism, which we leave to the reader.

Finally, we need to describe the inverse. The inverse ψ : S´1RbM Ñ S´1M is easy to construct
because it’s a map out of the tensor product, and we just need to give a bilinear map

S´1RˆM Ñ S´1M,

and this sends pr{s,mq to mr{s.

It is easy to see that φ, ψ are inverses to each other by the definitions.

It is, perhaps, worth making a small categorical comment, and offering an alternative argument.
We are given two functors F,G from R-modules to S´1R-modules, where F pMq “ S´1RbRM
and GpMq “ S´1M . By the universal property, the map M Ñ S´1M from an R-module to a
tensor product gives a natural map

S´1RbRM Ñ S´1M,

that is a natural transformation F Ñ G. Since it is an isomorphism for free modules, it is an
isomorphism for all modules by a standard argument.

Tensor products of algebras

There is one other basic property of tensor products to discuss before moving on: namely, what
happens when one tensors a ring with another ring. We shall see that this gives rise to push-outs
in the category of rings, or alternatively, coproducts in the category of R-algebras. Let R be a
commutative ring and suppose R1, R2 are R-algebras. That is, we have ring homomorphisms
φ0 : RÑ R0, φ1 : RÑ R1.
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4.3.19 Proposition R0 bR R1 has the structure of a commutative ring in a natural way.

Indeed, this multiplication multiplies two typical elements x b y, x1 b y1 of the tensor product
by sending them to xx1 b yy1. The ring structure is determined by this formula. One ought to
check that this approach respects the relations of the tensor product. We will do so in an indirect
way.

Proof. Notice that giving a multiplication law on R0bR R1 is equivalent to giving an R-bilinear
map

pR0 bR R1q ˆ pR0 bR1q Ñ R0 bR R1,

i.e. an R-linear map
pR0 bR R1q bR pR0 bR1q Ñ R0 bR R1

which satisfies certain constraints (associativity, commutativity, etc.). But the left side is iso-
morphic to pR0 bR R0q bR pR1 bR R1q. Since we have bilinear maps R0 ˆ R0 Ñ R0 and
R1 ˆR1 Ñ R1, we get linear maps R0 bR R0 Ñ R0 and R1 bR R1 Ñ R1. Tensoring these maps
gives the multiplication as a bilinear map. It is easy to see that these two approaches are the
same.

We now need to check that this operation is commutative and associative, with 1b 1 as a unit;
moreover, it distributes over addition. Distributivity over addition is built into the construction
(i.e. in view of bilinearity). The rest (commutativity, associativity, units) can be checked directly
on the generators, since we have distributivity. We shall leave the details to the reader.

We can in fact describe the tensor product of R-algebras by a universal property. We will describe
a commutative diagram:

R

%%yy
R0

%%

R1

yy
R0 bR R1

Here R0 Ñ R0 bR R1 sends x ÞÑ x b 1; similarly for R1 ÞÑ R0 bR R1. These are ring-
homomorphisms, and it is easy to see that the above diagram commutes, since r b 1 “ 1b r “
rp1b 1q for r P R. In fact,

4.3.20 Proposition R0 bR R1 is universal with respect to this property: in the language of
category theory, the above diagram is a pushout square.

This means for any commutative ring B, and every pair of maps u0 : R0 Ñ B and u1 : R1 Ñ B
such that the pull-backs R Ñ R0 Ñ B and R Ñ R1 Ñ B are the same, then we get a unique
map of rings

R0 bR R1 Ñ B

which restricts on R0, R1 to the morphisms u0, u1 that we started with.
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Proof. If B is a ring as in the previous paragraph, we make B into an R-module by the map
RÑ R0 Ñ B (or RÑ R1 Ñ B, it is the same by assumption). This map R0 bR R1 Ñ B sends

xb y Ñ u0pxqu1pyq.

It is easy to check that px, yq Ñ u0pxqu1pyq is R-bilinear (because of the condition that the two
pull-backs of u0, u1 to R are the same), and that it gives a homomorphism of rings R0bRR1 Ñ B
which restricts to u0, u1 on R0, R1. One can check, for instance, that this is a homomorphism of
rings by looking at the generators.

It is also clear that R0 bR R1 Ñ B is unique, because we know that the map on elements of the
form xb 1 and 1b y is determined by u0, u1; these generate R0 bR R1, though.

In fact, we now claim that the category of rings has all coproducts. We see that the coproduct
of any two elements exists (as the tensor product over Z). It turns out that arbitrary coproducts
exist. More generally, if tRαu is a family of R-algebras, then one can define an object

â

α

Rα,

which is a coproduct of the Rα in the category of R-algebras. To do this, we simply take the
generators as before, as formal objects

â

rα, rα P Rα,

except that all but finitely many of the rα are required to be the identity. One quotients by the
usual relations.

Alternatively, one may use the fact that filtered colimits exist, and construct the infinite coprod-
uct as a colimit of finite coproducts (which are just ordinary tensor products).

4.4. Exactness properties of the tensor product

In general, the tensor product is not exact; it is only exact on the right, but it can fail to preserve
injections. Yet in some important cases it is exact. We study that in the present section.

Right-exactness of the tensor product

We will start by talking about extent to which tensor products do preserve exactness under any
circumstance. First, let’s recall what is going on. If M,N are R-modules over the commutative
ring R, we have defined another R-module homRpM,Nq of morphisms M Ñ N . This is left-
exact as a functor of N . In other words, if we fix M and let N vary, then the construction of
homming out of M preserves kernels.

In the language of category theory, this construction N Ñ homRpM,Nq has an adjoint. The
other construction we discussed last time was this adjoint, and it is the tensor product. Namely,
given M,N we defined a tensor product M bR N such that giving a map M bR N Ñ P into
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some R-module P is the same as giving a bilinear map λ : M ˆ N Ñ P , which in turn is the
same as giving an R-linear map

M Ñ homRpN,P q.

So we have a functorial isomorphism

homRpM bR N,P q » homRpM,homRpN,P qq.

Alternatively, tensoring is the left-adjoint to the hom functor. By abstract nonsense, it follows
that since hompM, ¨q preserves cokernels, the left-adjoint preserves cokernels and is right-exact.
We shall see this directly.

4.4.1 Proposition The functor N ÑM bR N is right-exact, i.e. preserves cokernels.

In fact, the tensor product is symmetric, so it’s right exact in either variable.

Proof. We have to show that if N 1 Ñ N Ñ N2 Ñ 0 is exact, then so is

M bR N
1 ÑM bR N ÑM bR N

2 Ñ 0.

There are a lot of different ways to think about this. For instance, we can look at the direct
construction. The tensor product is a certain quotient of a free module.

M bR N
2 is the quotient of the free module generated by m b n2,m P M,n P N2 modulo the

usual relations. The map M bN Ñ M bN2 sends mb n Ñ mb n2 if n2 is the image of n in
N2. Since each n2 can be lifted to some n, it is obvious that the map M bR N Ñ M bR N

2 is
surjective.

Now we know thatMbRN
2 is a quotient ofMbRN . But which relations do you have to impose

on M bR N to get M bR N
2? In fact, each relation in M bR N

2 can be lifted to a relation in
M bRN , but with some redundancy. So the only thing to quotient out by is the statement that
xb y, xb y1 have the same image in M bN2. In particular, we have to quotient out by

xb y ´ xb y1 , y ´ y1 P N 1

so that if we kill off xb n1 for n1 P N 1 Ă N , then we get M bN2. This is a direct proof.

One can also give a conceptual proof. We would like to know that M b N2 is the cokernel of
M bN 1 Ñ M bN2. In other words, we’d like to know that if we mapped M bR N into some
P and the pull-back to M bR N

1, it’d factor uniquely through M bR N
2. Namely, we need to

show that

homRpM bN2, P q “ kerphomRpM bN,P q Ñ homRpM bN2, P qq.

But the first is just homRpN
2,homRpM,P qq by the adjointness property. Similarly, the second

is just
kerphomRpN, hompM,P qq Ñ homRpN

1, homRpM,P qq

but this last statement is homRpN
2, homRpM,P qq by just the statement that N2 “ cokerpN 1 Ñ

Nq. To give a map N2 into some module (e.g. homRpM,P q) is the same thing as giving a map
out of N which kills N 1. So we get the functorial isomorphism.
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4.4.2 Remark Formation of tensor products is, in general, not exact.

4.4.3 Example Let R “ Z. Let M “ Z{2Z. Consider the exact sequence

0 Ñ ZÑ QÑ Q{ZÑ 0

which we can tensor with M , yielding

0 Ñ Z{2ZÑ Qb Z{2ZÑ Q{Zb Z{2ZÑ 0

I claim that the second thing Q b Z{2Z is zero. This is because by tensoring with Z{2Z, we’ve
made multiplication by 2 identically zero. By tensoring with Q, we’ve made multiplication by
2 invertible. The only way to reconcile this is to have the second term zero. In particular, the
sequence becomes

0 Ñ Z{2ZÑ 0 Ñ 0 Ñ 0

which is not exact.

4.4.4 Remark (exercise) Let R be a ring, I, J Ă R ideals. Show that R{IbRR{J » R{pI`Jq.

A characterization of right-exact functors

Let us consider additive functors on the category of R-modules. So far, we know a very easy way
of getting such functors: given an R-module N , we have a functor

TN : M ÑM bR N.

In other words, we have a way of generating a functor on the category of R-modules for each
R-module. These functors are all right-exact, as we have seen. Now we will prove a converse.

4.4.5 Proposition Let F be a right-exact functor on the category of R-modules that commutes
with direct sums. Then F is isomorphic to some TN .

Proof. The idea is that N will be F pRq.

Without the right-exactness hypothesis, we shall construct a natural morphism

F pRq bM Ñ F pMq

as follows. Given m P M , there is a natural map R Ñ M sending 1 Ñ m. This identifies
M “ homRpR,Mq. But functoriality gives a map F pRqˆhomRpR,Mq Ñ F pMq, which is clearly
R-linear; the universal property of the tensor product now produces the desired transformation
TF pRq Ñ F .

It is clear that TF pRqpMq Ñ F pMq is an isomorphism for M “ R, and thus for M free, as
both TF pRq and F commute with direct sums. Now let M be any R-module. There is a “free
presentation,” that is an exact sequence

RI Ñ RJ ÑM Ñ 0

193



I.4. Three important functors 4.4. Exactness properties of the tensor product

for some sets I, J ; we get a commutative, exact diagram

TF pRqpR
Iq

��

// TF pRqpR
Jq

��

// TF pRqpMq

��

// 0

F pRIq // F pRJq // F pMq // 0

where the leftmost two vertical arrows are isomorphisms. A diagram chase now shows that
TF pRqpMq Ñ F pMq is an isomorphism. In particular, F » TF pRq as functors.

Without the hypothesis that F commutes with arbitrary direct sums, we could only draw the
same conclusion on the category of finitely presented modules; the same proof as above goes
through, though I and J are required to be finite.6

4.4.6 Proposition Let F be a right-exact functor on the category of finitely presented R-modules
that commutes with direct sums. Then F is isomorphic to some TN .

From this we can easily see that localization at a multiplicative subset S Ă R is given by tensoring
with S´1R. Indeed, localization is a right-exact functor on the category of R-modules, so it is
given by tensoring with some module M ; applying to R shows that M “ S´1R.

Flatness

In some cases, though, the tensor product is exact.

4.4.7 Definition Let R be a commutative ring. An R-module M is called flat if the functor
N ÑM bR N is exact. An R-algebra is flat if it is flat as an R-module.

We already know that tensoring with anything is right exact, so the only thing to be checked for
flatness of M is that the operation of tensoring by M preserves injections.

4.4.8 Example Z{2Z is not flat as a Z-module by 4.4.3.

4.4.9 Example If R is a ring, then R is flat as an R-module, because tensoring by R is the
identity functor.

More generally, if P is a projective module (i.e., homming out of P is exact), then P is flat.

Proof. If P “
À

AR is free, then tensoring with P corresponds to taking the direct sum |A|
times, i.e.

P bRM “
à

A

M.

This is because tensoring with R preserves (finite or direct) infinite sums. The functor M Ñ
À

AM is exact, so free modules are flat.

6Recall that an additive functor commutes with finite direct sums.
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A projective module, as discussed earlier, is a direct summand of a free module. So if P is
projective, P ‘ P 1 »

À

AR for some P 1. Then we have that

pP bRMq ‘ pP
1 bRMq »

à

A

M.

If we had an injection M Ñ M 1, then there is a direct sum decomposition yields a diagram of
maps

P bRM

��

//
À

AM

��
P bRM

1 //
À

AM
1

.

A diagram-chase now shows that the vertical map is injective. Namely, the composition P bR
M Ñ

À

AM
1 is injective, so the vertical map has to be injective too.

4.4.10 Example If S Ă R is a multiplicative subset, then S´1R is a flat R-module, because
localization is an exact functor.

Let us make a few other comments.

4.4.11 Remark Let φ : RÑ R1 be a homomorphism of rings. Then, first of all, any R1-module
can be regarded as an R-module by composition with φ. In particular, R1 is an R-module.

If M is an R-module, we can define
M bR R

1

as an R-module. But in fact this tensor product is an R1-module; it has an action of R1. If x PM
and a P R1 and b P R1, multiplication of pxb aq PM bR R

1 by b P R1 sends this, by definition, to

bpxb aq “ xb ab.

It is easy to check that this defines an action of R1 on M bR R
1. (One has to check that this

action factors through the appropriate relations, etc.)

The following fact shows that the hom-sets behave nicely with respect to flat base change.

4.4.12 Proposition Let M be a finitely presented R-module, N an R-module. Let S be a flat
R-algebra. Then the natural map

homRpM,Nq bR S Ñ homSpM bR S,N bR Sq

is an isomorphism.

Proof. Indeed, it is clear that there is a natural map

homRpM,Nq Ñ homSpM bR S,N bR Sq

ofR-modules. The latter is an S-module, so the universal property gives the map homRpM,NqbR
S Ñ homSpM bR S,N bR Sq as claimed. If N is fixed, then we have two contravariant functors
in M ,

T1pMq “ homRpM,Nq bR S, T2pMq “ homSpM bR S,N bR Sq.
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We also have a natural transformation T1pMq Ñ T2pMq. It is clear that ifM is finitely generated
and free, then the natural transformation is an isomorphism (for example, if M “ R, then we
just have the map N bR S Ñ N bR S).

Note moreover that both functors are left-exact: that is, given an exact sequence

M 1 ÑM ÑM2 Ñ 0,

there are induced exact sequences

0 Ñ T1pM
2q Ñ T1pMq Ñ T1pM

1q, 0 Ñ T2pM
2q Ñ T2pMq Ñ T2pM

1q.

Here we are using the fact that hom is always a left-exact functor and the fact that tensoring
with S preserves exactness. (Thus it is here that we use flatness.)

Now the following lemma will complete the proof:

4.4.13 Lemma Let T1, T2 be contravariant, left-exact additive functors from the category of R-
modules to the category of abelian groups. Suppose a natural transformation t : T1pMq Ñ T2pMq
is given, and suppose this is an isomorphism whenever M is finitely generated and free. Then it
is an isomorphism for any finitely presented module M .

Proof. This lemma is a diagram chase. Fix a finitely presented M , and choose a presentation

F 1 Ñ F ÑM Ñ 0,

with F 1, F finitely generated and free. Then we have an exact and commutative diagram

0 // T1pMq

��

// T1pF q

»

��

// T1pF
1q

»

��
0 // T2pMq // T2pF q // T2pF

1q.

By hypotheses, the two vertical arrows to the right are isomorphisms, as indicated. A diagram
chase now shows that the remaining arrow is an isomorphism, which is what we wanted to
prove.

4.4.14 Example Let us now consider finitely generated flat modules over a principal ideal
domain R. By 2.7.4, we know that any such M is isomorphic to a direct sum

À

R{ai for some
ai P R. But if any of the ai is not zero, then that ai would be a nonzero zero divisor on M .
However, we know no element of R ´ t0u can be a zero divisor on M . It follows that all the
ai “ 0. In particular, we have proved:

4.4.15 Proposition A finitely generated module over a PID is flat if and only if it is free.
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Finitely presented flat modules

In example 4.4.9, we saw that a projective module over any ring R was automatically flat. In
general, the converse is flat. For instance, Q is a flat Z-module (as tensoring by Q is a form of
localization). However, because Q is divisible (namely, multiplication by n is surjective for any
n), Q cannot be a free abelian group.

Nonetheless:

4.4.16 Theorem A finitely presented flat module over a ring R is projective.

Proof. We follow ?.

Let us define the following contravariant functor from R-modules to R-modules. Given M , we
send it to M˚ “ homZpM,Q{Zq. This is made into an R-module in the following manner:
given φ : M Ñ Q{Z (which is just a homomorphism of abelian groups!) and r P R, we send
this to rφ defined by prφqpmq “ φprmq. Since Q{Z is an injective abelian group, we see that
M ÞÑM˚ is an exact contravariant functor from R-modules to R-modules. In fact, we note that
0 Ñ AÑ B Ñ C Ñ 0 is exact implies 0 Ñ C˚ Ñ B˚ Ñ A˚ Ñ 0 is exact.

Let F be any R-module. There is a natural homomorphism

M˚ bR F Ñ homRpF,Mq
˚. (4.4.1)

This is defined as follows. Given φ : M Ñ Q{Z and x P F , we define a new map hompF,Mq Ñ
Q{Z by sending a homomorphism ψ : F Ñ M to φpψpxqq. In other words, we have a natural
map

homZpM,Q{Zq bR F Ñ homZphomRpF,Mq
˚,Q{Zq.

Now fix M . This map (4.4.1) is an isomorphism if F is finitely generated and free. Both are
right-exact (because dualizing is contravariant-exact!). The “finite presentation trick” now shows
that the map is an isomorphism if F is finitely presented. add: this should be elaborated
on

Fix now F finitely presented and flat, and consider the above two quantities in (4.4.1) as functors
in M . Then the first functor is exact, so the second one is too. In particular, homRpF,Mq

˚ is
an exact functor in M ; in particular, if M �M2 is a surjection, then

homRpF,M
2q˚ Ñ homRpF,Mq

˚

is an injection. But this implies that

homRpF,Mq Ñ homRpF,M
2q

is a surjection, i.e. that F is projective. Indeed:

4.4.17 Lemma AÑ B Ñ C is exact if and only if C˚ Ñ B˚ Ñ A˚ is exact.

Proof. Indeed, one direction was already clear (from Q{Z being an injective abelian group).
Conversely, we note that M “ 0 if and only if M˚ “ 0 (again by injectivity and the fact that
pZ{aq˚ ‰ 0 for any a). Thus dualizing reflects isomorphisms: if a map becomes an isomorphism
after dualized, then it was an isomorphism already. From here it is easy to deduce the result (by
applying the above fact to the kernel and image).
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I.5. Algebras and their modules

5.1. The category of algebras over a commutative ring

5.1.1 In Section 2.1 we already got acquainted with unital algebras over a commutative ring.
Here we want to generalize this concept to possibly non-unital algebras. Throughout this section,
R will denote a commutative ring.

Definitions

5.1.2 Definition An R-module A together with a map µ : Aˆ A Ñ A called multiplication is
an R-algebra if the following properties hold.

(Alg1) The multiplication map is R-bilinear that is the equalities

µpa1 ` a2, bq “ µpa1, bq ` µpa2, bq ,

µpra, bq “ rµpa, bq ,

µpa, b1 ` b2q “ µpa, b1q ` µpa, b2q , and
µpa, rbq “ rµpa, bq

hold for all a, a1, a2, b, b1, b2 P A and r P R.

(Alg2) The multiplication map is associative that is

µpa, µpb, cqq “ µpµpa, bq, cq

for all a, b, c P A.

If in addition Axiom (Alg3) below is satisfied, the algebra A is called unital, if Axiom (Alg4)
holds true, then A is called commutative.

(Alg3) There exists a multiplicative identity in A that is an element 1A P A such that

µp1A, aq “ µpa, 1Aq “ a

for all a P A.

(Alg4) Multiplication is commutative that is

µpa, bq “ µpb, aq

for all a, b P A.
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5.1.3 Remarks (a) Given an R-algebra A we usually denote the product µpa, bq of two elements
a, b P A by a ¨A b, a ¨ b or just by ab.

(b) Since an R-algebra A is also a pseudo-ring, a multiplicative identity is uniquely determined
by Proposition 2.1.2 (iv). If it exists and when no confusion can arise we usually denote the
multiplicative identity in A just by the symbol 1.

(c) As pointed out at the beginning of this chapter, we already have a notion of a unital R-
algebra. That the one from Definition 2.1.11 is equivalent to the definition of a unital R-algebra
above is shown by the following result.

5.1.4 Proposition Assume that A is a ring with multiplication µ : A ˆ A Ñ A, pa, bq ÞÑ
µpa, bq “ a ¨ b and multiplicative identity 1A. Then the following holds true.

(i) If ϕ : RÑ A a ring homomorphism with image in the center of A, then the action RˆAÑ
A, pr, aq ÞÑ ϕprq ¨a gives A the structure of an R-module such that axiom (Alg1) is satisfied.

(ii) If A carries an R-module structure R ˆ A Ñ A, pr, aq ÞÑ ra which satisfies axiom (Alg1),
then the map ϕ : R Ñ A, r ÞÑ r ¨ 1A is a ring homomorphism with image in the center of
A.

Proof. Assume that ϕ : R Ñ A is a ring homomorphism with image in ZpAq. Since ϕ is a
ring homomorphism and since the left and right distributivity laws hold in A one has for all
r, r1, r2, s P R and a, a1, a2 P A

prsqa “ ϕprsq ¨ a “ pϕprq ¨ ϕpsqq ¨ a “ ϕprq ¨ pϕpsq ¨ aq “ ϕprq ¨ psaq “ rpsaq ,

1Ra “ ϕp1Rq ¨ a “ 1A ¨ a “ a ,

pr1 ` r2qa “ ϕpr1 ` r2q ¨ a “ pϕpr1q ` ϕpr2qq ¨ a “ ϕpr1q ¨ a` ϕpr2q ¨ a “ ra1 ` r2a ,

rpa1 ` a2q “ ϕprq ¨ pa1 ` a2q “ ϕprq ¨ a1 ` ϕprq ¨ a2 “ ra1 ` ra2 .

Hence A becomes an R-module as claimed. That multiplication on A is R-bilinear follows from
the equalities

praq ¨ b “ pϕprq ¨ aq ¨ b “ ϕprq ¨ pa ¨ bq “ rpa ¨ bq , and
a ¨ prbq “ a ¨ pϕprq ¨ bq “ pa ¨ ϕprqq ¨ b “ pϕprq ¨ aq ¨ b “ ϕprq ¨ pa ¨ bq “ rpa ¨ bq .

Note that hereby we used that ϕ has image in the center of A. So (i) is proved.

To verify (ii) assume A to be an R-module with R-bilinear multiplication. Define ϕ : RÑ A by
ϕprq “ r1A. Then

ϕpr ` sq “ pr ` sq1A “ r1A ` s1A “ ϕprq ` ϕpsq ,

ϕprsq “ prsq1A “ rps1Aq “ rϕpsq “ rp1A ¨ ϕpsqq “ pr1Aq ¨ ϕpsq “ ϕprq ¨ ϕpsq ,

ϕp1Rq “ 1R1A “ 1A ,

so ϕ is a ring homomorphism. By R-bilinearity of µ, the image of ϕ lies in the center of A.
Namely, for all r P R and a P A

ϕprq ¨ a “ r1A ¨ a “ rp1A ¨ aq “ rpa ¨ 1Aq “ a ¨ pr1Aq “ a ¨ ϕprq
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5.2. Tensor, symmetric, and exterior algebras

The tensor algebra of an R-module

5.2.1 Let M be a module over a commutative ring. Recall that for every n P N the n-th tensor
power Mbn of M is defined as the (up to isomorphisms) unique R-module such that the map

ε˚ : HomR-mlpM
ˆn, Nq Ñ HomRpM

bn, Nq

from the n-multilinear maps between Mˆn and N to the R-linear maps between Mbn and N is
a bijection, where εn : Mˆn Ñ M is the unit. In other words, Mbn is the tensor product of n
copies of M . Sometimes we will denote Mbn by TnM . Now form the direct sum

T‚M “
à

nPN
TnM “

à

nPN
Mbn

and define on it the binary operation

µ : T‚M ˆ T‚M Ñ T‚M, ppvkqkPN, pwlqlPNq ÞÑ

˜

ÿ

k`l“n

vk b wl

¸

nPN

.

The symmetric algebra of an R-module

5.2.2 Given an R-module M consider the (two-sided) ideal I‚s Ă T‚M generated by the set of all
elements of the form v b w ´ w b v, where v, w run through the elements of M . That ideal can
be expressed in the form

I‚s “ SpanR
 

ab v b w b b´ ab w b v b b P T‚M
ˇ

ˇ v, w PM & a, b P T‚M
(

.

Obviously, the right hand side is the direct sum of the R-modules

Ins “

$

’

’

’

’

&

’

’

’

’

%

t0u for n “ 0, 1 ,

SpanR
 

v b w ´ w b v P TnM
ˇ

ˇ v, w PM
(

for n “ 2 , and
SpanR

 

ab v b w b b´ ab w b v b b P TnM
ˇ

ˇ

v, w PM, a P TkM, b P TlM, & k ` l “ n
(

for n ą 2 ,

which means that I‚s is a graded ideal. Hence the quotient algebra

S‚M “ T‚M{I‚s

is a unital graded algebra which is called the symmetric algebra of M . Moreover, S0M coincides
with M by construction, so one has a natural embedding ε : M ãÑ S‚M . These data satisfy the
following universal property.

5.2.3 Proposition LetM be an R-module over the commutative ring R, A a commutative unital
R-algebra and f : M Ñ A an R-module map. Then there exists a unique morphism of unital
R-algebras f : S‚M Ñ A such that the following diagram commutes.
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II.1. General topology

1.1. The category of topological spaces

Topologies and continuous maps

1.1.1 Definition Let X be a set. By a topology on X on understands a set T of subsets of X
such that:

(Top0) The sets X and H are both elements of T.

(Top1) The union of any collection of elements of T is again in T that means if pUiqiPI is a family
of elements Ui P T, then

Ť

iPI Ui P T.

(Top2) The intersection of finitely many elements of T is again in T that means for every natural
n and U1, . . . , Un P T one has

Şn
i“1 Ui P T.

A pair pX,Tq is a called a topological space when X is a set and T a topology on X. Moreover,
a subset U of X is called open if U P T and closed if AXU P T.

1.1.2 Remarks (a) Strictly speaking, Axiom (Top0) can be derived from Axioms (Top1) and
(Top2), since the union of an empty family of subsets of X coincides withH, and the intersection
of an empty family of subsets of X coincides with X. Nevertheless, it is useful to require it, since
in proofs one often shows Axiom (Top1) only for non-empty families of open sets, and Axiom
(Top2) only for the case of the intersection of two open subsets. Then it is necessary to verify
Axiom (Top0), too, when one wants to prove that a given set of subsets of X is a topology.

(b) When using the notation TX for a topology we always mean that TX is a topology on the
space X.

1.1.3 Examples (a) For every set X the power set PpXq is a topology on X. It is called the
discrete or strongest topology on X.

(b) The set
 

H, X
(

is another topology on a set X called the indiscrete or trivial or weakest
topology on X. Unless X is empty or has only one element, the discrete and indiscrete topologies
differ.

(c) Let S be a set t0, 1u. Then the set
 

H, t1u, t0, 1u
(

is a topology on S which does neither
coincide with the discrete nor the indiscrete topology. The set S with this topology is called
Sierpiński space. The closed sets of the Sierpiński space are H, t0u and S.
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(d) The standard topology on the set of real numbers R consists of all subsets U Ă R such that
for each x P U there are real numbers a, b satisfying a ă x ă b and a, b Ă U . The standard
topology on R will be denoted by TR.

Let us show that TR is a topology on R indeed. Obviously H and R are elements of TR. Let
U, V P TR and x P UXV . Then there are a, b, c, d P R such that x P a, b Ă U and x P c, d Ă V .
Put e :“ maxta, cu and f :“ mintb, du. Then x P e, f Ă U X V , which proves U X V P TR. If
pUiqiPI is a family of elements Ui P TR and x P

Ť

iPI Ui, then there exists an j P I with x P Uj .
Choose a, b P R such that x P a, b Ă Uj . Then x P a, b Ă

Ť

iPI Ui, which proves
Ť

iPI Ui P TR.
If not mentioned differently, we always assume the set of real numbers to be equipped with the
standard topology. The standard topology coincides with the metric topology induced by the
euclidean metric on R, see ??. One therefore often calls TR the euclidean topology on R. We will
use these terms interchangeably.

(e) The standard topology TQ on the set of rational numbers Q is defined analogously. It consists
of all subset U Ă Q such that for each x P U there exist rational numbers a, b with a ă x ă b
and a, b Ă U . Like for the reals one proves that TQ is a topology on Q. Unless mentioned
differently it is always assumed that Q comes equipped with the standard topology. Like for R,
the standard topology on Q coincides with the euclidean topology on Q which is the one induced
by the euclidean metric.

(f) Let X be a set, and let Tcof denote the set of all subset of X which are either empty or have
finite complement in X. Then Tcof is a topology on X called the cofinite topology.

(g) Let X be a set, and let Tcoc denote the set of all subset of X which are either empty or have
countable complement in X. Then Tcoc is a topology on X called the cocountable topology.

(h) Let X be a (nonempty) set, pY,Tq be a topological space, and f : X Ñ Y a function. Define

f˚T :“ f´1T :“ tf´1pUq P PpXq | U P Tu .

Then pX, f˚Tq is a topological space. One calls f˚T the initial topology on X with respect to f
or the topology on X induced by f .

Let us verify that f˚T is a topology on X indeed. By f´1pY q “ X and f´1pHq “ H the sets X
and H are in f˚T. Now let pViqiPI be a family of elements of f˚T. In other words we have, for
each i P I, Vi “ f´1pUiq for some Ui P T. Then U :“

Ť

iPI Ui P T and
ď

iPI

Vi “
ď

iPI

f´1pUiq “ f´1
´

ď

iPI

Ui

¯

“ f´1pUq P f˚T .

Finally, let V1, . . . , Vn P f
´1T. Then, by definition, there exist U1, . . . , Un P T such that Vi “

f´1pUiq for i “ 1, . . . , n. Thus U :“
Şn
i“1 Ui P T and

n
č

i“1

Vi “
n
č

i“1

f´1pUiq “ f´1
´

n
č

i“1

Ui

¯

“ f´1pUq P f˚T .

(i) Let pX,Tq be a topological space, Y a (nonempty) set, and g : X Ñ Y a function. Define
g˚T Ă PpY q as the set of all U Ă Y such that g´1pUq P T. Then g˚T is a topology on Y . It is
called the final topology on Y with respect to g or the topology on Y induced by g. If g : X Ñ Y
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is a quotient map that means that g is surjective, then the final topology on Y induced by g is
also called the quotient topology on X induced by g.

Let us show why g˚T is a topology on Y . Obviously, Y,H P g˚T. Let pUiqiPI be a family of
elements of g˚T. Then g´1pUiq P T for all i P I which entails

g´1
´

ď

iPI

Ui

¯

“
ď

iPI

g´1pUiq P T,

hence
Ť

iPI

Ui P g˚T. If U1, . . . Uk P g˚T, then

g´1pU1 X . . .X Ukq “
k
č

i“1

g´1pUiq P T.

So U1 X . . .X Uk P g˚T and the claim is proved.

1.1.4 Section 1.2 on fundamental examples collects several more examples of topologies. For now,
we will work out a few basic properties of topologies and their structure preserving morphisms,
the continuous maps defined below.

1.1.5 Definition Let pX,TXq and pY,TY q be two topological spaces and assume that f : X Ñ Y
is a function. One says that f is continuous if for all U P TY the preimage f´1pUq is open in X.
The map f is called open if fpV q is open in Y for all V P TX .

1.1.6 Example Any constant function c : X Ñ Y between two topological spaces is continuous
since the preimage of an open set in Y is either the full set X or empty depending on whether
the image of c is contained in the open set or not.

1.1.7 Theorem and Definition (a) The identity map idX on a topological space pX,TXq is
continuous and open.

(b) Let pX,TXq, pY,TY q and pZ,TZq be three topological spaces. Assume that f : X Ñ Y and
g : Y Ñ Z are maps. If f and g are both continuous, so is g ˝ f . If f and g are both open, then
g ˝ f is open as well.

(c) Topological spaces as objects together with continuous maps as morphisms form a category.
It is called the category of topological spaces and will be denoted by Top.

Proof. It is obvious by definition that the identity map idX is continuous and open. Now assume
that f and g are continuous and let U P TZ . Then g´1pUq P TY by continuity of g. Hence
f´1pg´1pUqq P TX by continuity of f . So g ˝ f is continuous. If f and g are open maps, and
V P TX , then fpV q P TY and g ˝fpV q “ gpfpV qq P TZ . Hence the composition of two open maps
is open, too. The rest of the claim follows immediately.
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Comparison of topologies

1.1.8 The initial topology f˚TY induced by a function f : X Ñ Y between topological spaces
is a subset of the topology on X if and only if f is continuous. This motivates the following
definition.

1.1.9 Definition Let X be a set. Let T1 and T2 be two topologies on X. One says that T1 is
finer or stronger than T2 and T2 is coarser or weaker than T1 when T2 Ă T1.

1.1.10 Of course, inclusion induces an order relation on topologies on a given set. A remarkable
property is that any nonempty subset of the ordered set of topologies on a given set always
admits a greatest lower bound.

1.1.11 Theorem Let X be a set. Let S be a nonempty set of topologies on E. Then the set

TS :“
č

TPS

T “
 

U P PpXq | U P T for all T P S
(

is a topology on X and it is the greatest lower bound of S, where the order between topologies is
given by inclusion. In other words, TS is the finest topology contained in each topology from S.

Proof. We first show that TS is a topology. Since each T P S is a topology on X, we have
H, X P T for all T P S. Hence H, X P TS.

Let pUiqiPI be a nonempty family of elements Ui P TS. Let T P S be arbitrary. By definition of
TS, we have Ui P T for all i P I. Since T is a topology,

Ť

iPI Ui P T. Hence, as T was arbitrary,
Ť

iPI Ui P TS.

Now, let U1, . . . , Un P TS. Let T P S be arbitrary. By definition of TS, we have U1, . . . , Un P T.
Therefore, U1X . . .XUn P T since T is a topology. Since T was arbitrary in S, we conclude that
U1 X . . .X Un P TS by definition.

So TS is a topology on X. By construction, TS Ă T for all T P S, so TS is a lower bound for S.
Assume given a new topology Q on X such that Q Ă T for all T P S. Let U P Q. Then we have
U P T for all T P S. Hence by definition U P TS. So Q Ă TS and thus TS is the greatest lower
bound of S.

1.1.12 Corollary Let X be a set, pY,Tq be a topological space, and f : X Ñ Y a map. The
coarsest topology on X which makes f continuous is the initial topology f˚T.

Proof. Let S be the set of all topologies on X such that f is continuous. By definition, f˚T is a
lower bound of S. Moreover, f˚T P S. Hence f˚T is the coarsest topology making the function
f : X Ñ Y continuous.

1.1.13 Proposition Let pX,Tq be a topological space, Y a set, and g : X Ñ Y a map. The
finest topology on Y which makes g continuous is the final topology g˚T.

Proof. Let S be a topology on Y so that g : pX,Tq Ñ pY, Sq is continuous. Let U P S. Then
g´1pUq P T by continuity of g : pX,Tq Ñ pY, Sq. Hence U P g˚T by definition, and S Ă T. Since
g : pX,Tq Ñ pY, g˚Tq is continuous by definition, the claim follows.
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1.1.14 We can use Theorem 1.1.11 to define other interesting topologies. Note that trivially
PpXq is a topology on a given set X, so given any S Ă PpXq there is at least one topology
containing S. From this:

1.1.15 Proposition and Definition Let X be a set, and S a subset of PpXq. The greatest
lower bound of the set

S “ tT P PpPpXqq | T is a topology on X & S Ă Tu

is the coarsest topology on X containing S. We call it the topology generated by S on X and
denote it by TS. The topology TS consists of unions of finite intersections of elements of S that
means

TS “

!

U P PpXq | DJ @j P J Dnj P N DUj,1, . . . , Uj,nj P S : U “
ď

jPJ

nj
č

k“1

Uj,k

)

.

Proof. By definition of S and Theorem 1.1.11, TS “
Ş

TPS T is a topology on X which contains
S. Hence TS is an element of S and a subset of any element of S. The first claim follows. To
verify the second, observe that it suffices to show that

R :“
!

U P PpXq | DJ @j P J Dnj P N DUj,1, . . . , Uj,nj P S : U “
ď

jPJ

nj
č

k“1

Uj,k

)

is a topology. The set R being a topology namely entails TS Ă R because S Ă R. The inclusion
R Ă TS is clear by definition, since TS is a topology containing S. So let us show that R is a
topology. Obviously H and X are elements of R because

Ť

iPH Ui “ H and
Ş0
k“1 Uk “ X. Now

assume that pUiqiPI is a family of elements of R. Then there exists for each i P I a set Ji and for
every j P Ji a natural number ni,j together with elements Ui,j,1, . . . , Ui,j,ni,j P S such that

Ui “
ď

jPJi

ni,j
č

k“1

Ui,j,k .

Put J :“
Ť

iPItiu ˆ Ji. Then

U :“
ď

iPI

Ui “
ď

iPI

ď

jPJi

ni,j
č

k“1

Ui,j,k “
ď

pi,jqPJ

ni,j
č

k“1

Ui,j,k P R .

Last assume U1, . . . Un P T where n P N. Then one can find for each i P t1, . . . , nu a set Ji and
for every j P Ji a natural number ni,j together with elements Ui,j,1, . . . , Ui,j,ni,j P S such that

Ui “
ď

jPJi

ni,j
č

k“1

Ui,j,k .

Put J :“ J1 ˆ . . .ˆ Jn. Then

U :“
n
č

i“1

Ui “
n
č

i“1

ď

jPJi

ni,j
č

k“1

Ui,j,k “
ď

pj1,...,jnqPJ

n1,j1
č

k1“1

U1,j1,k1 X . . .X

nn,jn
č

kn“1

Un,jn,kn P R .

Hence R is a topology, indeed, and the proposition is proved.

1.1.16 Definition Let X be a set, and T a topology on X. One calls a subset S Ă T a subbase
(or subbasis) of the topology if T coincides with TS. If in addition X “

Ť

SPS S, the subbase S is
said to be adequate.
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Bases of topologies

1.1.17 When inducing a topology from a family B of subsets of some set X, the fact that B

enjoys the following property greatly simplifies the description of the topology TB generated by
B.

1.1.18 Definition Let X be a set. A base (or basis) on X is a subset B of the powerset PpXq
such that

(Bas1) X “
Ť

BPBB,

(Bas2) For all B1, B2 P B and all x P B1 X B2 there exists a B P B such that x P B and
B Ă B1 XB2.

The main purpose for this definition stems from the following theorem:

1.1.19 Theorem Let X be some set. Let B be a base on X. Then the topology generated by B

coincides with the set of unions of elements of B that means

TB “

#

ď

BPU

B P PpPpXqq
ˇ

ˇ

ˇ
U Ă B

+

.

Proof. Denote, for this proof, the set
 
Ť

BPUB
ˇ

ˇ U Ă B
(

by S and let us abbreviate TB by T.
We wish to prove that T “ S. First, note that B Ă S by construction. By definition, B Ă T.
Since T is a topology, it is closed under arbitrary unions. Hence S Ă T. To prove the converse, it
is sufficient to show that S is a topology. As it contains B, and T is the smallest such topology,
this will provide us with the inverse inclusion. By definition,

Ť

BPHB “ H and thus H P S. By
assumption, since B is a base, X “

Ť

BPBB so X P S. As the union of unions of elements in B is
a union of elements in B, S is closed under abritrary unions. Now, let B1, B2 be elements of B.
If B1XB2 “ H then B1XB2 P S. Assume that B1 and B2 are not disjoints. Then by definition
of a base, for all x P B1 XB2 there exists Bx P B such that x P Bx and Bx Ă B1 XB2. So

B1 XB2 “
ď

xPB1XB2

Bx ,

and therefore, by definition, B1 XB2 P S. We conclude that the intersection of two arbitary ele-
ments in S is again in S by using the distributivity of the union with respect to the intersection.

1.1.20 Definition We shall say that a base B on a set X is a base for a topology T on X when
the smallest topology containing B coincides with T, in other words when T “ TB.

The typical usage of the preceding theorem comes from the following result.

1.1.21 Corollary Let B be a base for a topology T on X. A subset U of X is in T if and only
if for evry x P U there exists B P B such that x P B and B Ă U .

Proof. We showed that any open set for the topology T is a union of elements in B. Hence if
x P U for U P T then there exists B P B such that x P B and B Ă U . Conversely, if U is some
subset of X such that for all x P U there exists Bx P B such that x P Bx and Bx Ă U , then
U “

Ť

xPU Bx and thus U P T.
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The last result in this section is a useful tool for showing continuity of a map.

1.1.22 Proposition Let pX,TXq and pY,TY q be two topological spaces, A a base for the topology
TX and B a base for the topology TY . Assume further that f : X Ñ Y is a map. Then the
following are equivalent:

(i) The map f is continuous.

(ii) For every open V Ă Y and all x P f´1pV q there exists A P A such that x P U and fpAq Ă V .

(iii) For every B P B the preimage f´1pBq is open in X.

Proof. Obviously, (i) implies (iii).

Assume that (iii) holds and that V Ă Y is open. Let x P f´1pV q and put y “ fpxq. Then y P V .
Since B is a base for the topology TY there exists B P B such that x P B Ă V . By assumption
f´1pBq is open in X and x P f´1pBq. Since A is a base for the topology TX , there exists A P A
such that x P A Ă f´1pBq. Since f´1pBq Ă f´1pV q, (ii) follows.

Now assume that (ii) holds true. Let V Ă Y be open, and choose for every x P f´1pV q a base
element Ax P A such that x P Ax Ă f´1pV q. Then f´1pV q “

Ť

xPf´1pV qAx which is open in X.
Hence f is continuous.

1.2. Examples and categorical constructions of topological spaces

This section provides various examples and constructions of topological spaces which will be used
all along in this monograph.

The order topology

1.2.1 Proposition Let pX,ďq be a totally ordered set, and assume that 8,´8 are two symbols
not in X. Define r´8,8sX “ X Y t´8,8u and extend ď to r´8,8sX by requiring x ď y
for x, y P r´8,8sX to hold when x, y P X and x ď y, when x “ ´8, or when y “ 8. Then
r´8,8sX together with the relation ď becomes a totally ordered set as well, and the embedding
X ãÑ r´8,8sX is order-preserving.

Proof. By definition, the relation ď on r´8,8sX is reflexive, and any two elements of r´8,8sX
are comparable. Also by definition, x ď ´8 is equivalent to x “ ´8 and 8 ď y equivalent
to y “ 8. Since the restriction of ď to X is antisymmetric by assumption, ď therefore is an
antisymmetric relation on r´8,8sX . Using the definition of ď again one finally observes that
for x, y, z P r´8,8sX the following implications hold true.

´8 ď y & y ď z ùñ ´8 ď z

x ď ´8& ´8 ď z ùñ x “ ´8 ď z

x ď y & y ď ´8 ùñ x “ y “ ´8

x ď y & y ď 8 ùñ x ď 8

x ď 8&8 ď z ùñ x ď 8 “ z

8 ď y & y ď z ùñ 8 “ y “ z .
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Since its restriction to X is already transitive, transitivity of ď now follows and the proposition
is proved.

1.2.2 Remark For the rest of this paragraph we always assume that an ordered set pX,ďq
does not contain the symbols 8,´8, and that r´8,8sX and the extended order relation ď are
defined as in the preceding proposition.

1.2.3 Definition For a totally ordered set pX,ďq, define intervals with boundaries x, y P
r´8,8s as follows:

x, y :“ x, y X :“
 

z P r´8,8s | x ă z ă y
(

,

rx, y :“ rx, y X :“
 

z P r´8,8s | x ď z ă y
(

,

x, ys :“ x, ysX :“
 

z P r´8,8s | x ă z ď y
(

,

rx, ys :“ rx, ysX :“
 

z P r´8,8s | x ď z ď y
(

.

The intervals x, y X are called open intervals, intervals of the form rx, ysX are called closed
intervals, and intervals of the form rx, y X or x, ysX are the half-open intervals.

1.2.4 Remarks (a) Note that in case x “ y only the closed interval rx, xsX is non-empty. In
case y ă x all the intervals x, y X , rx, y X , x, ysX , and rx, ysX are empty.

(b) We mostly use the notation x, y , rx, ys, etc. for intervals and denote the X in intervals only
when otherwise some ambiguity could appear.

1.2.5 Definition Let pX,ďq be a totally ordered set. Then the topology generated by the set

IX “
 

x, y P PpXq | x, y P r´8,8s& x ď y
(

is called the order topology on X. It is usually denoted TpX,ďq.

1.2.6 Proposition Let pX,ďq be a totally ordered set. Then the set IX is a base for the order
topology on X. A subbase of the order topology is given by the set SX of rays x,8 and ´8, y ,
where x, y run through the elements of X.

Proof. Since X is totally ordered, so is r´8,8s. It is immediate that x, y X x1, y1 “ w, z if
w is the largest of x and x1 and z is the smallest of y and y1. Hence IX is a base of the order
topology.

Since x,8 X ´8, y “ x, y for x ď y, the set SX is a subbase of the order topology.

1.2.7 Example The standard topology on R from Example 1.1.3 (d) is the order topology.
Likewise, the standard topology on Q coincides with the order topology.

1.2.8 Remark If X neither has a minimum nor a maximum, one usually denotes the space
r´8,8s by X. This notation fits with the understanding that s denotes the closure operation,
because the closure of X in r´8,8s with respect to the order topology coincides with the full
space r´8,8s under the assumptions made.

Extending the ordered set of real numbers pR,ďq in that way gives the so-called extended real
number system sR.
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The subspace topology

1.2.9 Proposition and Definition Let pX,Tq be a topological space. Let S Ă X and ι : S ãÑ

X the canonical embedding. Then initial topology ι˚T coincides with

TXS :“ tU X S P PpSq | U P Tu .

One calls TXY the subspace or trace topology on S. Sometimes one says that TXY is the topology
induced by pX,Tq.

Proof. The claim follows immediately from the definition of the initial topology ι˚T.

Just as easy is the following observation:

1.2.10 Proposition Let pX,Tq be a topological space, and S Ă X a subset. Let B be a basis for
T. Then the set

BX
S :“ tB X S P PpSq | B P Bu

is a basis for the subspace topology on S induced by pX,Tq.

Proof. Trivial exercise.

1.2.11 Example The default topologies on N and Z are the subspace topologies induced by the
standard topology on R. Since tnu “ n´ 1

2 , n`
1
2 X Z for all n P Z, we see that the natural

topologies on N and Z are in fact the discrete topologies. The topology on Q induced by the
standard topology on R coincides with the default topology on Q (which is, as pointed out above,
the same as the order topology).

The quotient topology

The product topology

1.2.12 Definition Let I be some nonempty set. Let us assume given a family pXi,TiqiPI of
topological spaces. Consider the cartesian product X :“

ś

iPI Xi and denote for each j P I by
πj : X Ñ Xj , pxiqiPI ÞÑ xj the projection on the i-th coordinate. The initial topology on X with
respect to the

basic open set of the cartesian product
ś

iPI Ei is a set of the form
ś

iPI Ui where ti P I : Ui “ Eiu
is finite and for all i P I, we have Ui P Ti.

1.2.13 Definition Let I be some nonempty set. Let us assume given a family pEi,TiqiPI of
topological spaces. The product topology on

ś

iPI Ei is the smallest topology containing all the
basic open sets.

1.2.14 Proposition Let I be some nonempty set. Let us assume given a family pEi,TiqiPI of
topological spaces. The collection of all basic open sets is a basis on the set

ś

iPI Ei.

Proof. Trivial exercise.
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1.2.15 Remark The product topology is not just the basic open sets on the cartesian products:
there are many more open sets!

1.2.16 Proposition Let I be some nonempty set. Let us assume given a family pEi,TiqiPI of
topological spaces. The product topology on

ś

iPI Ei is the initial topology for the the set tpi : i P Iu
where pi :

ś

jPI Ej Ñ Ei is the canonical surjection for all i P I.

Proof. Fix i P I. Let V P TEi . By definition, p´1
i pV q “

ś

jPI Uj where Uj “ Ej for j P Iztiu,
and Ui “ V . Hence p´1

i pV q is open in the product topology. As V was an arbitrary open subset
of Ei, the map pi is continuous by definition. Hence, as i was arbitrary in I, the initial topology
for tpi : i P Iu is coarser than the product topology.

Conversely, note that the product topology is generated by tp´1
i pV q : i P I, V P TEiu, so it is

coarser than the initial topology for tpi : i P Iu. This concludes this proof.

1.2.17 Corollary Let I be some nonempty set. Let us assume given a family pEi,TiqiPI of
topological spaces. Let T be the product topology on F “

ś

iPI Ei. Let pD,TDq be a topological
space. Then f : D Ñ F is continuous if and only if pi ˝f is continuous from pD,TDq to pEi,TEiq
for all i P I, where pi is the canonical surjection on Ei for all i P I.

Proof. We simply applied the fundamental property of initial topologies.

1.2.18 Remarks (a) The box topology on the cartesian product
ś

iPI Xi is the smallest topology
containing all possible cartesian products of open sets Ui Ă Xi, i P I. The box topology is strictly
finer than the product topology when the index set is infinite and infintely many of the Xi carry
a topology strictly finer than the indiscrete topology. Of course, the box and product topologies
coincide otherwise, in particular when the product is finite.

(b) Since the product topology is the coarsest topology which makes the canonical projections
continuous, it is the preferred and default one on cartesian products.

The metric topology

1.2.19 Definition Let X be a set. A function d : X ˆX Ñ Rě0 is a distance or metric on X
when:

(M1) For all x, y P X the relation dpx, yq “ 0 holds true if and only if x “ y.

(M2) The map d is symmetric that is one has dpx, yq “ dpy, xq for all x, y P X.

(M3) For all x, y, z P X the triangle inequality dpx, yq ď dpx, zq ` dpz, yq is satisfied.

If instead of (M1) the axiom (M1)’ below is fulfilled while (M2) and (M3) are still valid, then d
is called a pseudometric on X.

(M1)’ For all x P X the equality dpx, xq “ 0 holds true.

A pair pX, dq is a metric space when X is a set and d a distance on X. If d is only a pseudometric
on X, one calls the pair pX, dq a pseudometric space.
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The following is often useful.

1.2.20 Lemma Let pX, dq be a pseudometric space. Let x, y, z P X. Then

|dpx, yq ´ dpx, zq| ď dpy, zq .

Proof. Since dpx, yq ď dpx, zq ` dpz, yq we have dpx, yq ´ dpx, zq ď dpz, yq “ dpy, zq. Since
dpx, zq ď dpx, yq ` dpy, zq we have dpx, zq ´ dpx, yq ď dpy, zq. Hence the claim holds.

1.2.21 Definition Let pX, dq be a pseudometric space. Let x P E and r P Rą0. The open ball
with center x and radius r in pX, dq is the set

Bpx, rq “ Brpxq “ ty P X | dpx, yq ă ru .

The closed ball with center x and radius r is defined by

Bpx, rq “ Brpxq “ ty P X | dpx, yq ď ru .

1.2.22 Definition Let pX, dq be a pseudometric space. The metric topology on X induced by
d is the smallest topology containing all the open balls of X.

1.2.23 Theorem Let pX, dq be a pseudometric space. The set of all open balls on X is a basis
for the metric topology on X induced by d.

Proof. It is enough to show that the set of all open balls is a topological basis. By definition,
X “

Ť

xPX Bpx, 1q. Now, let us be given Bpx, rxq and Bpy, ryq for some x, y P X and rx, ry ą 0.
If the intersection of these two balls is empty, we are done; let us assume that there exists
z P Bpx, rxq X Bpy, ryq. Let r be the smallest of rx ´ dpx, zq and ry ´ dpy, zq. Let w P Bpz, rq.
Then

dpx,wq ď dpx, zq ` dpz, wq ă dpx, zq ` rx ´ dpx, zq “ rx ,

so w P Bpx, rxq. Similarly, w P Bpy, ryq. Hence, Bpz, rq Ă Bpx, rxq X Bpy, ryq as desired.

The following result shows that metric topologies are minimal in the sense of making the distance
functions continuous.

1.2.24 Proposition Let pX, dq be a pseudometric space. For all x P X, the function

dx : X Ñ Rě0, y ÞÑ dpx, yq

is continuous on X for the metric topology. Moreover, the metric topology is the smallest topology
such that all the functions dx, x P X are continuous.

Proof. Fix x P X. To verify continuity of the maps dx it is sufficient to show that the preimages
of r0, r and r,8 by dx are open in the metric topology of X, where r ą 0 is arbitrary. Indeed,
these intervals form a subbasis for the topology of r0,8 which we assume to carry the subspace
topology induced by the order topology on R. Let r ą 0 be given. Then d´1

x pr0, r q “ Bpx, rq
by definition, so it is open. Now, let y P X such that dpx, yq ą r. Let %y “ dpx, yq ´ r ą 0. If
dpw, yq ă %y for some w P X, then dpx, yq ´ dpw, yq ď dpx,wq, so dpx,wq ą r. Hence

Bpy, ρyq Ă d´1
x p r,8 q for all y P d´1

x p r,8 q .
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Therefore, d´1
x p r,8 q is open.

Finally, since d´1
x pr0, r q “ Bpx, rq for all x P X and r ą 0 the minimal topology making all the

maps dx continuous must indeed contain the metric topology as desired, and our proposition is
proven.

1.2.25 Remark The metric topology is the default topology on a pseudometric space.

1.2.26 There are more examples of continuous functions between metric spaces. More precisely,
a natural category for metric spaces consists of metric spaces and Lipschitz maps as arrows,
defined as follows.

1.2.27 Definition Let pX, dXq, pY, dY q be pseudometric spaces. A function f : X Ñ Y for
which there exists an L ą 0 such that

dY pfpxq, fpyqq ď LdXpx, yq for all x, y P X

is called Lipschitz.

1.2.28 Definition Let pX, dXq, pY, dY q be pseudometric spaces. Let f : X Ñ Y be a Lipschitz
function. Then the Lipschitz constant of f is defined as

Lippfq “ sup

"

dY pfpxq, fpyqq

dXpx, yq

ˇ

ˇ

ˇ

ˇ

x, y P X, dpx, yq ‰ 0

*

.

A Lipschitz function with Lipschitz constant L ď 1 is called a metric map. If its Lipschitz
constant is ă 1, then the Lipschitz function is called a contraction.

1.2.29 Examples (a) A constant map f : X Ñ Y between pseudometric spaces is Lipschitz
with Lipschitz constant 0. If both X and Y are metric spaces and f : X Ñ Y is Lipschitz, then
Lippfq “ 0 if and only if f is constant.

(b) The identity map idX : X Ñ X on a pseudometric space pX, dq is Lipschitz. If d is not the
zero pseudometric on X, then LippidXq “ 0.

1.2.30 Proposition Let pX, dXq, pY, dY q be pseudometric spaces. If f : X Ñ Y is a Lipschitz
function, then it is continuous.

Proof. Let L be the Lipschitz constant for f . Let y P Y and ε ą 0. Let x P f´1pBpy, εqq. Put
δx “

ε´dpfpxq,yq
L`1 and observe that δx ą 0. Then, for z P Bpx, δxq,

dY pfpzq, yq ď dY pfpzq, fpxqq ` dY pfpxq, yq ď LdXpz, xq ` dY pfpxq, yq ă

ă ε´ dY pfpxq, yq ` dY pfpxq, yq “ ε.

Hence f´1pBpy, εqq is open and f is continuous.

1.2.31 Proposition and Definition Pseudometric spaces as objects together with metric maps
between them form a category PMet which is called the category of pseudometric spaces. Chang-
ing the morphism class to Lipschitz maps between pseudometric spaces gives another category
which we denote PMetLip and call the category of pseudometric spaces and Lipschitz functions.
Metric spaces together with metric or Lipschitz maps between them form full subcategories Met
and MetLip of PMet and PMetLip, respectively. They are called the category of metric spaces
respectively the category of metric spaces and Lipschitz functions.
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Proof. The claim immediately follows from the observation that the identity map on a pseudo-
metric space is metric and that the composition of two metric respectively Lipschitz maps is
again metric respectively Lipschitz.

1.2.32 Remark Using metric or Lipschitz maps as morphisms for categories of metric or pseu-
dometric spaces is natural. Other, more general type of morphisms, would be uniform continuous
maps, which are discussed in later sections.

Co-Finite Topologies

A potential source for counter-examples, the family of cofinite topologies is easily defined:

1.2.33 Proposition Let E be a set. Let:

TcofpEq “ tHu Y tU Ă E : AEU is finite u.

Then TcofpEq is a topology on E.

Proof. By definition, H P TcofpEq. Moreover, AEE “ H which is finite, so E P TcofpEq. Let
U, V P TcofpEq. If U or V is empty then UXV “ H so UXV P TcofpEq. Otherwise, AEpUXV q “
AEU Y AV which is finite, since by definition AEU and AEV are finite. Hence U X V P TcofpEq.
Last, let U Ă TcofpEq. Again, if U “ tHu then

Ť

U “ H P TcofpEq. Let us now assume that U
contains at least one nonempty set V . Then:

AE

ď

U “
č

tAEU : U P Uu Ă AEV .

Since AEV is finite by definition, so is
Ť

U , which is therefore in TcofpEq. This completes our
proof.

The one-point compactification of N

Limits of sequences is a central tool in topology and this section introduces the natural topology
for this concept. The general notion of limit is the subject of the next chapter.

1.2.34 Definition Let 8 be some symbol not found in N. We define sN to be NY t8u.

1.2.35 Proposition The set:

T
sN “ tU Ă

sN : pU Ă Nq _ p8 P U ^ ANU is finitequ

is a topology on sN.

Proof. By definition, H Ă N so H P T
sN. Moreover A

sN
sN “ H which has cardinal 0 so sN P T

sN.
Let U, V P T

sN. If either U or V is a subset of N then U X V is a subset of N so U X V P T
sN.

Othwiwse, 8 P U X V . Yet A
sNpU X V q “ A

sNU Y AsNV which is finite as a finite union of finite
sets. Hence U X V P T

sN again.

Last, assume that U Ă T
sN. Of course, 8 P

Ť

U if and only if 8 P U for some U P U . So,
if 8 R

Ť

U then
Ť

U P T
sN by definition. If, on the other hand, 8 P

Ť

U , then there exists
U P U with A

sNU finite. Now, A
sN
Ť

U “
Ş

tA
sNV : V P Uu Ă A

sNU so it is finite, and thus again
Ť

U P T
sN.
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1.3. Separation properties

1.3.1 The general definition of a topology allows for examples where elements of a topological
space, seen as a set, can not be distinguished from each other by open sets (for instance if
the topology is indiscrete). When points can be topologically differentiated, a topology is in
some sense separated. The standard separation axioms allow to subsume topological spaces with
certain separability properties in particular classes. One then studies the properties of these
clases, often with a view to particular applications, and attempts to create counter examples,
meaning examples not satsifying the corresponding separation axioms. The most important
separability property goes back to the founder of set-theoretic topology, Felix Hausdorff, who
introduced it in 1914. The first full presentation of the separation axioms as we know them today
appeared in the classic book Topologie by Alexandroff & Hopf (1965) under their German name
Trennungsaxiome.

Let us note that the literature on separation axioms is not uniform when it comes to the axioms
(T3) to (T6) below, so one needs to always check which convention an author follows. Here,
we follow the convention by (Steen & Seebach, 1995, Part I, Chap. 2) which coincides with the
one of

1.3.2 Definition (The Separation Axioms) Recall that two subsets A,B of a topological
space pX,Tq are called disjoint if A X B “ H. The two sets are called separated if sA X B “

AX sB “ H. The topological space pX,Tq now is said to be

(T0) or Kolmogorov if for each pair of distinct points x, y P X there is an open U Ă X such
that x P U and y R U holds true, or y P U and x R U ,

(T1) or Fréchet if for each pair of distinct points x, y P X there is an open U Ă X such that
x P U and y R U ,

(T2) or Hausdorff if for each pair of distinct points x, y P X there exist disjoint open sets
U, V Ă X such that x P U and y P V ,

(T2 1
2
) or Uryson or completely Hausdorff if for each pair of distinct points x, y P X there exist
distinct closed neigborhoods U of x and V of y,

(T3) if for each point x P X and closed subset A Ă X with x R A there exist disjoint open sets
U, V Ă X such that x P U and A Ă V ,

(T3 1
2
) if for each point x P X and closed subset A Ă X with x R A there exists a continuous
function f : X Ñ R such that fpxq “ 0 and fpAq “ t1u,

(T4) if for each pair of closed disjoint subsets A,B Ă X there exist disjoint open sets U, V Ă X
such that A Ă U and B Ă V ,

(T5) if for each pair of separated subsets A,B Ă X there exist disjoint open sets U, V Ă X
such that A Ă U and B Ă V ,

(T6) if for each pair of disjoint closed subsets A,B Ă X there exists a continuous function
f : X Ñ R such that A “ f´1p0q and B “ f´1p0q.
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A Hausdorff space will be called regular if it fulfills (T3) , completely regular, if it satisfies (T3 1
2
),

and normal if (T4) holds true. Finally we call a Hausdorff space completely normal if it is (T5)
and perfectly normal if it is (T6) .

1.4. Filters and convergence

Filters and ultrafilters

1.4.1 Definition Let X be a set. A subset F of the powerset PpXq is called a filter on X if it
satisfies the following axioms:

(Fil1) The empty set H is not an element of F.

(Fil2) The set X is an element of F.

(Fil3) If A P F and if B P PpXq satisfies A Ă B, then B P F.

(Fil4) If A P F and B P F, then the intersection AXB is an element of F as well.

If F1 and F2 are two filters on X such that F1 Ă F2, then one calls F1 a subfilter of F2 or says that
F2 is finer than F1. Sometimes one expresses this by saying that F2 refines F1. Filters maximal
with respect to set inclusion are called ultrafilters. A filter F is called free if

Ş

APF A “ H

otherwise it is called fixed.

1.4.2 Examples (a) For every set X, the set tXu is a filter. It is the smallest of all filters on
X.

(b) Given an element x P X the set Fx :“ tA P PpXq | x P Au is an ultrafilter on X. More
generally, if Y Ă X is a non-empty subset, then FY :“ tA P PpXq | Y Ă Au is a filter on X. It
is an ultrafilter if and only if Y has exactly one element.

(c) If pX,Tq is a topological space and x P X an element, then the neigborhood filter Ux :“ tV P
PpXq | DU P T : x P U Ă V u is a filter contained in Fx. The filters Ux and Fx coincide if and
only if x is an isolated point.

(d) Now consider the reals and let F “ tA P PpRq | D ε ą 0 : r0, ε Ă Au. Then F is a filter on R
which is properly contained in the ultrafilter F0 and which properly contains the neighborhood
filter U0 (where R carries the standard topology).

1.4.3 Proposition Let A Ă PpXq be a non-empty set of subset of X which has the finite
intersection property that is that A1X. . .XAn is non-empty for all n P N˚ and all A1, . . . , An P A.
Then there is an ultrafilter F containing A.

Proof. Let P be the set of all J Ă PpXq having the finite intersection property and containing
A. Then P is non-empty, as it contains at least A, and is ordered by set inclusion. If C Ă P
is a chain, then M :“

Ť

JPC J contains A and fulfills the finite intersection property. To verify
the latter let Y1, . . . , Yn P M. Then there exist J1, . . . , Jn P C such that Yi P Ji for i “ 1, . . . , n.
Hence all Yi lie in the maximum Jm of the sets J1, . . . , Jn. But Jm has the finite intersection
property, hence Y1 X . . .X Yn ‰ H. So M is an upper bound of the chain C. By Zorn’s Lemma,
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P has a maximal element F. It contains A and has the finite intersection property. Moreover, if
A P F and B P PpXq contains A as a subset, then F Y tBu also satisfies the finite intersection
property, hence by maximality of F one concludes B P F. Again by maximality F has to be an
ultrafilter.

1.4.4 Corollary Every filter on X is contained in an ultrafilter.

Proof. This follows from the preceding proposition since a filter has the finite intersection prop-
erty.

1.4.5 Theorem Let F be a filter on a set X. Then the following are equivalent:

(i) F is an ultrafilter.

(ii) If A is a subset of X and A has non-empty intersection with every element of F, then A P F.

(iii) For all A Ă X either A P F or XzA P F.

Convergence of filters

1.4.6 Definition

1.5. Nets

Directed sets

Let us first recall that by a preordered set one understands a set P together with a binary relation
ď which is reflexive and transitive, see Definition 2.1.37.

1.5.1 Definition (Directed sets) By a directed set one understands a preordered set pP,ďq
such that the binary relation ď is directed which means that

(Dir) for all x, y P D there exists an element z P D with x ď z and y ď z.

1.5.2 Remark The property that pP,ďq is directed is the same as saying that any two elements
of the preordered set P have an upper bound.

1.6. Compactness

Quasi-compact topological spaces

1.6.1 Before we come to defining quasi-compactness let us recall some relevant notation. By a
cover (or covering) of a set X one understands a family U “ pUiqiPI of subsets Ui Ă X such that
X Ă

Ť

iPI Ui. This terminology also holds for a subset Y Ă X. That is a family U “ pUiqiPI of
subsets Ui Ă X is called a cover of Y if Y Ă

Ť

iPI Ui. A subcover of a cover U “ pUiqiPI of Y or
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shortly a subcover of U then is a subfamily pUiqiPJ which also covers Y which means that J Ă I
and Y Ă

Ť

iPJ Ui. If J is finite, one calls the subcover pUiqiPJ a finite subcover. If pX,Tq is a
topological space and all elements Ui of a cover U “ pUiqiPI of some Y Ă X are open sets, the
cover is called an open cover of Y .

1.6.2 Proposition Let be a topological spaces pX,Tq. Then the following are equivalent:

(i) Every open cover of X has a finite subcover.

(ii) For every family pAiqiPI of closed subset Ai Ă X such that
Ş

iPI Ai “ H there exist finitely
many elements Ai1 , . . . , Ain such that Ai1 X . . .XAin “ H.

(iii) Every filter on X has an accummulation point.

(iv) Every ultrafilter on X converges.

Proof. Assume that (i) holds true and let pAiqiPI be a family of closed subset Ai Ă X such that
Ş

iPI Ai “ H. Put Ui :“ XzAi for all i P I. Then pUiqiPI is an open covering of X, hence by
assumption there exist i1, . . . , in P I such that X “ Ui1 Y . . . Y Uin . By de Morgan’s laws the
relation Ai1 X . . .XAin “ H the follows, hence (ii) follows.

Next assume (ii), and let F be a filter on X. Then ĎA1 X . . . X ĎAn ‰ H for all n P N˚ and
A1, . . . , An P F, since F is a filter. Hence

Ş

APF
sA ‰ H by (ii). Every element of

Ş

APF
sA now is

an accummulation point of F, so (iii) follows.

By ??, (iii) implies (iv).

Finally assume that every ultrafilter on X converges, and let U “ pUiqiPI be an open cover of X.
Assume that U has no finite subcover. For each finite subset J Ă I the set BJ :“ Xz

Ť

iPJ Ui
then is non-empty, hence B :“ tBJ P PpXq | J Ă I & #J ă 8u is a filter base. Let F be
an ultrafilter containing B. By assumption F converges to some x P X. Since U is an open
covering of X there is some Ui with x P Ui, hence Ui since F converges to x. On the other hand
XzUi P B Ă F by construction. This is a contradiction, so U must have a finite subcover.

1.6.3 Definition (Bourbaki (1998)[I.§9.1. )]A topological space pX,Tq is called quasi-compact,
if every filter on X has an accummulation point.

1.6.4 Theorem (Alexander Subbase Theorem) Let pX,Tq be a topological space, and S an
adequate subbase of the topology that is a subbase of T such that X “

Ť

SPS S. If every cover of
X by elements of S has a finite subcover, the topological space pX,Tq is quasi-compact.

Compact topological spaces

1.7. The compact-open topology on function spaces

Let X and Y be topological spaces. We denote the set of all functions from Y to X by XY . This
is the same thing as the direct product

ś

Y X of X over Y . The space of continuous functions
CpY,Xq sits in XY so we can give CpY,Xq the product topology induced by XY . This is the
topology of pointwise convergence and will not be useful for studying most function spaces.
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We will instead be interested in the compact open topology which is the topology of uniform
convergence on compact sets.

1.7.1 Definition Let X and Y be topological spaces. The compact open topology on CpY,Xq
is the topology with subbasis given by the sets VpK,Uq “ tf P CpY,Xq|fpKq Ă Uu for K Ă Y
compact and U Ă X open.

1.7.2 Definition A topology T on CpY,Xq is called admissable if the evaluation map e :
CpY,Xq ˆ Y Ñ X, pf, yq ÞÑ fpyq is continuous.

1.7.3 Proposition The compact open topology is coarser than any admissable topology on CpY,Xq.

Proof. Let T be an admissable topology on CpY,Xq so that the evaluation map e : CpY,XqˆY Ñ
X is continuous. Let K Ă Y be compact, U Ă X be open and f P T pK,Uq. We have to find
V P O such that f P V Ă T pK,Uq. Let k P K. Since e is continuous and U is an open
neighborhood of fpxq, then there are open sets Wk Ă Y and Vk Ă COpY,Xq such that k P Wk,
fpkq P Vk amd epVk ˆ Wkq Ă U . Since K is compact, there are k1, k2, ..., kl P K such that
K Ă

Ťl
i“1Wki . Put V :“

Şl
i“1 Vki so that f P V and V is open in O. Now take g P V and let

k P K. Choose i such that k PWki and observe that g PWki so that

gpkq “ epg, kq P epVki ˆWki Ă U

Hense g P T pK,Uq

1.7.4 Theorem If Y is locally compact, then the compact open topology on CpY,Xq is admiss-
able, and it is the coarsets topology on CpY,Xq with that property.

Proof. We have to show that

e : CpY,Xq ˆ Y Ñ Xpf, yq ÞÑ fpyq

is continuous. Since sets of the form T pK,Uq form a subbasis for the compact open topology,
it suffices to show that for an open neighborhood W Ă X of some epf, yq, there is compact
K Ă Y , open U Ă X and open V Ă Y such that epT pK,Uq ˆ V q Ă W with f P T pK,Uq and
y P V . By assumption, and since f is continuous, there is an open neighborhood W̃ of y such
that fpW̃ q Ă W . By local compactness, there is an open neighborhood V Ă Y of Y such that
y P V Ă V̄ Ă W̃ and V̄ is compact. If we put K :“ V̄ and U “ W , then epT pK,Uq ˆ V q Ă W
since for f 1 P T pK,Uq and y1 P V , we have epf 1, y1q “ f 1py1q ĂW .

Let X,Y, Z be topological spaces. As sets, it is always true that ZXˆY – ZY
X via the maps

Φ : ZXˆY Ñ ZY
X
f ÞÑ px ÞÑ py ÞÑ fpx, yqqq

and
Ψ : ZY

X
Ñ ZXˆY g ÞÑ ppx, yq ÞÑ gpxqpyqq

1.7.5 Theorem (The exponential law) If Y is locally compact, then

ΦpCpX ˆ Y q, Zq Ă CpX,CpY,Zqq

and
ΨpCpX,CpY,Zqqq Ă pCpX ˆ Y q, Zq

219



II.1. General topology 1.7. The compact-open topology on function spaces

Proof. For f P CpX ˆ Y,Zq and x P X, we have to show that Φpfqpxq P CpY,Zq and Φpfq P
CpX,CpY, Zqq. Φpfqpxqpyq “ f ˝ ixpyq “ fpx, yq. Consider T pK,Uq for K Ă Y compact and
U Ă X open. We need ot prove that the preimage Φpfq´1pT pK,Uqq is open in X. Let x P
Φpfq´1pT pK,Uqq so that fpx,q P T pK,Uq. Hence for all y P K, we have fpx, yq P U . By the
continuity of f , there are open neighborhoods Wy of x and Vy of y such that fpWy ˆ Vyq Ă U .
Since K us compact, there are open sets y1, y2, . . . yk Ă Y such that K Ă Vy1 Y Vy2 Y . . .Y Vyk .
Put W “Wy1 XWy2 X . . .XWyk so that W is a neighborhood of x and ΦpfqpW q Ă T pK,Uq.

Now we need to show for g P CpX,CpY, Zqq that Ψpgq P CpX ˆ Y,Zq. Let g : X ˆ CpY,Zq be
continuous and assume that U Ă Z be open. We have to show that Ψpgq´1pUq is open. Take
px, yq P Ψpgq´1pUq. Since g is continuous, there is an open neighborhood W of y such that
gpxqpW q Ă U . Since Y is locally compact, there is an open V Ă Y such that y P V Ă V̄ Ă W
with V̄ compact. Hence gpxqpV q Ă gpxqpV̄ q Ă U . Thus gpxq P T pK,Uq so there is an open
neighborhood O Ă X of x such that gpOq Ă T pV̄ , Uq. Therefore

ΨpgqpO ˆ V q Ă gpOqpV q Ă gpOqpV̄ q Ă U

1.7.6 Lemma The sets pULqK “ T pK,T pL,Uqq with K Ă X and L Ă Y compact and U Ă Z
open form a subbasis for the compact open topology on CpX,CpY,Zqq.

Proof. Let I be an index set Wi Ă CpY,Zq be open and K Ă X be compact.

T

˜

K,
ď

I

Wi

¸

“
ď

nPN`

ď

K1ˆ...ˆKnĂKn

K1Y...YKn“K
Ki“K̄i@i

ď

pi1,...,inqPIn

n
č

l“1

T pKil ,Wilq

Suppose J is a finite set. then T
´

K,
Ş

jPJWj

¯

“
Ş

jPJ T pK,Wjq. Sets of the form T pL,Uq with
L Ă Y compact and U Ă Z open form a subbasis of CpY, Zq, so if W Ă CpY,Zq is open, we have
W “

Ť

iPI

Ş

jPJi
T pLij , Uij q so that

T pK,W q “
ď

nPN`

ď

K1ˆ...ˆKnĂKn

K1Y...YKn“K
Ki“K̄i@i

ď

pi1,...,inqPJn

n
č

l“1

č

jPJil

T pKil , T pLilj , Uiljqq

1.7.7 Theorem Let X,Y, Z be topological spaces with X and Y Hausdorff and Y locally compact.
Then the natural isomorphism

Φ̄ : CpX ˆ Y,Zq Ñ CpX,CpY,Zqq

is a homeomorphism.

Proof. Let f P CpX ˆ Y, Zq and let W P CpX,CpY,Zqq be an open neighborhood of Φ̄pfq. By
1.7.6, there is an open U Ă Z and compact subsets L Ă Y and K Ă X such that ¯phipfq P
T pK,T pL,Uqq Ă W . T pK ˆ L,Uq is open in CpX ˆ Y,Zq and note that f P T pK ˆ L,Uq since
for px, yq P K ˆ L, Φ̄pfqpxq P T pL,Uq and fpx, yq “ Φ̄pfqpxqpyq P U .

Assume that g P T pK ˆ L,Uq. The Φ̄pgqpxqpyq “ gpx, yq “P U so Φ̄pgqpxq P T pL,Uq so
Φ̄pgq P T pK,T pL,Uqq, hence Φ̄ is continuous. Rest of proof in

email 9/27/10
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II.2. Sheaf theory

2.1. Presheaves

The category of open sets of a topological space

2.1.1 Before we define presheaves and sheaves on a topological space pX,Tq, we briefly introduce
the category OuvpXq of open sets of pX,Tq. By definition, its object class coincides with the set
of open sets T, so OuvpXq is in particular a small category. For two open U, V Ă X the morphism
set MorOuvpXqpU, V q is defined to be empty in case U Ć V and consists of the canonical (identical)
embedding iVU : U ãÑ V when U Ă V . Obviously, the identity map iUU is then a morphism for
every open U Ă X, and the composition of morphisms in this category is given by

iWV ˝ iVU “ iWU : U ãÑW for U, V,W P T with U Ă V ĂW.

This observation entails that OuvpXq is a category indeed; it is called the category of open sets
on the topological space pX,Tq.

2.1.2 Remarks (a) The topology T carries a natural partial order given by set-theoretic in-
clusion, so becomes a poset. The corresponding category structure from Example 1.2.11 is
canonically isomorphic to OuvpXq.

(b) The notation Ouv stems from the French word ‘ouvert’ for ‘open’.

2.1.3 Proposition Let pX,Tq be a topological space. Then the category OuvpXq has the follow-
ing properties.

(i) The empty set H is an initial object in OuvpXq, the full set X a final object.

(ii) Fibered products exist in OuvpXq. More precisely, if iWU : U ãÑW and iWV : V ãÑW are two
morphisms in OuvpXq, the fibered product U ˆW V is given by the open set U X V together
with the canonical embeddings iUUXV : U X V ãÑ U and iVUXV : U X V ãÑ V .

(iii) Directed colimits exist in OuvpXq.

(iv) Finite limits exist in OuvpXq.

Proof. ad (i ). The first claim follows from the fact that H is contained in every element of T
and that every element of T is contained in X.

ad (ii ). Assume to be given O P T such that the following diagram commutes:
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II.2. Sheaf theory 2.1. Presheaves

O V

U W

Then O Ă U X V , and the diagram

O

U X V V

U W

commutes with morphisms unique.

ad (iii ). Assume that pI,ďq is an upward directed set and pUiqiPI a directed system in OuvpXq.

The category of presheaves on a topological space

2.1.4 Definition Let C denote a category and pX,Tq be a topological space. By a presheaf on
X with values in C one understands a contravariant functor F : OuvpXq Ñ C. A morphism
between two presheaves F : OuvpXq Ñ C and G : OuvpXq Ñ C is a natural transformation
η : F Ñ G. The functor category Func

`

OuvpXqop,C
˘

is called the category of presheaves on X
with values in C. It is denoted by PShCpXq. By definition, its objects are the presheaves on
X, its morphisms are given by morphisms of presheaves. When the underlying category is the
category of sets we just write PShpXq instead of PShEnspXq.

Types of algebraic structures

In general, the category C in which a presheaf F takes its values comes equipped with some
type of additional, usually algebraic structure. Not only is this suggested by examples, also the
theory of presheaves becomes richer by that. We want to specify the kind of categories which
presheaves are allowed to take values in.

2.1.5 Definition () By a type of algebraic structure

The étalé space of a presheaf

2.1.6 Let F be a presheaf on the topological space pX,Tq with values in the category C. We
assume that directed colimits exist in C. Given a point x P X, the system N˝x of open neigh-
borhoods of x is (upward) directed by defining V ď U for U, V P N˝x if U Ă V . Since F is
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a contravariant functor from OuvpXq to C, the diagram pFpUqqUPN˝x is a directed system in C,
hence has a colimit by assumption. We write

Fx :“ colim
UPN˝x

FpUq

and call Fx the stalk of F at x. For every open neighborhood U of x we denote the image of a
section s P FpUq in the stalk Fx by rssx or sx and call it the germ of s at x. When denoting
a germ at x by sx we therefore always silently assume that s is an element of some section
space FpUq over an open neighborhood U of x and that that s is a representative of the germ
considered. Next we study the disjoint union of the stalks

ÉtpFq :“
ğ

xPX

Fx :“
ď

xPX

Fx ˆ txu .

By construction, we have a natural projection map π` : ÉtpFq Ñ X which maps an element
psx, xq P ÉtpFq to the footpoint x P X. Given a section s P FpUq defined over an open set U Ă X
we define a map s` : U Ñ ÉtpFq by

s`pxq “ psx, xq for all x P U .

Now we make the following observation.

2.1.7 Proposition and Definition Assume that pX,Tq is a topological space and C a category
in which directed colimits exist. Let F be a presheaf on X with values in C. Then the set B`

consisting of all sets of the form s`pUq with U Ă X open and s P FpUq is the basis of a topology
T` on ÉtpFq. One calls the topological space

`

ÉtpFq,T`
˘

the étalé space of the presheaf F.

Proof. First observe that B covers ÉtpFq since every element of ÉtpFq is of the form psx, xq for
some open U Ă X and section s P FpUq and since psx, xq is contained in the basis element s`pUq.

It remains to show that the intersection of two elements s`pUq and t`pV q of B` can be written
as the union of elements of B`. So let pux, xq P s`pUq X t`pV q. The germ ux is represented by
some section u P FpW q over some open neighborhood W of x. By assumption and since both
s` and t` are sections of π` one obtains

pux, xq “ s`pxq “ t`pxq .

Hence there exists an open neighborhood O Ă U X V XW of x such that

u|O “ s|O “ t|O .

But that entails
pux, xq P u

`pOq “ s`pOq “ t`pOq Ă s`pUq X t`pV q .

This proves the claim.

2.1.8 Corollary The canoncial projection π` : ÉtpFq Ñ X of a presheaf F on the topological
space pX,Tq is an étale map or in other words a local homeomorphism. More precisely, for every
open U Ă X and every s P FpUq the section s` : U Ñ ÉtpFq is a homeomorphism onto its image.
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Proof. We first prove that π` is continuous. So let U Ă X open. Then observe that

pπ`q´1pUq “
ď

xPU

Fx ˆ txu “
ď

xPU

ď

V PN˝x
VĂU

ď

sPFpV q

tpsx, xqu “
ď

V POuvpXq
VĂU

ď

sPFpV q

s`pV q .

But this is open by the preceding proposition, hence π` is continuous.

Next we show continuity of s`. To this end it suffices to verify that ps`q´1
`

t`pV q
˘

is open in U
for every open V Ă X and t P FpV q. Now compute

ps`q´1
`

t`pV q
˘

“
 

x P U
ˇ

ˇ s`pxq P t`pV q
(

“
 

x P U
ˇ

ˇ x P V & s`pxq “ t`pxq
(

“
 

x P U X V
ˇ

ˇ sx “ tx
(

.

The right hand side is open since if it contains y, then the sections s and t coincide on an open
neighborhood O Ă U X V of y which means that O Ă

 

x P U X V
ˇ

ˇ sx “ tx
(

.

Finally observe that s` is a section of π` and that

s` ˝ π`|s`pUq “ ids`pUq

which implies that s` is a homeomorphism onto its image. The claim now follows from the fact
that the sets s`pUq with U P OuvpXq and s P FpUq cover ÉtpFq.
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3.1. Homotopy categories of topological spaces

Notational preliminaries

3.1.1 In this chapter, we always denote by I the compact unit interval r0, 1s Ă R and by BI
ist boundary in R that is the set t0, 1u. Morever, for every topological space X and t P I we
denote by jX,t or shortly by jt, if no confusion can arise, the map X Ñ X ˆ I, x ÞÑ px, tq. The
evaluation map CpI,Xq Ñ X, γ ÞÑ γptq will be abbreviated by eX,t or shortly by et.

Homotopies

3.1.2 Definition Let f : X Ñ Y and g : X Ñ Y be continuous maps between two given
topological spaces X and Y . A homotopy from f to g is a continuous map H : X ˆ I Ñ Y such
that H0 “ f and H1 “ g where for every t P I the symbol Ht stands for the composition H ˝ jt
or in other words the map Ht : X Ñ Y , x ÞÑ Hpx, tq.

If pX,Aq is a topological pair, a continuous map H : X ˆ I Ñ Y is called a homotopy from X to
Y relative A if Hpa, tq “ Hpa, 0q for all a P A and t P I.

Then one says that f is homotopic to g if there is a homotopy H : X ˆ I Ñ Y such that H0 “ f
and H1 “ g. This will be denoted by f » g or H : f » g and we will often say that H is a
homotopy between f and g or a homotopy from f to g.

Let A Ă X be a subspace. Then one says that f : X Ñ Y is homotopic to g : X Ñ Y relative
A if there is a homotopy relative A between f and g that means a homotopy H : X ˆ I Ñ Y
relative A such that H0 “ f and H1 “ g. One denotes this by f »A g, f » g rel A, H : f »A g,
or H : f » g rel A.

3.1.3 Remarks (a) Observe that homotopy relative H is usual homotopy.

(b) If f, g are maps from X to Y such that for some subspace A Ă X the relation f »A g holds
true, then f |A “ g|A.

3.1.4 Proposition Let X and Y be topological spaces and supposed that A is a subspaces of X.
Homotopy relative A then is an equivalance relation on the space CpX,Y q of continuous functions
from X to Y .

Proof. Claim 1. The relation »A is symmetric. Let f, g : X Ñ Y be continuous maps. If
H : X ˆ I Ñ Y is a homotopy relative A from f to g, then H´ : X ˆ I Ñ Y defined by
H´px, tq :“ Hpx, 1´ tq is a homotopy relative A from g to f .
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Claim 2. The relation »A is reflexive. Let f : X Ñ Y be a continuous map. The map F :
X ˆ I Ñ Y defined by F px, tq :“ fpxq is a homotopy relative A from f to f .

Claim 3. The relation »A is transitive. Let f, g, h : X Ñ Y be continuous maps such that there
exist homotopies F : f »A g and G : g »A h. Define H : X ˆ I Ñ Y by

Hpx, tq :“

#

F px, 2tq, if 0 ď t ď 1
2 ,

Gpx, 2t´ 1q, if 1
2 ď t ď 1.

Since F px, 1q “ gpxq “ Gpx, 0q for all x P X, the map H is well-defined and continuous.
Moreover, H0 “ F0 “ f , H1 “ G1 “ h, and Hpa, tq “ Hpa, 1

2q “ gpaq for all a P A, so that H is
a homotopy relative A between f and h.

3.1.5 The equivalence class of a continuous map f : X Ñ Y with respect to homotopy relative
A will be denoted rf s»A respectively by rf s» or rf s if A “ H. The set of equivalence classes
rf s»A will be denoted rX,Y sA. For ease of notation, one puts rX,Y s :“ rX,Y sH.

3.1.6 Proposition Let f1, f2 : X Ñ Y and g1, g2 : Y Ñ Z be continuous. If F : f1 » f2 and
G : g1 » g2, then g1 ˝ f1 » g2 ˝ f2. In other words, homotopy is a natural equivalance relation on
the morphisms of the category of topological spaces.

Proof. Construct H : g1 ˝ f1 » g2 ˝ f2 by Hpx, tq :“ GpF px, tq, tq for all x P X, t P I. This
function is continuous because F and G are. Furthermore,

Hpx, 0q “ GpF px, 0q, 0q “ Gpf1pxq, 0q “ g1pf1pxqq

and
Hpx, 1q “ GpF px, 1q, 1q “ Gpf2pxq, 1q “ g2pf2pxqq

so we have the desired homotopy.

Now that we have an equivalance relation on the morphisms of Top which is compatible with
composition we can define a corresponding quotient category.

3.1.7 Definition The homotopy category of topological spaces, hTop, is the category with objects
being topological spaces and morphisms being homotopy classes of continuous maps.

3.1.8 Remark Let f : X Ñ Y and g : Y Ñ Z be two continuous maps. Then we denote the
composition of rgs and rf s in hTop by rgs rf s, so we usually omit the symbol ˝ for composition
in the homotopy category. Note that by definition rgs rf s “ rg ˝ f s.

3.1.9 Example Let C P Rn be a convex set, ˚ P C be a point, and consider the maps

i : t˚u Ñ C, ˚ ÞÑ ˚ and p : C Ñ t˚u, x ÞÑ ˚ .

If C ‰ t˚u, these maps are not bijective and so are not isomorphisms in Top. However, rpsris “
rp ˝ is “ ridt˚us, and there is a homotopy

H : C ˆ I Ñ C, px, tq ÞÑ ˚ ` tpx´ ˚q

such that H0 “ i ˝ p and H1 “ idC . Hence ris and rps are isomorphisms in the category hTop.
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3.1.10 Definition A continuous function f : X Ñ Y is called a homotopy equivalance if rf s is an
isomorphism in hTop that is if there is a continuous map g : Y Ñ X such that rf s rgs “ ridY s and
rgs rf s “ ridXs. Two spaces are called homotopy equivalant if there is a homotopy equivalance
f : X Ñ Y . A space X is called contractible if X is homotopy equivalent to a one point space.

3.2. Covering spaces

Definitions and first properties

3.2.1 Definition Let p : rX Ñ X be a continuous map between topological spaces. An open
subset U Ă X is called evenly covered if the preimage p´1pUq Ă rX is the disjoint union of
open subsets rUα Ă rX, α P A, such that for each α P A the restriction p|

rUα
: rUα Ñ U is a

homeomorphism.

A surjective continuous map p : rX Ñ X is called a covering (of X), a covering map or a
covering projection and rX a covering space of X if each point of X has an evenly covered open
neighborhood. The space X is called the base space of the covering. The preimage p´1pxq of a
point x P X is called the fiber over x, and a point rx P p´1pxq is said to lie over x.

If p : rX Ñ X and q : rY Ñ Y are two coverings, a morphism of coverings from p : rX Ñ X to
q : rY Ñ Y is a pair pΦ, fq of continuous maps Φ : rX Ñ rY and f : X Ñ Y such that the diagram

rX rY

X Y

p

Φ

q

f

(3.2.1)

commutes. We express that pΦ, fq is morphism of coverings from p to q by the notation pΦ, fq :
pÑ q. In case p : rX Ñ X and q : pX Ñ X are two coverings of X, a continuous map Φ : rX Ñ pX
is called a morphism of coverings of X from p to q if q ˝ Φ “ p. In other words this means that
the diagram

rX pX

X

Φ

p q

commutes. A homeomorphism Φ : rX Ñ rX which satisfies p˝Φ “ p is called a deck transformation
of p.

Let pX,x0q be a pointed topological space. A morphism p : p rX, rx0q Ñ pX,x0q of pointed
topological spaces then is called a pointed covering (of pX,x0q) if p : rX Ñ X is a covering map.

A morphism of pointed coverings from a pointed covering p : p rX, rx0q Ñ pX,x0q to a pointed
covering q : prY , ry0q Ñ pY, y0q is a pair pΦ, fq of morphism of pointed spaces Φ : p rX, rx0q Ñ prY , ry0q

and f : pX,x0q Ñ pY, y0q such that Diag. (3.2.1) commutes. Finally, if p : p rX, rx0q Ñ pX,x0q and
q : p pX, px0q Ñ pX,x0q are two pointed coverings of pX,x0q, then a morphism of pointed spaces
Φ : p rX, rx0q Ñ p pX, px0q which satisfies q ˝ Φ “ p is called a morphism of pointed coverings of
pX,x0q.
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3.2.2 Proposition and Definition Covering spaces as objects together with their morphisms
form a category Cov, called the category of covering spaces. For a topological space X the class
of coverings of X as objects together with the morphisms of coverings of X form another category
denoted by CovpXq. It is called the category of covering spaces of X. The automorphisms of
CovpXq are the deck transformations.

The category CovpXq can be understood as a subcategory of Cov via the functor which is the
identical embedding on the object class and which assigns to every morphism Φ : rX Ñ pX of
coverings p : rX Ñ X and q : pX Ñ X of X the morphism pΦ, idXq : pÑ q in Cov.

Pointed coverings together with their morphisms form a category which is denoted by Cov‚.

Finally, given a pointed space pX,x0q, the pointed coverings of pX,x0q together with their mor-
phisms form a category Cov‚pX,x0q which in a canonical way is a subcategory of Cov‚.

Proof. Clearly, if p : rX Ñ X is a covering, the pair pid
rX
, idXq is a morphism of covering spaces

from p to p. If q : rY Ñ Y and r : rZ Ñ Z are further coverings, and pΦ, fq : p Ñ q and
pΨ, gq : q Ñ r morphisms, then the pair pΨ ˝ Φ, g ˝ fq is a morphism from p to r, since the
diagram

rX rY rZ

X Y Z

p

Φ

q

Ψ

r

f g

commutes. Since composition of functions is associative, it now follows that covering spaces
together with their morphisms form a category indeed.

For a covering p : rX Ñ X, the map id
rX
is obviously a morphism of covering spaces of X from

p to p. Moreover, if Φ : rX Ñ pX and Ψ : pX Ñ qX are morphisms of covering spaces of X from
p : rX Ñ X to q : pX Ñ X and from q : pX Ñ X to r : qX Ñ X, respectively, then the composition
Ψ ˝Φ is a morphism of covering spaces of X from p to r, since r ˝Ψ ˝Φ “ q ˝Φ “ p. So CovpXq
forms a category indeed.

The remainder of the claim is obvious.

3.2.3 One of the main goals of this chapter is to show that the category of pointed coverings of
a pointed topological space pX,x0q has, under mild assumptions on X, an initial object. Such
an initial object is called a universal cover of pX,x0q. More precisely:

3.2.4 Definition Let pX,x0q be a pointed topolological space. A pointed covering p : p rX, rx0q Ñ

pX,x0q is called a universal (pointed) covering of pX,x0q if p : p rX, rx0q Ñ pX,x0q is an initial
object in Cov‚pX,x0q which in other words means that it satisfies the following universal property:

(UCov) For every covering q : p pX, px0q Ñ pX.x0q there exists a unique morphism Φ : p rX, rx0q Ñ

p pX, px0q of pointed covering spaces from p to q.

A covering p : rX Ñ X of a topological space X is said to be a universal covering of X and
rX a universal covering space or a universal cover of X if for every rx0 P rX the pointed map
p : p rX, rx0q Ñ pX,x0q with x0 :“ pprx0q is a universal pointed covering of pX,x0q.
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3.2.5 Remark We will later see that for reasonable spaces X the condition that p : p rX, rx0q Ñ

pX,x0q is a universal covering for every rx0 P rX and x0 “ pprx0q holds true already if it is satisfied
for one element rx0 P rX.

The crucial property of covering spaces from a homotopy theoretic point of view is that they
possess the homotopy lifting property. Before we come to formulate this let us explain what
“lifting” means.

3.2.6 Definition Let p : rX Ñ X be a covering space, and f : Y Ñ X a continuous map. A
continuous map rf : Y Ñ rX is then called a lifting of f if the diagram

rX

Y X

p

f

rf

commutes.

3.2.7 Theorem (Homotopy lifting property of covering spaces) Let p : rX Ñ X be a
covering space, f : Y Ñ X a continuous map, and H : Y ˆ I Ñ X a homotopy with H0 “ f . If
rf : Y Ñ rX is a lifting of f0, then there exists a unique homotopy rH : Y ˆ I Ñ rX lifting H such
that rH0 “ rf .

3.2.8 Corollary Let γ : I Ñ X be a path in the topological space X and x0 :“ γp0q. If
p : rX Ñ X is a covering of X and rx0 P rX a point lying over x0, then there exists a unique path
rγ : I Ñ rX which lifts γ and satisfies rγp0q “ rx0.

Fiber bundles and covering spaces

Covering spaces are closely related to fiber bundles. Before we come to stating that relation, let
us recall the definition of a fiber bundle.

3.2.9 Definition A quadruple pE,B, p, F q consisting of topological spaces E, B, and F and
a continuous map p : E Ñ B is called a fiber bundle if for every point x P B there exists an
open neighborhood U Ă B of x called trivializing neighborhood together with a homeomorphism
ϕ : p´1pUq Ñ U ˆ F such that the diagram

p´1pUq U ˆ F

U

ϕ

p
pr1

commutes, where pr1 : U ˆ F Ñ U is projection onto the first factor. The homeomorphism
is called a local trivialization of E (over U). The space E is called the total space of the fiber
bundle, B the base, F the typical fiber, and p : E Ñ B the projection.

The major ingrediant for proving that covering spaces and fiber bundles with discrete typical
fibers correspond to each other is the following result.
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3.2.10 Lemma Let p : rX Ñ X be a continuous map and U Ă X an open subset. Then the
following are equivalent:

(i) The open set U is evenly covered.

(ii) There exists a discrete topological space F and a homeomorphism ϕ : p´1pUq Ñ U ˆF such
that p|p´1pUq “ pr1 ˝ϕ, where pr1 : U ˆ F Ñ U denotes projection onto the first factor.

Proof. Assume U to be evenly covered, and let prUαqαPA be the family of pairwise disjoint open
subsets of rX such that p´1pUq “

Ť

αPA
rUα and such that p|

rUα
: rUα Ñ U is a homeomorphism

for every α P A. Put F :“ A and give F the discrete topology. Define ϕprxq for rx P p´1pUq as
the pair px, αq P U ˆ F , where x “ pprxq and α is the unique element of F such that rx P rUα.
Then p|p´1pUq “ pr1 ˝ϕ by construction. Obviously, ϕ is continuous since pr1 ˝ϕ is continuous
and pr2 ˝ϕ locally constant. Moreover, ϕ is invertible with inverse given by U ˆ F Ñ p´1pUq,
px, αq ÞÑ

`

p|
rUα

˘´1
pxq. The inverse map is continuous as well, since each of the p|

rUα
, α P A, is a

homeomorphism. This proves (ii).

Now assume that for the given U there exists a discret topological space F and a homeomorphism
ϕ : p´1pUq Ñ U ˆ F such that p|p´1pUq “ pr1 ˝ϕ. Put A :“ F and rUα :“ ϕ´1pU ˆ tαuq for each
α P A. Since F carries the discrete topology, each rUα is open in rX. Moreover, p´1pUq is the
disjoint union of the rUα, α P A. The restriction ϕ|

rUα
: rUα Ñ U ˆ tαu now is a homeomorphism,

and pr1 is both open and continuous. Hence p|
rUα
“ pr1 ˝ϕ|rUα is a homeomorphism as well, and

(i) is proved.

3.2.11 Proposition Let X be a connected topological space and p : rX Ñ X a surjective contin-
uous map. Then the following are equivalent:

(i) p : rX Ñ X is a covering.

(ii) There exists a discrete topological space F such that p rX,X, p, F q becomes a fiber bundle.

(iii) The map p is a local homeomorphism, and there exists a topological space F such that
p rX,X, p, F q becomes a fiber bundle.

Construction of the universal covering

Not every topological space has a universal cover as the following example shows.

3.2.12 Example

But for a large class of topological spaces, which in particular contains all smooth manifolds,
one can construct a universal cover. Before we can formulate this precisely, we need one more
concept.

3.2.13 Definition A topological space is called semi-locally simply-connected if each point x P
X has a neighborhood N such that the group homomorphism π1pN, xq Ñ π1pX,xq is trivial.

3.2.14 Example A topological space which is not semi-locally simply connected is the hawaiian
earring.
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3.2.15 Theorem Let X be a connected locally path-connected and semi-locally simply connected
topological space. Then X has a universal cover p : rX Ñ X with rX being locally path-connected
and simply-connected.

Proof. First fix a point x0 P X and let rX be the set of all homotopy classes (relative endpoints)
of paths in X starting at x0. That means

rX :“
 

rγs P π1pXq | γp0q “ x0

(

.

The projection p : rX Ñ X is defined as the map rγs ÞÑ γp1q. Next we define for every non-empty
path-connected open U Ă X and every rγs P rX with γp1q P U the set Urγs by

Urγs :“
 

rγ ˚ ηs P rX | η P CpI, Uq& ηp0q “ γp1q
(

and let B be the set of all such Urγs. Now we prove several claims.

Claim 1. Let U Ă X be open and path-connected. Then for all elements rγs, rγ1s P rX with
pprγsq P U and pprγ1sq P U the intersection Urγs X Urγ1s is either empty or Urγs “ Urγ1s.
To verify the first claim assume that r%s P UrγsXUrγ1s. Then there exist paths µ, µ1 : I Ñ U such
that µp0q “ γp1q, µ1p0q “ γ1p1q, and r%s “ rγ ˚ µs “ rγ1 ˚ µ1s. This implies %p1q “ µp1q “ µ1p1q
and the relation rγ1s “ r% ˚ pµ1q´1s “ rγ ˚ µ ˚ pµ1q´1s. Since µ ˚ pµ1q´1 is a path in U with
µ ˚ pµ1q´1p0q “ µp0q “ γp1q, one concludes that rγ1s P Urγs. Hence if η1 : I Ñ U is a path with
η1p0q “ γ1p1q, then rγ1 ˚ η1s “ rγ ˚ µ ˚ pµ1q´1 ˚ η1s P Urγs which shows that Urγ1s Ă Urγs. By
symmetry, one obtains Urγs Ă Urγ1s, so our first claim is proved.

Claim 2. The set B of all U as defined above is a basis of a topology on rX.
To verify this, let Urγs, Vr%s P B and assume that rµs P Urγs X Vr%s. Then µp1q P U X V .

3.3. The fundamental groupoid of a topological space

The fundamental group

3.3.1 Definition Let pX,x0q be a pointed topological space. The fundamental group of pX,x0q

is defined as
π1pX,x0q :“ C

`

pI, BIuq, pX,x0q
˘L

»
BI

which in other words is the set of homotopy classes relative BI “ t0, 1u of closed continuous
paths γ : I Ñ X based at x0.

3.3.2 To turn π1pX,x0q into a group need to define a binary operation

˚ : π1pX,x0q ˆ π1pX,x0q Ñ π1pX,x0q .

To this end let γ, % : I Ñ X be closed paths in X based at x0. Define their concatenation
% ˚ γ : I Ñ X by

% ˚ γpsq :“

#

γp2sq for 0 ď s ď 1
2 ,

%p2s´ 1q for 1
2 ď s ď 1.
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Then % ˚γ is again a closed path based at x0. Its homotopy class depends only on the homotopy
classes of γ and %. Namely, if H : γ »

BI
rγ and G : % »

BI
r% are homotopies, then

G ˚H : I ˆ I Ñ X, ps, tq ÞÑ

#

Hp2s, tq for 0 ď s ď 1
2 ,

Gp2s´ 1, tq for 1
2 ď s ď 1.

is a homotopy relative BI from % ˚ γ to r% ˚ rγ. Hence the map

˚ : π1pX,x0q ˆ π1pX,x0q Ñ π1pX,x0q, r%s
BI
˚ rγs

BI
:“ r% ˚ γs

BI

is well-defined.

3.3.3 Theorem The fundamental group π1pX,x0q of a based topological space pX,x0q is a group
with binary operation given by concatenation of paths. The homotopy class of the constant path
ex0 : I Ñ X, s ÞÑ x0 acts as identity, and the inverse of an element rγs

BI
is the homotopy class

of the path γ´1 : I Ñ X, s ÞÑ γp1´ sq.

Proof. First we show associativity of ˚. Let γ, %, η : I Ñ X be closed paths in X based at x0.
Then the paths η ˚ p% ˚ γq : I Ñ X and pη ˚ %q ˚ γ : I Ñ X are given by

`

η ˚ p% ˚ γq
˘

psq “

$

’

&

’

%

γp4sq for 0 ď s ď 1
4 ,

%p4s´ 1q for 1
4 ď s ď 1

2 ,

ηp2s´ 1q for 1
2 ď s ď 1,

and

`

pη ˚ %q ˚ γ
˘

psq “

$

’

&

’

%

γp2sq for 0 ď s ď 1
2 ,

%p4s´ 2q for 1
2 ď s ď 3

4 ,

ηp4s´ 3q for 3
4 ď s ď 1.

Now define the map h : I ˆ I Ñ I by

hps, tq “

$

’

&

’

%

sp1` tq for 0 ď s ď 1
4 ,

s` t
4 for 1

4 ď s ď 1
2 ,

s` 1
2p1´ sqt for 1

2 ď s ď 1,

and check that it is well-defined and continuous. Moreover, h is a homotopy from h0 “ idI to
the map

h1 : I Ñ I, s ÞÑ

$

’

&

’

%

2s for 0 ď s ď 1
4 ,

s` 1
4 for 1

4 ď s ď 1
2 ,

1
2ps` 1q for 1

2 ď s ď 1.

Hence H :“
`

pη ˚ %q ˚ γ
˘

˝h : I ˆ I Ñ X is a homotopy from H0 “ pη ˚ %q ˚ γ to
`

pη ˚ %q ˚ γ
˘

˝h1.
But the latter map coincides with η ˚ p% ˚ γq since

`

pη ˚ %q ˚ γ
˘

˝ h1psq “

$

’

&

’

%

γp4sq for 0 ď s ď 1
4 ,

%p4s´ 1q for 1
4 ď s ď 1

2 ,

ηp2s´ 1q for 1
2 ď s ď 1.
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Hence η ˚ p% ˚ γq and pη ˚ %q ˚ γ are homotopic paths which proves associativity of the operation
˚ on π1pX,x0q.

Next consider the concatenations γ ˚ ex0 and ex0 ˚ γ. Then

H : I ˆ I Ñ X, ps, tq ÞÑ

#

γpp1´ tqsq for 0 ď s ď 1
2 ,

γps` tps´ 1qqq for 1
2 ď s ď 1.

is a homotopy between H0 “ γ and H1 “ γ ˚ ex0 , and

G : I ˆ I Ñ X, ps, tq ÞÑ

#

γpsp1` tqq for 0 ď s ď 1
2 ,

γps` t´ stq for 1
2 ď s ď 1.

a homotopy between G0 “ γ and G1 “ ex0 ˚ γ. Hence ex0 is the identity element of π1pX,x0q.

Finally consider the concatenation

γ´1 ˚ γ : I Ñ X, s ÞÑ

#

γp2sq for 0 ď s ď 1
2 ,

γp2p1´ sqq for 1
2 ď s ď 1.

Then

H : I ˆ I Ñ X, ps, tq ÞÑ

#

γp2p1´ tqsq for 0 ď s ď 1
2 ,

γp2p1´ sqp1´ tqq for 1
2 ď s ď 1.

is a homotopy between H0 “ γ´1 ˚ γ and H1 “ ex0 . Since by definition
`

γ´1
˘´1

“ γ, the paths
γ ˚ γ´1 and ex0 are homotopic as well. So γ´1 is the inverse of γ, and π1pX,x0q is a group as
claimed.
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4.1. Affine spaces and convex sets

4.1.1 Definition By an affine space over a field k one understands a set A together with a free
and transitive action

α : V ˆ AÑ A, pP, vq ÞÑ v ` P

of a k-vector space V on A. This means that α satisfies the following relations:

(Act1) The zero element acts as identity that is 0` P “ P for all P P A.

(Act2) The map α is compatible with addition in V which means that v`pw`P q “ pv`wq`P
for all P P A and v, w P V .

(ActF) The action is free which means that for all P P A and v P V the relation v ` P “ P
entails v “ 0.

(ActT) The action is transitive which means that for all elements P,Q P A there exists an element
v P V such that v ` P “ Q.

One calls the elements of A the points of the affine space, and V its vector space of translations.

4.1.2 Since the action of V on A is free and transitive, one has a map

´ : Aˆ AÑ V, pP,Qq ÞÑ P ´Q

which associates to each pP,Qq P A ˆ A the unique vector v P V such that P “ v ` Q. It is
called subtraction map.

4.1.3 Proposition The subtraction map of an affine space pA, V, αq has the following properties,
called Weyl’s axioms:

(Weyl1) For every P P A the map V Ñ A, v ÞÑ v ` P is a bijection.

(Weyl2) For all P,Q,R P A one has

pP ´Qq ` pQ´Rq “ P ´R .

4.1.4 Definition If pA, V, αq and pB,W, βq are two affine spaces, an affine map or affine homo-
morphism between them is a map f : AÑ B such that the function

Aˆ AÑW, pP,Qq ÞÑ fpP q ´ fpQq

factors through a linear map which means that there exists a linear map F : V Ñ W such that
F pP ´Qq “ fpP q ´ fpQq for all P,Q P A.
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4.1.5 Remark The linear map F associated to an affine map f is uniquely determined.

4.1.6 Example Let V be a k-vector space. Put A :“ V and let the action α : V ˆ A Ñ A
coincide with addition. Then pA, V, αq is an affine space called the affine space associated with
the vector space V .

4.2. Fiber bundles

Fibered spaces and manifolds

4.2.1 Definition By a fibered space we understand a triple pB,E, pq consisting of two topological
spaces B,E called base and total space, respectively, and a continuous surjective map p : EJB
called projection. We usually denote a fiber space just by its projection p : E Ñ B or even only
by its total space E if no confusion can arise. For each b P B the preimage Fb “ p´1ptbu is called
the fiber of p : E Ñ B over b.

If E,B are both smooth manifolds and p : EJB is a smooth surjective submersion, then we call
the triple pB,E, pq a fibered manifold.

4.2.2 Remark With our definition of a fibered space we closely follow ? where a fibre space is
defined as a triple pB,E, pq such that p : E Ñ B is a continuous map between topological spaces
E and B. Unlike here, surjectivity is not required. Because

4.2.3 Proposition Let p : E Ñ B be a fibered space. Then each fiber Fb, b P B is a nonempty
topological space which is Hausdorff, regular, normal, paracompact, or metrizable if E is.

In case p : E Ñ B is a fibered manifold, then each fiber is a smooth manifold.

Bundles

4.2.4 We already defined the notion of a fiber bundle in Definition 4.2.5. Here we will extend
that notion in two ways, namely first to the smooth case and second to the case where the fibers
are vector spaces.

4.2.5 Definition Let F be a topological space. By fiber bundle with typical fiber F one un-
derstands a topological space E, together with another topological space B and a continuous
map π : E Ñ B such that for every point x P B there exists a local trivialization over an open
neighborhood U Ă B of x that is a homeomorphism ϕ : π´1pUq Ñ U ˆF such that the diagram

π´1pUq U ˆ F

U

ϕ

p
pr1

commutes, where pr1 : U ˆ F Ñ U is projection onto the first factor. The neighborhood U is
sometimes called a trivializing neighborhood of X. The space E is called the total space of fiber
bundle, B its base, and π : E Ñ B its projection.
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If all spaces E,B, F are smooth manifolds, the projection π : E Ñ B a smooth map, and around
each point x P B there exists a local trivialization ϕ : π´1pUq Ñ UˆF which is a diffeomorphism,
the fiber bundle is called a smooth fiber bundle.

4.3. Vector bundles

4.3.1

4.3.2 Definition

236



Part III.

Commutative Algebra

237



III.1. The spectrum of a commutative ring

1.1. Introduction

The notion of the Spec of a ring is fundamental in modern algebraic geometry. It is the scheme-
theoretic analog of classical affine schemes. The identification occurs when one identifies the
maximal ideals of the polynomial ring krx1, . . . , xns (for k an algebraically closed field) with the
points of the classical variety Ank “ kn. In modern algebraic geometry, one adds the “non-closed
points” given by the other prime ideals. Just as general varieties were classically defined by
gluing affine varieties, a scheme is defined by gluing open affines.

This is not a book on schemes, but it will nonetheless be convenient to introduce the Spec
construction, outside of the obvious benefits of including preparatory material for algebraic
geometry. First of all, it will provide a convenient notation. Second, and more importantly, it
will provide a convenient geometric intuition. For example, an R-module can be thought of as
a kind of “vector bundle”—technically, a sheaf—over the space SpecR, with the caveat that the
rank might not be locally constant (which is, however, the case when the module is projective).

1.2. The spectrum and the Zariski topology

We shall now associate to every commutative ring R a topological space SpecR in a functorial
manner. That is, there will be a contravariant functor

Spec : CRingÑ Top

where Top is the category of topological spaces. This construction is the basis for scheme-theoretic
algebraic geometry and will be used frequently in the sequel.

The motivating observation is the following. If k is an algebraically closed field, then the maximal
ideals in krx1, . . . , xns are of the form px1´a1, . . . , xn´anq for pa1, . . . , anq P krx1, . . . , xns. This
is the Nullstellensatz, which we have not proved yet. We can thus identify the maximal ideals
in the polynomial ring with the space kn. If I Ă krx1, . . . , xns is an ideal, then the maximal
ideals in krx1, . . . , xns correspond to points where everything in I vanishes. See 1.2.6 for a more
detailed explanation. Classical affine algebraic geometry thus studies the set of maximal ideals
in an algebra finitely generated over an algebraically closed field.

The Spec of a ring is a generalization of this construction. In general, it is more natural to use
all prime ideals instead of just maximal ideals.
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Definition and examples

We start by defining Spec as a set. We will next construct the Zariski topology and later the
functoriality.

1.2.1 Definition Let R be a commutative ring. The spectrum of R, denoted SpecR, is the
set of prime ideals of R.

We shall now make SpecR into a topological space. First, we describe a collection of sets which
will become the closed sets. If I Ă R is an ideal, let

V pIq “ tp : p Ą Iu Ă SpecR.

1.2.2 Proposition There is a topology on SpecR such that the closed subsets are of the form
V pIq for I Ă R an ideal.

Proof. Indeed, we have to check the familiar axioms for a topology:

1. H “ V pp1qq because no prime contains 1. So H is closed.

2. SpecR “ V pp0qq because any ideal contains zero. So SpecR is closed.

3. We show the closed sets are stable under intersections. Let Kα “ V pIαq be closed subsets
of SpecR for α ranging over some index set. Let I “

ř

Iα. Then

V pIq “
č

Kα “
č

V pIαq,

which follows because I is the smallest ideal containing each Iα, so a prime contains every
Iα iff it contains I.

4. The union of two closed sets is closed. Indeed, if K,K 1 Ă SpecR are closed, we show
K YK 1 is closed. Say K “ V pIq,K 1 “ V pI 1q. Then we claim:

K YK 1 “ V pII 1q.

Here, as usual, II 1 is the ideal generated by products ii1, i P I, i1 P I 1. If p is prime and
contains II 1, it must contain one of I, I 1; this implies the displayed equation above and
implies the result.

1.2.3 Definition The topology on SpecR defined above is called the Zariski topology. With
it, SpecR is now a topological space.

1.2.4 Remark What is the Spec of the zero ring?

In order to see the geometry of this construction, let us work several examples.

1.2.5 Example Let R “ Z, and consider SpecZ. Then every prime is generated by one element,
since Z is a PID. We have that SpecZ “ tp0qu Y

Ť

p primetppqu. The picture is that one has all
the familiar primes p2q, p3q, p5q, . . . , and then a special point p0q.

Let us now describe the closed subsets. These are of the form V pIq where I Ă Z is an ideal, so
I “ pnq for some n P Z.
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1. If n “ 0, the closed subset is all of SpecZ.

2. If n ‰ 0, then n has finitely many prime divisors. So V ppnqq consists of the prime ideals
corresponding to these prime divisors.

The only closed subsets besides the entire space are the finite subsets that exclude p0q.

1.2.6 Example Say R “ Crx, ys is a polynomial ring in two variables. We will not give a
complete description of SpecR here. But we will write down several prime ideals.

1. For every pair of complex numbers s, t P C, the collection of polynomials f P R such that
fps, tq “ 0 is a prime ideal ms,t Ă R. In fact, it is maximal, as the residue ring is all of C.
Indeed, R{ms,t » C under the map f Ñ fps, tq.

In fact,

1.2.7 Theorem The ms,t are all the maximal ideals in R.

This will follow from the Hilbert Nullstellensatz to be proved later (4.4.5).

2. p0q Ă R is a prime ideal since R is a domain.

3. If fpx, yq P R is an irreducible polynomial, then pfq is a prime ideal. This is equivalent to
unique factorization in R.1

To draw SpecR, we start by drawing C2, which is identified with the collection of maximal ideals
ms,t, s, t P C. SpecR has additional (non-closed) points too, as described above, but for now let
us consider the topology induced on C2 as a subspace of SpecR.

The closed subsets of SpecR are subsets V pIq where I is an ideal, generated by polynomials
tfαpx, yqu. It is of interest to determine the subset of C2 that V pIq induces. In other words, we
ask:

What points of C2 (with ps, tq identified with ms,t) lie in V pIq?

Now, by definition, we know that ps, tq corresponds to a point of V pIq if and only if I Ă ms,t.
This is true iff all the fα lie in ms,t, i.e. if fαps, tq “ 0 for all α. So the closed subsets of C2

(with the induced Zariski topology) are precisely the subsets that can be defined by polynomial
equations.

This ismuch coarser than the usual topology. For instance, tpz1, z2q : Repz1q ě 0u is not Zariski-
closed. The Zariski topology is so coarse because one has only algebraic data (namely, polyno-
mials, or elements of R) to define the topology.

1.2.8 Remark Let R1, R2 be commutative rings. Give R1 ˆ R2 a natural structure of a ring,
and describe SpecpR1 ˆR2q in terms of SpecR1 and SpecR2.

1.2.9 Remark Let X be a compact Hausdorff space, CpXq the ring of real continuous functions
X Ñ R. The maximal ideals in SpecCpXq are in bijection with the points of X, and the topology
induced on X (as a subset of SpecCpXq with the Zariski topology) is just the usual topology.

1To be proved later ??.
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1.2.10 Remark Prove the following result: ifX,Y are compact Hausdorff spaces and CpXq, CpY q
the associated rings of continuous functions, if CpXq, CpY q are isomorphic as R-algebras, then
X is homeomorphic to Y .

The radical ideal-closed subset correspondence

We now return to the case of an arbitrary commutative ring R. If I Ă R, we get a closed subset
V pIq Ă SpecR. It is called V pIq because one is supposed to think of it as the places where
the elements of I “vanish,” as the elements of R are something like “functions.” This analogy
is perhaps best seen in the example of a polynomial ring over an algebraically closed field, e.g.
1.2.6 above.

The map from ideals into closed sets is very far from being injective in general, though by
definition it is surjective.

1.2.11 Example If R “ Z and p is prime, then I “ ppq, I 1 “ pp2q define the same subset
(namely, tppqu) of SpecR.

We now ask why the map from ideals to closed subsets fails to be injective. As we shall see, the
entire problem disappears if we restrict to radical ideals.

1.2.12 Definition If I is an ideal, then the radical RadpIq or
?
I is defined as

RadpIq “ tx P R : xn P I for some nu .

An ideal is radical if it is equal to its radical. (This is equivalent to the earlier 2.2.5.)

Before proceeding, we must check:

1.2.13 Lemma If I an ideal, so is RadpIq.

Proof. Clearly RadpIq is closed under multiplication since I is. Suppose x, y P RadpIq; we show
x ` y P RadpIq. Then xn, yn P I for some n (large) and thus for all larger n. The binomial
expansion now gives

px` yq2n “ x2n `

ˆ

2n

1

˙

x2n´1y ` ¨ ¨ ¨ ` y2n,

where every term contains either x, y with power ě n, so every term belongs to I. Thus px`yq2n P
I and, by definition, we see then that x` y P RadpIq.

The map I Ñ V pIq does in fact depend only on the radical of I. In fact, if I, J have the same
radical RadpIq “ RadpJq, then V pIq “ V pJq. Indeed, V pIq “ V pRadpIqq “ V pRadpJqq “ V pJq
by:

1.2.14 Lemma For any I, V pIq “ V pRadpIqq.

Proof. Indeed, I Ă RadpIq and therefore obviously V pRadpIqq Ă V pIq. We have to show the
converse inclusion. Namely, we must prove:

241



III.1. The spectrum of a commutative ring 1.2. The spectrum and the Zariski topology

If p Ą I, then p Ą RadpIq.

So suppose p Ą I is prime and x P RadpIq; then xn P I Ă p for some n. But p is prime, so
whenever a product of things belongs to p, a factor does. Thus since xn “ x ¨ x ¨ ¨ ¨x, we must
have x P p. So

RadpIq Ă p,

proving the quoted claim, and thus the lemma.

There is a converse to this remark:

1.2.15 Proposition If V pIq “ V pJq, then RadpIq “ RadpJq.

So two ideals define the same closed subset iff they have the same radical.

Proof. We write down a formula for RadpIq that will imply this at once.

1.2.16 Lemma For a commutative ring R and an ideal I Ă R,

RadpIq “
č

pĄI

p.

From this, it follows that V pIq determines RadpIq. This will thus imply the proposition. We
now prove the lemma:

Proof. 1. We show RadpIq Ă
Ş

pPV pIq p. In particular, this follows if we show that if a prime
contains I, it contains RadpIq; but we have already discussed this above.

2. If x R RadpIq, we will show that there is a prime ideal p Ą I not containing x. This will
imply the reverse inclusion and the lemma.

We want to find p not containing x, more generally not containing any power of x. In particular,
we want p X

 

1, x, x2 . . . ,
(

“ H. This set S “ t1, x, . . . u is multiplicatively closed, in that it
contains 1 and is closed under finite products. Right now, it does not interset I; we want to find
a prime containing I that still does not intersect txn, n ě 0u.

More generally, we will prove:

1.2.17 Lemma Let S be multiplicatively closed set in any ring R and let I be any ideal with
I X S “ H. There is a prime ideal p Ą I and does not intersect S (in fact, any ideal maximal
with respect to the condition of not intersecting S will do).

In English, any ideal missing S can be enlarged to a prime ideal missing S. This is actually
fancier version of a previous argument. We showed earlier that any ideal not containing the
multiplicatively closed subset t1u can be contained in a prime ideal not containing 1, in 2.6.8.

Note that the lemma clearly implies the lemma when applied to S “ t1, x, . . . u .
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Proof of the lemma. Let P “ tJ : J Ą I, J X S “ Hu. Then P is a poset with respect to inclu-
sion. Note that P ‰ H because I P P . Also, for any nonempty linearly ordered subset of P ,
the union is in P (i.e. there is an upper bound). We can invoke Zorn’s lemma to get a maximal
element of P . This element is an ideal p Ą I with pX S “ H. We claim that p is prime.

First of all, 1 R p because 1 P S. We need only check that if xy P p, then x P p or y P p. Suppose
otherwise, so x, y R p. Then px, pq R P or p would not be maximal. Ditto for py, pq.

In particular, we have that these bigger ideals both intersect S. This means that there are

a P p, r P R such that a` rx P S

and
b P p, r1 P R such that b` r1y P S.

Now S is multiplicatively closed, so multiply pa` rxqpb` r1yq P S. We find:

ab` ar1y ` brx` rr1xy P S.

Now a, b P p and xy P p, so all the terms above are in p, and the sum is too. But this contradicts
pX S “ H.

The upshot of the previous lemmata is:

1.2.18 Proposition There is a bijection between the closed subsets of SpecR and radical ideals
I Ă R.

A meta-observation about prime ideals

We saw in the previous subsec (lemma 1.2.17) that an ideal maximal with respect to the property
of not intersecting a multiplicatively closed subset is prime. It turns out that this is the case
for many such properties of ideals. A general method of seeing this was developed in ?. In this
(optional) subsec, we digress to explain this phenomenon.

If I is an ideal and a P R, we define the notation

pI : aq “ tx P R : xa P Iu .

More generally, if J is an ideal, we define

pI : Jq “ tx P R : xJ Ă Iu .

Let R be a ring, and F a collection of ideals of R. We are interested in conditions that will
guarantee that the maximal elements of F are prime. Actually, we will do the opposite: the
following condition will guarantee that the ideals maximal at not being in F are prime.

1.2.19 Definition The family F is called an Oka family if R P F (where R is considered as
an ideal) and whenever I Ă R is an ideal and pI : aq, pI, aq P F (for some a P R), then I P F .
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1.2.20 Example Let us begin with a simple observation. If pI : aq is generated by a1, . . . , an and
pI, aq is generated by a, b1, . . . , bm (where we may take b1, . . . , bm P I, without loss of generality),
then I is generated by aa1, . . . , aan, b1, . . . , bm. To see this, note that if x P I, then x P pI, aq is
a linear combination of the ta, b1, . . . , bmu, but the coefficient of a must lie in pI : aq.

As a result, we may deduce that the family of finitely generated ideals is an Oka family.

1.2.21 Example Let us now show that the family of principal ideals is an Oka family. Indeed,
suppose I Ă R is an ideal, and pI, aq and pI : aq are principal. One can easily check that
pI : aq “ pI : pI, aqq. Setting J “ pI, aq, we find that J is principal and pI : Jq is too. However,
for any principal ideal J , and for any ideal I Ă J ,

I “ JpI : Jq

as one easily checks. Thus we find in our situation that since J “ pI, aq and pI : Jq are principal,
I is principal.

1.2.22 Proposition (?) If F is an Oka family of ideals, then any maximal element of the
complement of F is prime.

Proof. Suppose I R F is maximal with respect to not being in F but I is not prime. Note that
I ‰ R by hypothesis. Then there is a P R such that pI : aq, pI, aq both strictly contain I, so they
must belong to F . Indeed, we can find a, b P R ´ I with ab P I; it follows that pI, aq ‰ I and
pI : aq contains b R I.

By the Oka condition, we have I P F , a contradiction.

1.2.23 Corollary (Cohen) If every prime ideal of R is finitely generated, then every ideal of
R is finitely generated.2

Proof. Suppose that there existed ideals I Ă R which were not finitely generated. The union
of a totally ordered chain tIαu of ideals that are not finitely generated is not finitely generated;
indeed, if I “

Ť

Iα were generated by a1, . . . , an, then all the generators would belong to some
Iα and would consequently generate it.

By Zorn’s lemma, there is an ideal maximal with respect to being not finitely generated. However,
by 1.2.22, this ideal is necessarily prime (since the family of finitely generated ideals is an Oka
family). This contradicts the hypothesis.

1.2.24 Corollary If every prime ideal of R is principal, then every ideal of R is principal.

Proof. This is proved in the same way.

1.2.25 Remark Suppose every nonzero prime ideal in R contains a non-zero-divisor. Then R
is a domain. (Hint: consider the set S of non-zero-divisors, and argue that any ideal maximal
with respect to not intersecting S is prime. Thus, p0q is prime.)

2Later we will say that R is noetherian.
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1.2.26 Remark Let R be a ring. Let κ be an infinite cardinal. By applying 1.2.20 and 1.2.22
we see that any ideal maximal with respect to the property of not being generated by κ elements
is prime. This result is not so useful because there exists a ring for which every prime ideal of R
can be generated by ℵ0 elements, but some ideal cannot. Namely, let k be a field, let T be a set
whose cardinality is greater than ℵ0 and let

R “ krtxnuně1, tzt,nutPT,ně0s{px
2
n, z

2
t,n, xnzt,n ´ zt,n´1q

This is a local ring with unique prime ideal m “ pxnq. But the ideal pzt,nq cannot be generated
by countably many elements.

Functoriality of Spec

The construction RÑ SpecR is functorial in R in a contravariant sense. That is, if f : RÑ R1,
there is a continuous map SpecR1 Ñ SpecR. This map sends p Ă R1 to f´1ppq Ă R, which is
easily seen to be a prime ideal in R. Call this map F : SpecR1 Ñ SpecR. So far, we have seen
that SpecR induces a contravariant functor from RingsÑ Sets.

1.2.27 Remark A contravariant functor F : C Ñ Sets (for some category C) is called repre-
sentable if it is naturally isomorphic to a functor of the form X Ñ hompX,X0q for some X0 P C,
or equivalently if the induced covariant functor on Cop is corepresentable.

The functor RÑ SpecR is not representable. (Hint: Indeed, a representable functor must send
the initial object into a one-point set.)

Next, we check that the morphisms induced on Spec’s from a ring-homomorphism are in fact
continuous maps of topological spaces.

1.2.28 Proposition Spec induces a contravariant functor from Rings to the category Top of
topological spaces.

Proof. Let f : R Ñ R1. We need to check that this map SpecR1 Ñ SpecR, which we call F , is
continuous. That is, we must check that F´1 sends closed subsets of SpecR to closed subsets of
SpecR1.

More precisely, if I Ă R and we take the inverse image F´1pV pIqq Ă SpecR1, it is just the closed
set V pfpIqq. This is best left to the reader, but here is the justification. If p P SpecR1, then
F ppq “ f´1ppq Ą I if and only if p Ą fpIq. So F ppq P V pIq if and only if p P V pfpIqq.

1.2.29 Example Let R be a commutative ring, I Ă R an ideal, f : R Ñ R{I. There is a map
of topological spaces

F : SpecpR{Iq Ñ SpecR.

This map is a closed embedding whose image is V pIq. Most of this follows because there is
a bijection between ideals of R containing I and ideals of R{I, and this bijection preserves
primality.

1.2.30 Remark Show that this map SpecR{I Ñ SpecR is indeed a homeomorphism from
SpecR{I Ñ V pIq.
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A basis for the Zariski topology

In the previous section, we were talking about the Zariski topology. If R is a commutative ring,
we recall that SpecR is defined to be the collection of prime ideals in R. This has a topology
where the closed sets are the sets of the form

V pIq “ tp P SpecR : p Ą Iu .

There is another way to describe the Zariski topology in terms of open sets.

1.2.31 Definition If f P R, we let

Uf “ tp : f R pu

so that Uf is the subset of SpecR consisting of primes not containing f . This is the complement
of V ppfqq, so it is open.

1.2.32 Proposition The sets Uf form a basis for the Zariski topology.

Proof. Suppose U Ă SpecR is open. We claim that U is a union of basic open sets Uf .

Now U “ SpecR´ V pIq for some ideal I. Then

U “
ď

fPI

Uf

because if an ideal is not in V pIq, then it fails to contain some f P I, i.e. is in Uf for that f .
Alternatively, we could take complements, whence the above statement becomes

V pIq “
č

fPI

V ppfqq

which is clear.

The basic open sets have nice properties.

1. U1 “ SpecR because prime ideals are not allowed to contain the unit element.

2. U0 “ H because every prime ideal contains 0.

3. Ufg “ Uf X Ug because fg lies in a prime ideal p if and only if one of f, g does.

Now let us describe what the Zariski topology has to do with localization. Let R be a ring
and f P R. Consider S “

 

1, f, f2, . . .
(

; this is a multiplicatively closed subset. Last week, we
defined S´1R.

1.2.33 Definition For S the powers of f , we write Rf or Rrf´1s for the localization S´1R.

There is a map φ : RÑ Rrf´1s and a corresponding map

SpecRrf´1s Ñ SpecR

sending a prime p Ă Rrf´1s to φ´1ppq.
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1.2.34 Proposition This map induces a homeomorphism of SpecRrf´1s onto Uf Ă SpecR.

So if one takes a commutative ring and inverts an element, one just gets an open subset of Spec.
This is why it’s called localization: one is restricting to an open subset on the Spec level when
one inverts something.

Proof. The reader is encouraged to work this proof out for herself.

1. First, we show that SpecRrf´1s Ñ SpecR lands in Uf . If p Ă Rrf´1s, then we must
show that the inverse image φ´1ppq can’t contain f . If otherwise, that would imply that
φpfq P p; however, φpfq is invertible, and then p would be p1q.

2. Let’s show that the map surjects onto Uf . If p Ă R is a prime ideal not containing f , i.e.
p P Uf . We want to construct a corresponding prime in the ring Rrf´1s whose inverse
image is p.

Let prf´1s be the collection of all fractions

t
x

fn
, x P pu Ă Rrf´1s,

which is evidently an ideal. Note that whether the numerator is in p is independent of
the representing fraction x

fn used.3 In fact, prf´1s is a prime ideal. Indeed, suppose

a

fm
b

fn
P prf´1s.

Then ab
fm`n

belongs to this ideal, which means ab P p; so one of a, b P p and one of the two
fractions a

fm ,
b
fn belongs to prf´1s. Also, 1{1 R prf´1s.

It is clear that the inverse image of prf´1s is p, because the image of x P R is x{1, and this
belongs to prf´1s precisely when x P p.

3. The map SpecRrf´1s Ñ SpecR is injective. Suppose p, p1 are prime ideals in the localiza-
tion and the inverse images are the same. We must show that p “ p1.

Suppose x
fn P p. Then x{1 P p, so x P φ´1ppq “ φ´1pp1q. This means that x{1 P p1, so

x
fn P p1 too. So a fraction that belongs to p belongs to p1. By symmetry the two ideals
must be the same.

4. We now know that the map ψ : SpecRrf´1s Ñ Uf is a continuous bijection. It is left to
see that it is a homeomorphism. We will show that it is open. In particular, we have to
show that a basic open set on the left side is mapped to an open set on the right side. If
y{fn P Rrf´1s, we have to show that Uy{fn Ă SpecRrf´1s has open image under ψ. We’ll
in fact show what open set it is.

We claim that
ψpUy{fnq “ Ufy Ă SpecR.

3Suppose x
fn
“

y

fk
for y P p. Then there is N such that fN pfkx´ fnyq “ 0 P p; since y P p and f R p, it follows

that x P p.
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To see this, p is contained in Uf{yn . This mean that p doesn’t contain y{fn. In particular,
p doesn’t contain the multiple yf{1. So ψppq doesn’t contain yf . This proves the inclusion
Ă.

5. To complete the proof of the claim, and the result, we must show that if p Ă SpecRrf´1s

and ψppq “ φ´1ppq P Ufy, then y{fn doesn’t belong to p. (This is kosher and dandy
because we have a bijection.) But the hypothesis implies that fy R φ´1ppq, so fy{1 R p.
Dividing by fn`1 implies that

y{fn R p

and p P Uf{yn .

If SpecR is a space, and f is thought of as a “function” defined on SpecR, the space Uf is to be
thought of as the set of points where f “doesn’t vanish” or “is invertible.” Thinking about rings
in terms of their spectra is a very useful idea. We will bring it up when appropriate.

1.2.35 Remark The construction RÑ Rrf´1s as discussed above is an instance of localization.
More generally, we defined S´1R for S Ă R multiplicatively closed. We can thus define maps
SpecS´1RÑ SpecR. To understand S´1R, it may help to note that

lim
ÝÑ
fPS

Rrf´1s

which is a direct limit of rings where one inverts more and more elements.

As an example, consider S “ R´p for a prime p, and for simplicity that R is countable. We can
write S “ S0 Y S1 Y . . . , where each Sk is generated by a finite number of elements f0, . . . , fk.
Then Rp “ lim

ÝÑ
S´1
k R. So we have

S´1R “ lim
ÝÑ
k

Rrf´1
0 , f´1

1 , . . . , f´1
k s “ lim

ÝÑ
Rrpf0 . . . fkq

´1s.

The functions we invert in this construction are precisely those which do not contain p, or where
“the functions don’t vanish.”

The geometric idea is that to construct SpecS´1R “ SpecRp, we keep cutting out from SpecR
vanishing locuses of various functions that do not intersect p. In the end, you don’t restrict to
an open set, but to an intersection of them.

1.2.36 Remark Say that R is semi-local if it has finitely many maximal ideals. Let p1, . . . ,
pn Ă R be primes. The complement of the union, S “ R r

Ť

pi, is closed under multiplication,
so we can localize. RrS´1s “ RS is called the semi-localization of R at the pi.

The result of semi-localization is always semi-local. To see this, recall that the ideals in RS are
in bijection with ideals in R contained in

Ť

pi. Now use prime avoidance.

1.2.37 Definition For a finitely generated R-moduleM , define µRpMq to be the smallest num-
ber of elements that can generate M .

This is not the same as the cardinality of a minimal set of generators. For example, 2 and 3 are
a minimal set of generators for Z over itself, but µZpZq “ 1.
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1.2.38 Theorem Let R be semi-local with maximal ideals m1, . . . ,mn. Let ki “ R{mi. Then

muRpMq “ maxtdimkiM{miMu

Proof. add: proof

1.3. Nilpotent elements

We will now prove a few general results about nilpotent results in a ring. Topologically, the
nilpotents do very little: quotienting by them will not change the Spec. Nonetheless, they carry
geometric importance, and one thinks of these nilpotents as “infinitesimal thickenings” (in a sense
to be elucidated below).

The radical of a ring

There is a useful corollary of the analysis in the previous section about the Spec of a ring.

1.3.1 Definition x P R is called nilpotent if a power of x is zero. The set of nilpotent elements
in R is called the radical of R and is denoted RadpRq (which is an abuse of notation).

The set of nilpotents is just the radical Radpp0qq of the zero ideal, so it is an ideal. It can vary
greatly. A domain clearly has no nonzero nilpotents. On the other hand, many rings do:

1.3.2 Example For any n ě 2, the ring ZrXs{pXnq has a nilpotent, namely X. The ideal of
nilpotent elements is pXq.

It is easy to see that a nilpotent must lie in any prime ideal. The converse is also true by the
previous analysis. As a corollary of it, we find in fact:

1.3.3 Corollary Let R be a commutative ring. Then the set of nilpotent elements of R is
precisely

Ş

pPSpecR p.

Proof. Apply 1.2.16 to the zero ideal.

We now consider a few examples of nilpotent elements.

1.3.4 Example (Nilpotents in polynomial rings) Let us now compute the nilpotent ele-
ments in the polynomial Rrxs. The claim is that a polynomial

řn
m“0 amx

m P Rrxs is nilpotent
if and only if all the coefficients am P R are nilpotent. That is, RadpRrxsq “ pRadpRqqRrxs.

If a0, . . . , an are nilpotent, then because the nilpotent elements form an ideal, f “ a0`¨ ¨ ¨`anx
n

is nilpotent. Conversely, if f is nilpotent, then fm “ 0 and thus panxnqm “ 0. Thus anxn is
nilpotent, and because the nilpotent elements form an ideal, f´anxn is nilpotent. By induction,
aix

i is nilpotent for all i, so that all ai are nilpotent.
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Before the next example, we need to define a new notion. We now define a power series ring
intuitively in the same way they are used in calculus. In fact, we will use power series rings much
the same way we used them in calculus; they will serve as keeping track of fine local data that
the Zariski topology might “miss” due to its coarseness.

1.3.5 Definition Let R be a ring. The power series ring Rrrxss is just the set of all expressions
of the form

ř8
i“0 cix

i. The arithmetic for the power series ring will be done term by term formally
(since we have no topology, we can’t consider questions of convergence, though a natural topology
can be defined making Rrrxss the completion of another ring, as we shall see later).

1.3.6 Example (Nilpotence in power series rings) Let R be a ring such that RadpRq is a
finitely generated ideal. (This is satisfied, e.g., if R is noetherian, cf. III.2.) Let us consider the
question of how RadpRq and RadpRrrxssq are related. The claim is that

RadpRrrxssq “ pRadpRqqRrrxss.

If f P Rrrxss is nilpotent, say with fn “ 0, then certainly an0 “ 0, so that a0 is nilpotent.
Because the nilpotent elements form an ideal, we have that f ´a0 is also nilpotent, and hence by
induction every coefficient of f must be nilpotent in R. For the converse, let I “ RadpRq. There
exists an N ą 0 such that the ideal power IN “ 0 by finite generation. Thus if f P IRrrxss, then
fN P INRrrxss “ 0.

1.3.7 Remark Prove that x P R is nilpotent if and only if the localization Rx is the zero ring.

1.3.8 Remark Construct an example where RadpRqRrrxss ‰ RadpRrrxssq. (Hint: consider
R “ CrX1, X2, X3, . . . s{pX1, X

2
2 , X

3
3 , . . . q.)

Lifting idempotents

If R is a ring, and I Ă R a nilpotent ideal, then we want to think of R{I as somehow close to
R. For instance, the inclusion SpecR{I ãÑ SpecR is a homeomorphism, and one pictures that
SpecR has some “fuzz” added (with the extra nilpotents in I) that is killed in SpecR{I.

One manifestation of the “closeness” of R and R{I is the following result, which states that
the idempotent elements4 of the two are in natural bijection. For convenience, we state it in
additional generality (that is, for noncommutative rings).

1.3.9 Lemma (Lifting idempotents) Suppose I Ă R is a nilpotent two-sided ideal, for R
any5 ring. Let e P R{I be an idempotent. Then there is an idempotent e P R which reduces to e.

Note that if J is a two-sided ideal in a noncommutative ring, then so are the powers of J .

4Recall that an element e P R is idempotent if e2
“ e.

5Not necessarily commutative.
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Proof. Let us first assume that I2 “ 0. We can find e1 P R which reduces to e, but e1 is not
necessarily idempotent. By replacing R with Zre1s and I with Zre1s X I, we may assume that R
is in fact commutative. However,

e2
1 P e1 ` I.

Suppose we want to modify e1 by i such that e “ e1 ` i is idempotent and i P I; then e will do
as in the lemma. We would then necessarily have

e1 ` i “ pe1 ` iq
2 “ e2

1 ` 2e1i as I2 “ 0.

In particular, we must satisfy
ip1´ 2e1q “ e2

1 ´ e1 P I.

We claim that 1´2e1 P R is invertible, so that we can solve for i P I. However, R is commutative.
It thus suffices to check that 1´ 2e1 lies in no maximal ideal of R. But the image of e1 in R{m
for any maximal ideal m Ă R is either zero or one. So 1´ 2e1 has image either 1 or ´1 in R{m.
Thus it is invertible.

This establishes the result when I has zero square. In general, suppose In “ 0. We have the
sequence of noncommutative rings:

R� R{In´1 � R{In´2 ¨ ¨ ¨� R{I.

The kernel at each step is an ideal whose square is zero. Thus, we can use the lifting idempotents
partial result proved above each step of the way and left e P R{I to some e P R.

While the above proof has the virtue of applying to noncommutative rings, there is a more
conceptual argument for commutative rings. The idea is that idempotents in A measure dis-
connections of SpecA.6 Since the topological space underlying SpecA is unchanged when one
quotients by nilpotents, idempotents are unaffected. We prove:

1.3.10 Proposition If X “ Spec A, then there is a one-to-one correspondence between IdempAq
and the open and closed subsets of X.

Proof. Suppose I is the radical of peq for an an idempotent e P R. We show that V pIq is open and
closed. Since V is unaffected by passing to the radical, we will assume without loss of generality
that

I “ peq.

I claim that SpecR ´ V pIq is just V p1 ´ eq “ V pp1 ´ eqq. This is a closed set, so proving this
claim will imply that V pIq is open. Indeed, V peq “ V ppeqq cannot intersect V p1´ eq because if

p P V peq X V p1´ eq,

then e, 1´ e P p, so 1 P p. This is a contradiction since p is necessarily prime.

6More generally, in any ringed space (a space with a sheaf of rings), the idempotents in the ring of global sections
correspond to the disconnections of the topological space.
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Conversely, suppose that p P SpecR belongs to neither V peq nor V p1 ´ eq. Then e R p and
1´ e R p. So the product

ep1´ eq “ e´ e2 “ 0

cannot lie in p. But necessarily 0 P p, contradiction. So V peq Y V p1´ eq “ SpecR. This implies
the claim.

Next, we show that if V pIq is open, then I is the radical of peq for an idempotent e. For this it
is sufficient to prove:

1.3.11 Lemma Let I Ă R be such that V pIq Ă SpecR is open. Then I is principal, generated
by peq for some idempotent e P R.

Proof. Suppose that SpecR ´ V pIq “ V pJq for some ideal J Ă R. Then the intersection
V pIq X V pJq “ V pI ` Jq is all of R, so I ` J cannot be a proper ideal (or it would be contained
in a prime ideal). In particular, I ` J “ R. So we can write

1 “ x` y, x P I, y P J.

Now V pIq Y V pJq “ V pIJq “ SpecR. This implies that every element of IJ is nilpotent by the
next lemma.

1.3.12 Lemma Suppose V pXq “ SpecR for X Ă R an ideal. Then every element of X is
nilpotent.

Proof. Indeed, suppose x P X were non-nilpotent. Then the ring Rx is not the zero ring, so it
has a prime ideal. The map SpecRx Ñ SpecR is, as discussed in class, a homeomorphism of
SpecRx onto Dpxq. So Dpxq Ă SpecR (the collection of primes not containing x) is nonempty.
In particular, there is p P SpecR with x R p, so p R V pXq. So V pXq ‰ SpecR, contradiction.

Return to the proof of the main result. We have shown that IJ is nilpotent. In particular, in the
expression x` y “ 1 we had earlier, we have that xy is nilpotent. Say pxyqk “ 0. Then expand

1 “ px` yq2k “
2k
ÿ

i“0

ˆ

2k

i

˙

xiy2k´i “

1
ÿ

`

2
ÿ

where
ř1 is the sum from i “ 0 to i “ k and

ř2 is the sum from k ` 1 to 2k. Then
ř1ř2

“ 0
because in every term occurring in the expansion, a multiple of xkyk occurs. Also,

ř1
P I and

ř2
P J because x P I, y P J .

All in all, we find that it is possible to write

1 “ x1 ` y1, x1 P I, y1 P J, x1y1 “ 0.

(We take x1 “
ř1, y1 “

ř2.) Then x1p1 ´ x1q “ 0 so x1 P I is idempotent. Similarly y1 “ 1 ´ x1

is. We have that
V pIq Ă V px1q, V pJq Ă V py1q
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and V px1q, V py1q are complementary by the earlier arguments, so necessarily

V pIq “ V px1q, V pJq “ V py1q.

Since an ideal generated by an idempotent is automatically radical, it follows that:

I “ px1q, , J “ py1q.

There are some useful applications of this in representation theory, because one can look for
idempotents in endomorphism rings; these indicate whether a module can be decomposed as a
direct sum into smaller parts. Except, of course, that endomorphism rings aren’t necessarily
commutative and this proof breaks down.

Thus we get:

1.3.13 Proposition Let A be a ring and I a nilpotent ideal. Then IdempAq Ñ IdempA{Iq is
bijective.

Proof. Indeed, the topological spaces of Spec A and Spec A{I are the same. The result then
follows from ??.

Units

Finally, we make a few remarks on units modulo nilideals. It is a useful and frequently used
trick that adding a nilpotent does not affect the collection of units. This trick is essentially an
algebraic version of the familiar “geometric series;” convergence questions do not appear thanks
to nilpotence.

1.3.14 Example Suppose u is a unit in a ring R and v P R is nilpotent; we show that a` v is
a unit.

Suppose ua “ 1 and vm “ 0 for some m ą 1. Then pu` vq ¨ ap1´ av` pavq2´ ¨ ¨ ¨ ˘ pavqm´1q “

p1´p´avqqp1`p´avq` p´avq2` ¨ ¨ ¨ ` p´avqm´1q “ 1´p´avqm “ 1´ 0 “ 1, so u` v is a unit.

So let R be a ring, I Ă R a nilpotent ideal of square zero. Let R˚ denote the group of units
in R, as usual, and let pR{Iq˚ denote the group of units in R{I. We have an exact sequence of
abelian groups:

0 Ñ I Ñ R˚ Ñ pR{Iq˚ Ñ 0

where the second map is reduction and the first map sends iÑ 1` i. The hypothesis that I2 “ 0
shows that the first map is a homomorphism. We should check that the last map is surjective.
But if any a P R maps to a unit in R{I, it clearly can lie in no prime ideal of R, so is a unit
itself.

253



III.1. The spectrum of a commutative ring 1.4. Vista: sheaves on SpecR

1.4. Vista: sheaves on SpecR

Presheaves

Let X be a topological space.

1.4.1 Definition A presheaf of sets F on X assigns to every open subset U Ă X a set FpUq,
and to every inclusion U Ă V a restriction map resVU : FpV q Ñ FpUq. The restriction map is
required to satisfy:

1. resUU “ idFpUq for all open sets U .

2. resWU “ resVU ˝ resWV if U Ă V ĂW .

If the sets FpUq are all groups (resp. rings), and the restriction maps are morphisms of groups
(resp. rings), then we say that F is a sheaf of groups (resp. rings). Often the restriction of an
element a P U to a subset W is denoted a|W .

A morphism of presheaves F Ñ G is a collection of maps FpUq Ñ GpUq for each open set U ,
that commute with the restriction maps in the obvious way. Thus the collection of presheaves
on a topological space forms a category.

One should think of the restriction maps as kind of like restricting the domain of a function.
The standard example of presheaves is given in this way, in fact.

1.4.2 Example Let X be a topological space, and F the presheaf assigning to each U Ă X the
set of continuous functions U Ñ R. The restriction maps come from restricting the domain of a
function.

Now, in classical algebraic geometry, there are likely to be more continuous functions in the
Zariski topology than one really wants. One wants to focus on functions that are given by
polynomial equations.

1.4.3 Example Let X be the topological space Cn with the topology where the closed sets
are those defined by the zero loci of polynomials (that is, the topology induced on Cn from the
Zariski topology of SpecCrx1, . . . , xns via the canonical imbedding Cn ãÑ SpecCrx1, . . . , xns).
Then there is a presheaf assigning to each open set U the collection of rational functions defined
everywhere on U , with the restriction maps being the obvious ones.

1.4.4 Remark The notion of presheaf thus defined relied very little on the topology of X. In
fact, we could phrase it in purely categorical terms. Let C be the category consisting of open
subsets U Ă X and inclusions of open subsets U Ă U 1. This is a rather simple category (the
hom-sets are either empty or consist of one element). Then a presheaf is just a contravariant
functor from C to Sets (or Grp, etc.). A morphism of presheaves is a natural transformation of
functors.

In fact, given any category C, we can define the category of presheaves on it to be the category
of functors FunpCop,Setq. This category is complete and cocomplete (we can calculate limits
and colimits “pointwise”), and the Yoneda embedding realizes C as a full subcategory of it. So if

254



III.1. The spectrum of a commutative ring 1.4. Vista: sheaves on SpecR

X P C, we get a presheaf Y ÞÑ homCpY,Xq. In general, however, such representable presheaves
are rather special; for instance, what do they look like for the category of open sets in a topological
space?

Sheaves

1.4.5 Definition Let F be a presheaf of sets on a topological space X. We call F a sheaf if F
further satisfies the following two “sheaf conditions.”

1. (Separatedness) If U is an open set of X covered by a family of open subsets tUiu and
there are two elements a, b P FpUq such that a|Ui “ b|Ui for all Ui, then a “ b.

2. (Gluability) If U is an open set of X covered by Ui and there are elements ai P FpUiq
such that ai|UiXUj “ aj |UiXUj for all i and j, then there exists an element a P FpUq that
restricts to the ai. Notice that by the first axiom, this element is unique.

A morphism of sheaves is just a morphism of presheaves, so the sheaves on a topological space
X form a full subcategory of presheaves on X.

The above two conditions can be phrased more compactly as follows. Whenever tUiuiPI is an
open cover of U Ă X, we require that the following sequence be an equalizer of sets:

FpUq Ñ
ź

iPI

FpUiq Ñ
ź

i,jPI

FpUi X Ujq

where the two arrows correspond to the two allowable restriction maps. Similarly, we say that a
presheaf of abelian groups (resp. rings) is a sheaf if it is a sheaf of sets.

1.4.6 Example The example of functions gives an example of a sheaf, because functions are
determined by their restrictions to an open cover! Namely, if X is a topological space, and we
consider the presheaf

U ÞÑ tcontinuous functions U Ñ Ru ,
then this is clearly a presheaf, because we can piece together continuous functions in a unique
manner.

1.4.7 Example Here is a refinement of the above example. Let X be a smooth manifold. For
each U , let FpUq denote the group of smooth functions U Ñ R. This is easily checked to be a
sheaf.

We could, of course, replace “smooth” by “Cr” or by “holomorphic” in the case of a complex
manifold.

1.4.8 Remark As remarked above, the notion of presheaf can be defined on any category,
and does not really require a topological space. The definition of a sheaf requires a bit more
topologically, because the idea that a family tUiu covers an open set U was used inescapably
in the definition. The idea of covering required the internal structure of the open sets and was
not a purely categorical idea. However, Grothendieck developed a way to axiomatize this, and
introduced the idea of a Grothendieck topology on a category (which is basically a notion of when
a family of maps covers something). On a category with a Grothendieck topology (also known
as a site), one can define the notion of a sheaf in a similar manner as above. See ?.
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There is a process that allows one to take any presheaf and associate a sheaf to it. In some sense,
this associated sheaf should also be the best “approximation” of our presheaf with a sheaf. This
motivates the following universal property:

1.4.9 Definition Let F be a presheaf. Then F 1 is said to be the sheafification of F if for any
sheaf G and a morphism F Ñ G, there is a unique factorization of this morphism as F Ñ F 1 Ñ G.

1.4.10 Theorem We can construct the sheafification of a presheaf F as follows: F 1pUq “ ts :
U Ñ

š

xPU Fx|for all x P U, spxq P Fx and there is a neighborhood V Ă U and t P FpV q such that for all y P
V, spyq is the image of t in the local ring Fyu.

add: proof

In the theory of schemes, when one wishes to replace polynomial rings over C (or an algebraically
closed field) with arbitrary commutative rings, one must drop the idea that a sheaf is necessarily
given by functions. A scheme is defined as a space with a certain type of sheaf of rings on it.
We shall not define a scheme formally, but show how on the building blocks of schemes—objects
of the form SpecA—a sheaf of rings can be defined.

Sheaves on SpecA

add: we need to describe how giving sections over basic open sets gives a presheaf
in general.

1.4.11 Proposition Let A be a ring and let X “ SpecpAq. Then the assignment of the ring Af
to the basic open set Xf defines a presheaf of rings on X.

Proof.

Part (i). If Xg Ă Xf are basic open sets, then there exist n ě 1 and u P A such that gn “ uf .

Proof of part (i). Let S “ tgn : n ě 0u and suppose S X pfq “ H. Then the extension pfqe into
S´1A is a proper ideal, so there exists a maximal ideal S´1p of S´1A, where pX S “ H. Since
pfqe P S´1p, we see that f{1 P S´1p, so f P p. But S X p “ H implies that g R p. This is a
contradiction, since then p P XgzXf .

Part (ii). If Xg Ă Xf , then there exists a unique map ρ : Af Ñ Ag, called the restriction map,
which makes the following diagram commute.

A

~~   
Af // Ag

Proof of part (ii). Let n ě 1 and u P A be such that gn “ uf by part (i). Note that in Ag,

pf{1qpu{gnq “ pfu{gnq “ 1{1 “ 1
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which means that f maps to a unit in Ag. Hence every fm maps to a unit in Ag, so the universal
property of Af yields the desired unique map ρ : Af Ñ Ag.

Part (iii). If Xg “ Xf , then the corresponding restriction ρ : Af Ñ Ag is an isomorphism.

Proof of part (iii). The reverse inclusion yields a ρ1 : Ag Ñ Af such that the diagram

A

  ~~
Af

ρ
++ Ag

ρ1
kk

commutes. But since the localization map is epic, this implies that ρρ1 “ ρ1ρ “ 1.

Part (iv). If Xh Ă Xg Ă Xf , then the diagram

Af //

  

Ah

Ag

>>

of restriction maps commutes.

Proof of part (iv). Consider the following tetrahedron.

A

}} !!

��

Af //

  

Ah

Ag

>>

Except for the base, the commutativity of each face of the tetrahedron follows from the uni-
versal property of part (ii). But its easy to see that commutativity of the those faces implies
commutativity of the base, which is what we want to show.

Part (v). If Xg̃ “ Xg Ă Xf “ Xf̃ , then the diagram

Af //

��

Ag

��
Af̃

// Ag̃

of restriction maps commutes. (Note that the vertical maps here are isomorphisms.)

Proof of part (v). By part (iv), the two triangles of

Af //

��   

Ag

��
Af̃

// Ag̃
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commute. Therefore the square commutes.

Part (vi). Fix a prime ideal p in A. Consider the direct system consisting of rings Af for every
f R p and restriction maps ρfg : Af Ñ Ag whenever Xg Ă Xf . Then lim

ÝÑ
Af – Ap.

proof of part (vi). First, note that since f R p and p is prime, we know that fm R p for all m ě 0.
Therefore the image of fm under the localization A Ñ Ap is a unit, which means the universal
property of Af yields a unique map αf : Af Ñ Ap such that the following diagram commutes.

A

  ~~
Af

αf // Ap

Then consider the following tetrahedron.

A

~~   

��

Af //

  

Ah

Ap

>>

All faces except the bottom commute by construction, so the bottom face commutes as well.
This implies that the αf commute with the restriction maps, as necessary. Now, to see that
lim
ÝÑ

Af – Ap, we show that Ap satisfies the universal property of lim
ÝÑ

Af .

Suppose B is a ring and there exist maps βf : Af Ñ B which commute with the restrictions.
Define β : AÑ B as the composition AÑ Af Ñ B. The fact that β is independent of choice of
f follows from the commutativity of the following diagram.

A

  ~~
Af

ρfg //

βf

  

Ag
βg

~~
B

Now, for every f R p, we know that βpfq must be a unit since βpfq “ βf pf{1q and f{1 is a
unit in Af . Therefore the universal property of Ap yields a unique map Ap Ñ B, which clearly
commutes with all the arrows necessary to make lim

ÝÑ
Af – Ap.

1.4.12 Proposition Let A be a ring and let X “ SpecpAq. The presheaf of rings OX defined
on X is a sheaf.

Proof. The proof proceeds in two parts. Let pUiqiPI be a covering of X by basic open sets.

Part 1. If s P A is such that si :“ ρX,Uipsq “ 0 for all i P I, then s “ 0.
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Proof of part 1. Suppose Ui “ Xfi . Note that si is the fraction s{1 in the ring Afi , so si “ 0
implies that there exists some integer mi such that sfmii “ 0. Define gi “ fmii , and note that we
still have an open cover by sets Xgi since Xfi “ Xgi (a prime ideal contains an element if and
only if it contains every power of that element). Also sgi “ 0, so the fraction s{1 is still 0 in the
ring Agi . (Essentially, all we’re observing here is that we are free to change representation of the
basic open sets in our cover to make notation more convenient).

Since X is quasi-compact, choose a finite subcover X “ Xg1 Y ¨ ¨ ¨ Y Xgn . This means that
g1, . . . , gn must generate the unit ideal, so there exists some linear combination

ř

xigi “ 1 with
xi P A. But then

s “ s ¨ 1 “ s
´

ÿ

xigi

¯

“
ÿ

xipsgiq “ 0.

Part 2. Let si P OXpUiq be such that for every i, j P I,

ρUi,UiXUj psiq “ ρUj ,UiXUj psjq.

(That is, the collection psiqiPI agrees on overlaps). Then there exists a unique s P A such that
ρX,Uipsq “ si for every i P I.

Proof of part 2. Let Ui “ Xfi , so that si “ ai{pf
mi
i q for some integers mi. As in part 1,

we can clean up notation by defining gi “ fmii , so that si “ ai{gi. Choose a finite subcover
X “ Xg1 Y ¨ ¨ ¨ YXgn . Then the condition that the cover agrees on overlaps means that

aigj
gigj

“
ajgi
gigj

for all i, j in the finite subcover. This is equivalent to the existence of some kij such that

paigj ´ ajgiqpgigjq
kij “ 0.

Let k be the maximum of all the kij , so that paigj ´ ajgiqpgigjq
k “ 0 for all i, j in the finite

subcover. Define bi “ aig
k
i and hi “ gk`1

i . We make the following observations:

bihj ´ bjhi “ 0, Xgi “ Xhi , and si “ ai{gi “ bi{hi

The first observation implies that the Xhi cover X, so the hi generate the unit ideal. Then there
exists some linear combination

ř

xihi “ 1. Define s “
ř

xibi. I claim that this is the global
section that restricts to si on the open cover.

The first step is to show that it restricts to si on our chosen finite subcover. In other words, we
want to show that s{1 “ si “ bi{hi in Ahi , which is equivalent to the condition that there exist
some li such that pshibiqhlii “ 0. But in fact, even li “ 0 works:

shi ´ bi “
´

ÿ

xjbj

¯

hi ´ bi

´

ÿ

xjhj

¯

“
ÿ

xj phibj ´ bihjq “ 0.

This shows that s restricts to si on each set in our finite subcover. Now we need to show that
in fact, it restricts to si for all of the sets in our cover. Choose any j P I. Then U1, . . . , Un, Uj
still cover X, so the above process yields an s1 such that s1 restricts to si for all i P t1, . . . , n, ju.
But then s´s1 satisfies the assumptions of part 1 using the cover tU1, . . . , Un, Uju, so this means
s “ s1. Hence the restriction of s to Uj is also sj .
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The finiteness condition of a noetherian ring is necessary for much of commutative algebra; many
of the results we prove after this will apply only (or mostly) to the noetherian case. In algebraic
geometry, the noetherian condition guarantees that the topological space associated to the ring
(the Spec) has all its sets quasi-compact; this condition can be phrased as saying that the space
itself is noetherian in a certain sense.

We shall start by proving the basic properties of noetherian rings. These are fairly standard
and straightforward; they could have been placed after ??, in fact. More subtle is the structure
theory for finitely generated modules over a noetherian ring. While there is nothing as concrete
as there is for PIDs (there, one has a very explicit descrition for the isomorphism classes), one
can still construct a so-called “primary decomposition.” This will be the primary focus after the
basic properties of noetherian rings and modules have been established. Finally, we finish with
an important subclass of noetherian rings, the artinian ones.

2.1. Basics

The noetherian condition

2.1.1 Definition Let R be a commutative ring andM an R-module. We say thatM is noethe-
rian if every submodule of M is finitely generated.

There is a convenient reformulation of the finiteness hypothesis above in terms of the ascending
chain condition.

2.1.2 Proposition M is a module over R. The following are equivalent:

1. M is noetherian.

2. Every chain of submodules M0 Ă M1 Ă ¨ ¨ ¨ Ă M , eventually stabilizes at some MN .
(Ascending chain condition.)

3. Every nonempty collection of submodules of M has a maximal element.

Proof. Say M is noetherian and we have such a chain

M0 ĂM1 Ă . . . .

Write
M 1 “

ď

Mi ĂM,
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which is finitely generated since M is noetherian. Let it be generated by x1, . . . , xn. Each of
these finitely many elements is in the union, so they are all contained in some MN . This means
that

M 1 ĂMN , so MN “M 1

and the chain stabilizes.

For the converse, assume the ACC. LetM 1 ĂM be any submodule. Define a chain of submodules
M0 Ă M1 Ă ¨ ¨ ¨ Ă M 1 inductively as follows. First, just take M0 “ t0u. Take Mn`1 to be
Mn `Rx for some x PM 1 ´Mn, if such an x exists; if not take Mn`1 “Mn. So M0 is zero, M1

is generated by some nonzero element of M 1, M2 is M1 together with some element of M 1 not
in M1, and so on, until (if ever) the chain stabilizes.

However, by construction, we have an ascending chain, so it stabilizes at some finite place by
the ascending chain condition. Thus, at some point, it is impossible to choose something in M 1

that does not belong to MN . In particular, M 1 is generated by N elements, since MN is and
M 1 “ MN . This proves the reverse implication. Thus the equivalence of 1 and 2 is clear. The
equivalence of 2 and 3 is left to the reader.

Working with noetherian modules over non-noetherian rings can be a little funny, though, so
normally this definition is combined with:

2.1.3 Definition The ring R is noetherian if R is noetherian as an R-module. Equivalently
phrased, R is noetherian if all of its ideals are finitely generated.

We start with the basic examples:

2.1.4 Example 1. Any field is noetherian. There are two ideals: p1q and p0q.

2. Any PID is noetherian: any ideal is generated by one element. So Z is noetherian.

The first basic result we want to prove is that over a noetherian ring, the noetherian modules
are precisely the finitely generated ones. This will follow from 2.1.7 in the next subsec. So the
defining property of noetherian rings is that a submodule of a finitely generated module is finitely
generated. (Compare 2.1.10.)

2.1.5 Remark The ring CrX1, X2, . . . s of polynomials in infinitely many variables is not noethe-
rian. Note that the ring itself is finitely generated (by the element 1), but there are ideals that
are not finitely generated.

2.1.6 Remark Let R be a ring such that every prime ideal is finitely generated. Then R is
noetherian. See 1.2.23, or prove it as an exercise.
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Stability properties

The class of noetherian rings is fairly robust. If one starts with a noetherian ring, most of the
elementary operations one can do to it lead to noetherian rings.

2.1.7 Proposition If
0 ÑM 1 ÑM ÑM2 Ñ 0

is an exact sequence of modules, then M is noetherian if and only if M 1,M2 are.

One direction states that noetherianness is preserved under subobjects and quotients. The other
direction states that noetherianness is preserved under extensions.

Proof. If M is noetherian, then every submodule of M 1 is a submodule of M , so is finitely
generated. So M 1 is noetherian too. Now we show that M2 is noetherian. Let N ĂM2 and let
rN Ă M the inverse image. Then rN is finitely generated, so N—as the homomorphic image of
rN—is finitely generated So M2 is noetherian.

Suppose M 1,M2 noetherian. We prove M noetherian. We verify the ascending chain condition.
Consider

M1 ĂM2 Ă ¨ ¨ ¨ ĂM.

Let M2
i denote the image of Mi in M2 and let M 1

i be the intersection of Mi with M 1. Here
we think of M 1 as a submodule of M . These are ascending chains of submodules of M 1,M2,
respectively, so they stabilize by noetherianness. So for some N , we have that n ě N implies

M 1
n “M 1

n`1, M2
n “M2

n`1.

We claim that this implies, for such n,

Mn “Mn`1.

Indeed, say x PMn`1 ĂM . Then x maps into something in M2
n`1 “M2

n. So there is something
in Mn, call it y, such that x, y go to the same thing in M2. In particular,

x´ y PMn`1

goes to zero in M2, so x´ y PM 1. Thus x´ y PM 1
n`1 “M 1

n. In particular,

x “ px´ yq ` y PM 1
n `Mn “Mn.

So x PMn, and
Mn “Mn`1.

This proves the result.

The class of noetherian modules is thus “robust.” We can get from that the following.

2.1.8 Proposition If φ : AÑ B is a surjection of commutative rings and A is noetherian, then
B is noetherian too.
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Proof. Indeed, B is noetherian as an A-module; indeed, it is the quotient of a noetherian A-
module (namely, A). However, it is easy to see that the A-submodules of B are just the B-
modules in B, so B is noetherian as a B-module too. So B is noetherian.

We know show that noetherianness of a ring is preserved by localization:

2.1.9 Proposition Let R be a commutative ring, S Ă R a multiplicatively closed subset. If R
is noetherian, then S´1R is noetherian.

I.e., the class of noetherian rings is closed under localization.

Proof. Say φ : RÑ S´1R is the canonical map. Let I Ă S´1R be an ideal. Then φ´1pIq Ă R is
an ideal, so finitely generated. It follows that

φ´1pIqpS´1Rq Ă S´1R

is finitely generated as an ideal in S´1R; the generators are the images of the generators of
φ´1pIq.

Now we claim that
φ´1pIqpS´1Rq “ I.

The inclusion Ă is trivial. For the latter inclusion, if x{s P I, then x P φ´1pIq, so

x “ p1{sqx P pS´1Rqφ´1pIq.

This proves the claim and implies that I is finitely generated.

Let R be a noetherian ring. We now characterize the noetherian R-modules.

2.1.10 Proposition An R-module M is noetherian if and only if M is finitely generated.

Proof. The only if direction is obvious. A module is noetherian if and only if every submodule
is finitely generated.

For the if direction, if M is finitely generated, then there is a surjection of R-modules

Rn ÑM

where R is noetherian. But Rn is noetherian by 2.1.7 because it is a direct sum of copies of R.
So M is a quotient of a noetherian module and is noetherian.
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The basis theorem

Let us now prove something a little less formal. This is, in fact, the biggest of the “stability” prop-
erties of a noetherian ring: we are going to see that finitely generated algebras over noetherian
rings are still noetherian.

2.1.11 Theorem (Hilbert basis theorem) If R is a noetherian ring, then the polynomial ring
RrXs is noetherian.

Proof. Let I Ă RrXs be an ideal. We prove that it is finitely generated. For each m P Zě0, let
Ipnq be the collection of elements a P R consisting of the coefficients of xn of elements of I of
degree ď n. This is an ideal, as is easily seen.

In fact, we claim that
Ip1q Ă Ip2q Ă . . .

which follows because if a P Ip1q, there is an element aX ` . . . in I. Thus XpaX ` . . . q “
aX2 ` ¨ ¨ ¨ P I, so a P Ip2q. And so on.

Since R is noetherian, this chain stabilizes at some IpNq. Also, because R is noetherian, each Ipnq
is generated by finitely many elements an,1, . . . , an,mn P Ipnq. All of these come from polynomials
Pn,i P I such that Pn,i “ an,iX

n ` . . . .

The claim is that the Pn,i for n ď N and i ď mn generate I. This is a finite set of polynomials,
so if we prove the claim, we will have proved the basis theorem. Let J be the ideal generated by
tPn,i, n ď N, i ď mnu. We know J Ă I. We must prove I Ă J .

We will show that any element P pXq P I of degree n belongs to J by induction on n. The degree
is the largest nonzero coefficient. In particular, the zero polynomial does not have a degree, but
the zero polynomial is obviously in J .

There are two cases. In the first case, n ě N . Then we write

P pXq “ aXn ` . . . .

By definition, a P Ipnq “ IpNq since the chain of ideals Ipnq stabilized. Thus we can write a in
terms of the generators: a “

ř

aN,iλi for some λi P R. Define the polynomial

Q “
ÿ

λiPN,ix
n´N P J.

Then Q has degree n and the leading term is just a. In particular,

P ´Q

is in I and has degree less than n. By the inductive hypothesis, this belongs to J , and since
Q P J , it follows that P P J .

Now consider the case of n ă N . Again, we write P pXq “ aXn ` . . . . Then a P Ipnq. We can
write

a “
ÿ

an,iλi, λi P R.
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But the an,i P Ipnq. The polynomial
Q “

ÿ

λiPn,i

belongs to J since n ă N . In the same way, P ´Q P I has a lower degree. Induction as before
implies that P P J .

2.1.12 Example Let k be a field. Then krx1, . . . , xns is noetherian for any n, by the Hilbert
basis theorem and induction on n.

2.1.13 Corollary If R is a noetherian ring and R1 a finitely generated R-algebra, then R1 is
noetherian too.

Proof. Each polynomial ring RrX1, . . . , Xns is noetherian by theorem 2.1.11 and an easy induc-
tion on n. Consequently, any quotient of a polynomial ring (i.e. any finitely generated R-algebra,
such as R1) is noetherian.

2.1.14 Example Any finitely generated commutative ring R is noetherian. Indeed, then there
is a surjection

Zrx1, . . . , xns� R

where the xi get mapped onto generators in R. The former is noetherian by the basis theorem,
and R is as a quotient noetherian.

2.1.15 Corollary Any ring R can be obtained as a filtered direct limit of noetherian rings.

Proof. Indeed, R is the filtered direct limit of its finitely generated subrings.

This observation is sometimes useful in commutative algebra and algebraic geometry, in order
to reduce questions about arbitrary commutative rings to noetherian rings. Noetherian rings
have strong finiteness hypotheses that let you get numerical invariants that may be useful. For
instance, we can do things like inducting on the dimension for noetherian local rings.

2.1.16 Example Take R “ Crx1, . . . , xns. For any algebraic variety V defined by polynomial
equations, we know that V is the vanishing locus of some ideal I Ă R. Using the Hilbert basis
theorem, we have shown that I is finitely generated. This implies that V can be described by
finitely many polynomial equations.

Noetherian induction

The finiteness condition on a noetherian ring allows for “induction” arguments to be made; we
shall see examples of this in the future.

2.1.17 Proposition (Noetherian Induction Principle) Let R be a noetherian ring, let P
be a property, and let F be a family of ideals R. Suppose the inductive step: if all ideals in F
strictly larger than I P F satisfy P, then I satisfies P. Then all ideals in F satisfy P.

Proof. Assume Fcrim “ tJ P F |J does not satisfy Pu ‰ ∅. Since R is noetherian, Fcrim has a
maximal member I. By maximality, all ideals in F strictly containing I satisfy P, so I also does
by the inductive step.
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2.2. Associated primes

We shall now begin the structure theory for noetherian modules. The first step will be to associate
to each module a collection of primes, called the associated primes, which lie in a bigger collection
of primes (the support) where the localizations are nonzero.

The support

Let R be a noetherian ring. An R-module M is supposed to be thought of as something like a
vector bundle, somehow spread out over the topological space SpecR. If p P SpecR, then let
kppq “ fr. field R{p, which is the residue field of Rp. If M is any R-module, we can consider
M bR kppq for each p; it is a vector space over kppq. If M is finitely generated, then M bR kppq
is a finite-dimensional vector space.

2.2.1 Definition Let M be a finitely generated R-module. Then suppM , the support of M ,
is defined to be the set of primes p P SpecR such that M bR kppq ‰ 0.

One is supposed to think of a module M as something like a vector bundle over the topological
space SpecR. At each p P SpecR, we associate the vector space M bR kppq; this is the “fiber.”
Of course, the intuition of M ’s being a vector bundle is somewhat limited, since the fibers do
not generally have the same dimension. Nonetheless, we can talk about the support, i.e. the set
of spaces where the “fiber” is not zero.

Note that p P suppM if and only if Mp ‰ 0. This is because

pM bR Rpq{ppRppM bR Rpqq “Mp bRp kppq

and we can use Nakayama’s lemma over the local ring Rp. (We are using the fact that M is
finitely generated.)

A vector bundle whose support is empty is zero. Thus the following easy proposition is intu-
itive:

2.2.2 Proposition M “ 0 if and only if suppM “ H.

Proof. Indeed, M “ 0 if and only if Mp “ 0 for all primes p P SpecR. This is equivalent to
suppM “ H.

2.2.3 Remark Let 0 ÑM 1 ÑM ÑM2 Ñ 0 be exact. Then

suppM “ suppM 1 Y suppM2.

We will see soon that that suppM is closed in SpecR. One imagines that M lives on this closed
subset suppM , in some sense.
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Associated primes

Throughout this section, R is a noetherian ring. The associated primes of a module M will
refer to primes that arise as the annihilators of elements in M . As we shall see, the support of
a module is determined by the associated primes. Namely, the associated primes contain the
“generic points” (that is, the minimal primes) of the support. In some cases, however, they may
contain more.

add: We are currently using the notation Annpxq for the annihilator of x P M . This
has not been defined before. Should we add this in a previous chapter?

2.2.4 Definition Let M be a finitely generated R-module. The prime ideal p is said to be
associated to M if there exists an element x P M such that p is the annihilator of x. The set
of associated primes is AsspMq.

Note that the annihilator of an element x P M is not necessarily prime, but it is possible that
the annihilator might be prime, in which case it is associated.

2.2.5 Remark Show that p P AsspMq if and only if there is an injection R{p ãÑM .

2.2.6 Remark Let p P SpecR. Then AsspR{pq “ tpu.

2.2.7 Example Take R “ krx, y, zs, where k is an integral domain, and let I “ px2 ´ yz, xpz ´
1qq. Any prime associated to I must contain I, so let’s consider p “ px2´yz, z´1q “ px2´y, z´1q,
which is I : x. It is prime because R{p “ krxs, which is a domain. To see that pI : xq Ă p,
assume tx P I Ă p; since x R p, t P p, as desired.

There are two more associated primes, but we will not find them here.

We shall start by proving that AsspMq ‰ H for nonzero modules.

2.2.8 Proposition If M ‰ 0, then M has an associated prime.

Proof. Consider the collection of ideals in R that arise as the annihilator of a nonzero element
in M . Let I Ă R be a maximal element among this collection. The existence of I is guaranteed
thanks to the noetherianness of R. Then I “ Annpxq for some x P M , so 1 R I because the
annihilator of a nonzero element is not the full ring.

I claim that I is prime, and hence I P AsspMq. Indeed, suppose ab P I where a, b P R. This
means that

pabqx “ 0.

Consider the annihilator Annpbxq of bx. This contains the annihilator of x, so I; it also contains
a.

There are two cases. If bx “ 0, then b P I and we are done. Suppose to the contrary bx ‰ 0.
In this case, Annpbxq contains paq ` I, which contains I. By maximality, it must happen that
Annpbxq “ I and a P I.

In either case, we find that one of a, b belongs to I, so that I is prime.
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2.2.9 Example (A module with no associated prime) Without the noetherian hypothe-
sis, 2.2.8 is false. Consider R “ Crx1, x2, . . . s, the polynomial ring over C in infinitely many
variables, and the ideal I “ px1, x

2
2, x

3
3, . . . q Ă R. The claim is that

AsspR{Iq “ H.

To see this, suppose a prime p was the annihilator of some f P R{I. Then f lifts to f P R; it
follows that p is precisely the set of g P R such that fg P I. Now f contains only finitely many
of the variables xi, say x1, . . . , xn. It is then clear that xn`1

n`1f P I (so xn`1
n`1 P p), but xn`1f R I

(so xn`1 R p). It follows that p is not a prime, a contradiction.

We shall now show that the associated primes are finite in number.

2.2.10 Proposition If M is finitely generated, then AsspMq is finite.

The idea is going to be to use the fact that M is finitely generated to build M out of finitely
many pieces, and use that to bound the number of associated primes to each piece. For this, we
need:

2.2.11 Lemma Suppose we have an exact sequence of finitely generated R-modules

0 ÑM 1 ÑM ÑM2 Ñ 0.

Then
AsspM 1q Ă AsspMq Ă AsspM 1q YAsspM2q

Proof. The first claim is obvious. If p is the annihilator of in x P M 1, it is an annihilator of
something in M (namely the image of x), because M 1 ÑM is injective. So AsspM 1q Ă AsspMq.

The harder direction is the other inclusion. Suppose p P AsspMq. Then there is x P M such
that p “ Annpxq. Consider the submodule Rx Ă M . If Rx X M 1 ‰ 0, then we can choose
y P RxXM 1 ´ t0u. I claim that Annpyq “ p and so p P AsspM 1q. To see this, y “ ax for some
a P R. The annihilator of y is the set of elements b P R such that

abx “ 0

or, equivalently, the set of b P R such that ab P p “ Annpxq. But y “ ax ‰ 0, so a R p. As a
result, the condition b P Annpyq is the same as b P p. In other words,

Annpyq “ p

which proves the claim.

Suppose now that RxXM 1 “ 0. Let φ : M �M2 be the surjection. I claim that p “ Annpφpxqq
and consequently that p P AsspM2q. The proof is as follows. Clearly p annihilates φpxq as it
annihilates x. Suppose a P Annpφpxqq. This means that φpaxq “ 0, so ax P kerφ “ M 1; but
kerφXRx “ 0. So ax “ 0 and consequently a P p. It follows Annpφpxqq “ p.
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The next step in the proof of 2.2.10 is that any finitely generated module admits a filtration each
of whose quotients are of a particularly nice form. This result is quite useful and will be referred
to in the future.

2.2.12 Proposition (Dévissage) For any finitely generated R-module M , there exists a finite
filtration

0 “M0 ĂM1 Ă ¨ ¨ ¨ ĂMk “M

such that the successive quotients Mi`1{Mi are isomorphic to various R{pi with the pi Ă R
prime.

Proof. Let M 1 ĂM be maximal among submodules for which such a filtration (ending with M 1)
exists. We would like to show that M 1 “M . Now M 1 is well-defined since 0 has such a filtration
and M is noetherian.

There is a filtration
0 “M0 ĂM1 Ă ¨ ¨ ¨ ĂMl “M 1 ĂM

where the successive quotients, except possibly the last M{M 1, are of the form R{pi for pi P
SpecR. If M 1 “ M , we are done. Otherwise, consider the quotient M{M 1 ‰ 0. There is an
associated prime of M{M 1. So there is a prime p which is the annihilator of x P M{M 1. This
means that there is an injection

R{p ãÑM{M 1.

Now, take Ml`1 as the inverse image in M of R{p Ă M{M 1. Then, we can consider the finite
filtration

0 “M0 ĂM1 Ă ¨ ¨ ¨ ĂMl`1,

all of whose successive quotients are of the form R{pi; this is because Ml`1{Ml “Ml`1{M
1 is of

this form by construction. We have thus extended this filtration one step further, a contradiction
since M 1 was assumed to be maximal.

Now we are in a position to meet the goal, and prove that AsspMq is always a finite set.

Proof of 2.2.10. Suppose M is finitely generated Take our filtration

0 “M0 ĂM1 Ă ¨ ¨ ¨ ĂMk “M.

By induction, we show that AsspMiq is finite for each i. It is obviously true for i “ 0. Assume
now that AsspMiq is finite; we prove the same for AsspMi`1q. We have an exact sequence

0 ÑMi ÑMi`1 Ñ R{pi Ñ 0

which implies that, by 2.2.11,

AsspMi`1q Ă AsspMiq YAsspR{piq “ AsspMiq Y tpiu ,

so AsspMi`1q is also finite. By induction, it is now clear that AsspMiq is finite for every i.

This proves the proposition; it also shows that the number of associated primes is at most the
length of the filtration.
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Finally, we characterize the zero divisors on M in terms of the associated primes. The last
characterization of the result will be useful in the future. It implies, for instance, that if R is
local and m the maximal ideal, then if every element of m is a zero divisor on a finitely generated
module M , then m P AsspMq.

2.2.13 Proposition If M is a finitely generated module over a noetherian ring R, then the zero
divisors on M are the union

Ť

pPAsspMq p.

More strongly, if I Ă R is any ideal consisting of zero divisors on M , then I is contained in an
associated prime.

Proof. Any associated prime is an annihilator of some element ofM , so it consists of zero divisors.
Conversely, if a P R annihilates x PM , then a belongs to every associated prime of the nonzero
module Ra ĂM . (There is at least one by proposition 2.2.10.)

For the last statement, we use prime avoidance (theorem 2.6.20): if I consists of zero divisors,
then I is contained in the union

Ť

pPAsspMq p by the first part of the proof. This is a finite union
by ??, so prime avoidance implies I is contained one of these primes.

2.2.14 Remark For every module M over any (not necessarily noetherian) ring R, the set of
M -zero divisors ZpMq is a union of prime ideals. In general, there is an easy characterization
of sets Z which are a union of primes: it is exactly when Rr Z is a saturated multiplicative set.
This is Kaplansky’s Theorem 2.

2.2.15 Definition A multiplicative set S ‰ ∅ is a saturated multiplicative set if for all a, b P R,
a, b P S if and only if ab P S. (“multiplicative set” just means the “if” part)

To see that ZpMq is a union of primes, just verify that its complement is a saturated multiplica-
tive set.

Localization and AsspMq

It turns out to be extremely convenient that the construction M Ñ AsspMq behaves about
as nicely with respect to localization as we could possibly want. This lets us, in fact, reduce
arguments to the case of a local ring, which is a significant simplification.

So, as usual, let R be noetherian, and M a finitely generated R-module. Let further S Ă R
be a multiplicative subset. Then S´1M is a finitely generated module over the noetherian ring
S´1M . So it makes sense to consider both AsspMq Ă SpecR and AsspS´1Mq Ă SpecS´1R.
But we also know that SpecS´1R Ă SpecR is just the set of primes of R that do not intersect
S. Thus, we can directly compare AsspMq and AsspS´1Mq, and one might conjecture (correctly,
as it happens) that AsspS´1Mq “ AsspMq X SpecS´1R.

2.2.16 Proposition Let R noetherian, M finitely generated and S Ă R multiplicatively closed.
Then

AsspS´1Mq “
 

S´1p : p P AsspMq, pX S “ H
(

.
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Proof. We first prove the easy direction, namely that AsspS´1Mq contains primes in SpecS´1RX
AsspMq.

Suppose p P AsspMq and p X S “ H. Then p “ Annpxq for some x P M . Then the annihilator
of x{1 P S´1M is just S´1p, as one can directly check. Thus S´1p P AsspS´1Mq. So we get the
easy inclusion.

Let us now do the harder inclusion. Call the localization map R Ñ S´1R as φ. Let q P
AsspS´1Mq. By definition, this means that q “ Annpx{sq for some x P M , s P S. We want to
see that φ´1pqq P AsspMq Ă SpecR. By definition φ´1pqq is the set of elements a P R such that

ax

s
“ 0 P S´1M.

In other words, by definition of the localization, this is

φ´1pqq “
ď

tPS

ta P R : atx “ 0 PMu “
ď

Annptxq Ă R.

We know, however, that among elements of the form Annptxq, there is a maximal element
I “ Annpt0xq for some t0 P S, since R is noetherian. The claim is that I “ φ´1pqq, so φ´1pqq P
AsspMq.

Indeed, any other annihilator I 1 “ Annptxq (for t P S) must be contained in Annpt0txq. However,
I Ă Annpt0xq and I is maximal, so I “ Annpt0txq and I 1 Ă I. In other words, I contains all
the other annihilators Annptxq for t P S. In particular, the big union above, i.e. φ´1pqq, is just
I “ Annpt0xq. In particular, φ´1pqq “ Annpt0xq is in AsspMq. This means that every associated
prime of S´1M comes from an associated prime of M , which completes the proof.

2.2.17 Remark Show that, if M is a finitely generated module over a noetherian ring, that the
map

M Ñ
à

pPAsspMq

Mp

is injective. Is this true if M is not finitely generated?

Associated primes determine the support

The next claim is that the support and the associated primes are related.

2.2.18 Proposition The support is the closure of the associated primes:

suppM “
ď

qPAsspMq

tqu

By definition of the Zariski topology, this means that a prime p P SpecR belongs to suppM if
and only if it contains an associated prime.
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Proof. First, we show that supppMq contains the set of primes p P SpecR containing an associ-
ated prime; this will imply that supppMq Ą

Ť

qPAsspMq tqu. So let q be an associated prime and
p Ą q. We need to show that

p P suppM, i.e. Mp ‰ 0.

But, since q P AsspMq, there is an injective map

R{q ãÑM,

so localization gives an injective map

pR{qqp ãÑMp.

Here, however, the first object pR{qqp is nonzero since nothing nonzero in R{q can be annihilated
by something outside p. So Mp ‰ 0, and p P suppM .

Let us now prove the converse inclusion. Suppose that p P suppM . We have to show that p
contains an associated prime. By assumption,Mp ‰ 0, andMp is a finitely generated module over
the noetherian ringRp. SoMp has an associated prime. It follows by 2.2.16 that AsspMqXSpecRp

is nonempty. Since the primes of Rp correspond to the primes contained in p, it follows that
there is a prime contained in p that lies in AsspMq. This is precisely what we wanted to prove.

2.2.19 Corollary For M finitely generated, suppM is closed. Further, every minimal element
of suppM lies in AsspMq.

Proof. Indeed, the above result says that

suppM “
ď

qPAsspMq

tqu.

Since AsspMq is finite, it follows that suppM is closed. The above equality also shows that any
minimal element of suppM must be an associated prime.

2.2.20 Example 2.2.19 is false for modules that are not finitely generated. Consider for instance
the abelian group

À

p Z{p. The support of this as a Z-module is precisely the set of all closed
points (i.e., maximal ideals) of SpecZ, and is consequently is not closed.

2.2.21 Corollary The ring R has finitely many minimal prime ideals.

Proof. Clearly, suppR “ SpecR. Thus every prime ideal of R contains an associated prime of
R by 2.2.18.

So SpecR is the finite union of the irreducible closed pieces q if R is noetherian. add: I am
not sure if “irreducibility” has already been defined. Check this.

We have just seen that suppM is a closed subset of SpecR and is a union of finitely many
irreducible subsets. More precisely,

suppM “
ď

qPAsspMq

tqu

though there might be some redundancy in this expression. Some associated prime might be
contained in others.
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2.2.22 Definition A prime p P AsspMq is an isolated associated prime of M if it is minimal
(with respect to the ordering on AsspMq); it is embedded otherwise.

So the embedded primes are not needed to describe the support of M .

add: Examples of embedded primes

2.2.23 Remark It follows that in a noetherian ring, every minimal prime consists of zero divi-
sors. Although we shall not use this in the future, the same is true in non-noetherian rings as
well. Here is an argument.

Let R be a ring and p Ă R a minimal prime. Then Rp has precisely one prime ideal. We now
use:

2.2.24 Lemma If a ring R has precisely one prime ideal p, then any x P p is nilpotent.

Proof. Indeed, it suffices to see that Rx “ 0 (1.3.7 in ??) if x P p. But SpecRx consists of
the primes of R not containing x. However, there are no such primes. Thus SpecRx “ H, so
Rx “ 0.

It follows that every element in p is a zero divisor in Rp. As a result, if x P p, there is s
t P Rp

such that xs{t “ 0 but s
t ‰ 0. In particular, there is t1 R p with

xst1 “ 0, st1 ‰ 0,

so that x is a zero divisor.

Primary modules

A primary modules are ones that has only one associated prime. It is equivalent to say that any
homothety is either injective or nilpotent. As we will see in the next section, any module has a
“primary decomposition:” in fact, it embeds as a submodule of a sum of primary modules.

2.2.25 Definition Let p Ă R be prime, M a finitely generated R-module. Then M is p-
primary if

AsspMq “ tpu .

A module is primary if it is p-primary for some prime p, i.e., has precisely one associated prime.

2.2.26 Proposition Let M be a finitely generated R-module. Then M is p-primary if and only
if, for every m PM ´ t0u, the annihilator Annpmq has radical p.

Proof. We first need a small observation.

2.2.27 Lemma If M is p-primary, then any nonzero submodule M 1 ĂM is p-primary.

Proof. Indeed, we know that AsspM 1q Ă AsspMq by 2.2.11. Since M 1 ‰ 0, we also know that
M 1 has an associated prime (2.2.8). Thus AsspM 1q “ tpu, so M 1 is p-primary.
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Let us now return to the proof of the main result, 2.2.26. Assume first that M is p-primary. Let
x P M , x ‰ 0. Let I “ Annpxq; we are to show that RadpIq “ p. By definition, there is an
injection

R{I ãÑM

sending 1 Ñ x. As a result, R{I is p-primary by the above lemma. We want to know that
p “ RadpIq. We saw that the support suppR{I “ tq : q Ą Iu is the union of the closures of the
associated primes. In this case,

supppR{Iq “ tq : q Ą pu .

But we know that RadpIq “
Ş

qĄI q, which by the above is just p. This proves that RadpIq “ p.
We have shown that if R{I is primary, then I has radical p.

The converse is easy. Suppose the condition holds and q P AsspMq, so q “ Annpxq for x ‰ 0.
But then Radpqq “ p, so

q “ p

and AsspMq “ tpu.

We have another characterization.

2.2.28 Proposition Let M ‰ 0 be a finitely generated R-module. Then M is primary if and
only if for each a P R, then the homothety M a

ÑM is either injective or nilpotent.

Proof. Suppose first that M is p-primary. Then multiplication by anything in p is nilpotent
because the annihilator of everything nonzero has radical p by 2.2.26. But if a R p, then Annpxq
for x PM ´ t0u has radical p and cannot contain a.

Let us now do the other direction. Assume that every element of a acts either injectively or
nilpotently on M . Let I Ă R be the collection of elements a P R such that anM “ 0 for n large.
Then I is an ideal, since it is closed under addition by the binomial formula: if a, b P I and an, bn

act by zero, then pa` bq2n acts by zero as well.

I claim that I is actually prime. If a, b R I, then a, b act by multiplication injectively on M . So
a : M Ñ M, b : M Ñ M are injective. However, a composition of injections is injective, so ab
acts injectively and ab R I. So I is prime.

We need now to check that if x P M is nonzero, then Annpxq has radical I. Indeed, if a P R
annihilates x, then the homothety M a

Ñ M cannot be injective, so it must be nilpotent (i.e. in
I). Conversely, if a P I, then a power of a is nilpotent, so a power of a must kill x. It follows
that Annpxq “ I. Now, by 2.2.26, we see that M is I-primary.

We now have this notion of a primary module. The idea is that all the torsion is somehow
concentrated in some prime.

2.2.29 Example If R is a noetherian ring and p P SpecR, then R{p is p-primary. More gen-
erally, if I Ă R is an ideal, then R{I is ideal if and only if RadpIq is prime. This follows from
2.2.28.
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2.2.30 Remark If 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 is an exact sequence with M 1,M,M2 nonzero
and finitely generated, then M is p-primary if and only if M 1,M2 are.

2.2.31 Remark Let M be a finitely generated R-module. Let p P SpecR. Show that the sum
of two p-primary submodules is p-primary. Deduce that there is a p-primary submodule of M
which contains every p-primary submodule.

2.2.32 Remark (Bourbaki) Let M be a finitely generated R-module. Let T Ă AsspMq be a
subset of the associated primes. Prove that there is a submodule N ĂM such that

AsspNq “ T, AsspM{Nq “ AsspMq ´ T.

2.3. Primary decomposition

This is the structure theorem for modules over a noetherian ring, in some sense. Throuoghout,
we fix a noetherian ring R.

Irreducible and coprimary modules

2.3.1 Definition LetM be a finitely generatedR-module. A submoduleN ĂM is p-coprimary
if M{N is p-primary.

Similarly, we can say that N ĂM is coprimary if it is p-coprimary for some p P SpecR.

We shall now show we can represent any submodule of M as an intersection of coprimary sub-
modules. In order to do this, we will define a submodule of M to be irreducible if it cannot
be written as a nontrivial intersection of submodules of M . It will follow by general nonsense
that any submodule is an intersection of irreducible submodueles. We will then see that any
irreducible submodule is coprimary.

2.3.2 Definition The submomdule N Ĺ M is irreducible if whenever N “ N1 X N2 for
N1, N2 Ă M submodules, then either one of N1, N2 equals N . In other words, it is not the
intersection of larger submodules.

2.3.3 Proposition An irreducible submodule N ĂM is coprimary.

Proof. Say a P R. We would like to show that the homothety

M{N
a
ÑM{N

is either injective or nilpotent. Consider the following submodules of M{N :

Kpnq “ tx PM{N : anx “ 0u .

Then clearly Kp0q Ă Kp1q Ă . . . ; this chain stabilizes as the quotient module is noetherian. In
particular, Kpnq “ Kp2nq for large n.
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It follows that if x P M{N is divisible by an (n large) and nonzero, then anx is also nonzero.
Indeed, say x “ any ‰ 0; then y R Kpnq, so anx “ a2ny ‰ 0 or we would have y P Kp2nq “ Kpnq.
In M{N , the submodules

anpM{Nq X kerpanq

are equal to zero for large n. But our assumption was that N is irreducible. So one of these
submodules ofM{N is zero. That is, either anpM{Nq “ 0 or ker an “ 0. We get either injectivity
or nilpotence on M{N . This proves the result.

Irreducible and primary decompositions

We shall now show that in a finitely generated module over a noetherian ring, we can write 0 as an
intersection of coprimary modules. This decomposition, which is called a primary decomposition,
will be deduced from purely general reasoning.

2.3.4 Definition An irreducible decomposition of the module M is a representation N1 X

N2 ¨ ¨ ¨ XNk “ 0, where the Ni ĂM are irreducible submodules.

2.3.5 Proposition If M is finitely generated, then M has an irreducible decomposition. There
exist finitely many irreducible submodules N1, . . . , Nk with

N1 X ¨ ¨ ¨ XNk “ 0.

In other words,
M Ñ

à

M{Ni

is injective. So a finitely generated module over a noetherian ring can be imbedded in a direct
sum of primary modules, since by 2.3.3 the M{Ni are primary.

Proof. This is now purely formal.

Among the submodules of M , some may be expressible as intersections of finitely many irre-
ducibles, while some may not be. Our goal is to show that 0 is such an intersection. Let
M 1 ĂM be a maximal submodule of M such that M 1 cannot be written as such an intersection.
If no suchM 1 exists, then we are done, because then 0 can be written as an intersection of finitely
many irreducible submodules.

Now M 1 is not irreducible, or it would be the intersection of one irreducible submodule. It
follows M 1 can be written as M 1 “ M 1

1 XM 1
2 for two strictly larger submodules of M . But by

maximality, M 1
1,M

1
2 admit decompositions as intersections of irreducibles. So M 1 admits such a

decomposition as well, a contradiction.

2.3.6 Corollary For any finitely generated M , there exist coprimary submodules N1, . . . , Nk Ă

M such that N1 X ¨ ¨ ¨ XNk “ 0.

Proof. Indeed, every irreducible submodule is coprimary.
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For any M , we have an irreducible decomposition

0 “
č

Ni

for the Ni a finite set of irreducible (and thus coprimary) submodules. This decomposition here
is highly non-unique and non-canonical. Let’s try to pare it down to something which is a lot
more canonical.

The first claim is that we can collect together modules which are coprimary for some prime.

2.3.7 Lemma Let N1, N2 ĂM be p-coprimary submodules. Then N1XN2 is also p-coprimary.

Proof. We have to show that M{N1 XN2 is p-primary. Indeed, we have an injection

M{N1 XN2 �M{N1 ‘M{N2

which implies that AsspM{N1 XN2q Ă AsspM{N1q YAsspM{N2q “ tpu. So we are done.

In particular, if we do not want irreducibility but only primariness in the decomposition

0 “
č

Ni,

we can assume that each Ni is pi coprimary for some prime pi with the pi distinct.

2.3.8 Definition Such a decomposition of zero, where the different modules Ni are pi-coprimary
for different pi, is called a primary decomposition.

Uniqueness questions

In general, primary decomposition is not unique. Nonetheless, we shall see that a limited amount
of uniqueness does hold. For instance, the primes that occur are determined.

Let M be a finitely generated module over a noetherian ring R, and suppose N1 X ¨ ¨ ¨ XNk “ 0
is a primary decomposition. Let us assume that the decomposition is minimal : that is, if we
dropped one of the Ni, the intersection would no longer be zero. This implies that

Ni Č
č

j‰i

Nj

or we could omit one of the Ni. Then the decomposition is called a reduced primary decom-
position.

Again, what this tells us is that M �
À

M{Ni. What we have shown is that M can be
imbedded in a sum of pieces, each of which is p-primary for some prime, and the different primes
are distinct.

This is not unique. However,

2.3.9 Proposition The primes pi that appear in a reduced primary decomposition of zero are
uniquely determined. They are the associated primes of M .
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Proof. All the associated primes of M have to be there, because we have the injection

M �
à

M{Ni

so the associated primes of M are among those of M{Ni (i.e. the pi).

The hard direction is to see that each pi is an associated prime. I.e. if M{Ni is pi-primary,
then pi P AsspMq; we don’t need to use primary modules except for primes in the associated
primes. Here we need to use the fact that our decomposition has no redundancy. Without loss
of generality, it suffices to show that p1, for instance, belongs to AsspMq. We will use the fact
that

N1 Č N2 X . . . .

So this tells us that N2 X N3 X . . . is not equal to zero, or we would have a containment. We
have a map

N2 X ¨ ¨ ¨ XNk ÑM{N1;

it is injective, since the kernel is N1 X N2 X ¨ ¨ ¨ X Nk “ 0 as this is a decomposition. However,
M{N1 is p1-primary, so N2 X ¨ ¨ ¨ XNk is p1-primary. In particular, p1 is an associated prime of
N2 X ¨ ¨ ¨ XNk, hence of M .

The primes are determined. The factors are not. However, in some cases they are.

2.3.10 Proposition Let pi be a minimal associated prime of M , i.e. not containing any smaller
associated prime. Then the submodule Ni corresponding to pi in the reduced primary decomposi-
tion is uniquely determined: it is the kernel of

M ÑMpi .

Proof. We have that
Ş

Nj “ t0u ĂM . When we localize at pi, we find that

p
č

Njqpi “
č

pNjqpi “ 0

as localization is an exact functor. If j ‰ i, then M{Nj is pj primary, and has only pj as an
associated prime. It follows that pM{Njqpi has no associated primes, since the only associated
prime could be pj , and that’s not contained in pj . In particular, pNjqpi “Mpi .

Thus, when we localize the primary decomposition at pi, we get a trivial primary decomposition:
most of the factors are the full Mpi . It follows that pNiqpi “ 0. When we draw a commutative
diagram

Ni
//

��

pNiqpi “ 0

��
M //Mpi .

we find that Ni goes to zero in the localization.

Now if x P kerpM ÑMpi , then sx “ 0 for some s R pi. When we take the map M ÑM{Ni, sx
maps to zero; but s acts injectively on M{Ni, so x maps to zero in M{Ni, i.e. is zero in Ni.
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This has been abstract, so:

2.3.11 Example Let R “ Z. Let M “ Z‘ Z{p. Then zero can be written as

ZX Z{p

as submodules of M . But Z is p-coprimary, while Z{p is p0q-coprimary.

This is not unique. We could have considered

tpn, nq, n P Zu ĂM.

However, the zero-coprimary part has to be the p-torsion. This is because p0q is the minimal
ideal.

The decomposition is always unique, in general, if we have no inclusions among the prime ideals.
For Z-modules, this means that primary decomposition is unique for torsion modules. Any
torsion group is a direct sum of the p-power torsion over all primes p.

2.3.12 Remark Suppose R is a noetherian ring and Rp is a domain for each prime ideal p Ă R.
Then R is a finite direct product

ś

Ri for each Ri a domain.

To see this, consider the minimal primes pi P SpecR. There are finitely many of them, and argue
that since every localization is a domain, SpecR is disconnected into the pieces V ppiq. It follows
that there is a decomposition R “

ś

Ri where SpecRi has pi as the unique minimal prime. Each
Ri satisfies the same condition as R, so we may reduce to the case of R having a unique minimal
prime ideal. In this case, however, R is reduced, so its unique minimal prime ideal must be zero.

2.4. Artinian rings and modules

The notion of an artinian ring appears to be dual to that of a noetherian ring, since the chain
condition is simply reversed in the definition. However, the artinian condition is much stronger
than the noetherian one. In fact, artinianness actually implies noetherianness, and much more.
Artinian modules over non-artinian rings are frequently of interest as well; for instance, if R is
a noetherian ring and m is a maximal ideal, then for any finitely generated R-module M , the
module M{mM is artinian.

Definitions

2.4.1 Definition A commutative ring R is Artinian every descending chain of ideals I0 Ą I1 Ą

I2 Ą . . . stabilizes.

2.4.2 Definition The same definition makes sense for modules. We can define an R-module M
to be Artinian if every descending chain of submodules stabilizes.

In fact, as we shall see when we study dimension theory, we actually often do want to study
artinian modules over non-artinian rings, so this definition is useful.
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2.4.3 Remark A module is artinian if and only if every nonempty collection of submodules has
a minimal element.

2.4.4 Remark A ring which is a finite-dimensional algebra over a field is artinian.

2.4.5 Proposition If 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 is an exact sequence, then M is Artinian if
and only if M 1,M2 are.

This is proved in the same way as for noetherianness.

2.4.6 Corollary Let R be artinian. Then every finitely generated R-module is artinian.

Proof. Standard.

The main result

This definition is obviously dual to the notion of noetherianness, but it is much more restrictive.
The main result is:

2.4.7 Theorem A commutative ring R is artinian if and only if:

1. R is noetherian.

2. Every prime ideal of R is maximal.1

So artinian rings are very simple—small in some sense. They all look kind of like fields.

We shall prove this result in a series of small pieces. We begin with a piece of the forward
implication in 2.4.7:

2.4.8 Lemma Let R be artinian. Every prime p Ă R is maximal.

Proof. Indeed, if p Ă R is a prime ideal, R{p is artinian, as it is a quotient of an artinian ring.
We want to show that R{p is a field, which is the same thing as saying that p is maximal. (In
particular, we are essentially proving that an artinian domain is a field.)

Let x P R{p be nonzero. We have a descending chain

R{p Ą pxq Ą px2q . . .

which necessarily stabilizes. Then we have pxnq “ pxn`1q for some n. In particular, we have
xn “ yxn`1 for some y P R{p. But x is a non-zero-divisor, and we find 1 “ xy. So x is invertible.
Thus R{p is a field.

Next, we claim there are only a few primes in an artinian ring:

2.4.9 Lemma If R is artinian, there are only finitely many maximal ideals.
1This is much different from the Dedekind ring condition—there, zero is not maximal. An artinian domain is
necessarily a field, in fact.
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Proof. Assume otherwise. Then we have an infinite sequence

m1,m2, . . .

of distinct maximal ideals. Then we have the descending chain

R Ą m1 Ą m1 Xm2 Ą . . . .

This necessarily stabilizes. So for some n, we have that m1 X ¨ ¨ ¨ X mn Ă mn`1. However,
this means that mn`1 contains one of the m1, . . . ,mn since these are prime ideals (a familiar
argument). Maximality and distinctness of the mi give a contradiction.

In particular, we see that SpecR for an artinian ring is just a finite set. In fact, since each point
is closed, as each prime is maximal, the set has the discrete topology. As a result, SpecR for an
artinian ring is Hausdorff. (There are very few other cases.)

This means that R factors as a product of rings. Whenever SpecR can be written as a disjoint
union of components, there is a factoring of R into a product

ś

Ri. So R “
ś

Ri where each
Ri has only one maximal ideal. Each Ri, as a homomorphic image of R, is artinian. We find, as
a result,

add: mention that disconnections of SpecR are the same thing as idempotents.

2.4.10 Proposition Any artinian ring is a finite product of local artinian rings.

Now, let us continue our analysis. We may as well assume that we are working with local artinian
rings R in the future. In particular, R has a unique prime m, which must be the radical of R as
the radical is the intersection of all primes.

We shall now see that the unique prime ideal m Ă R is nilpotent by:

2.4.11 Lemma If R is artinian (not necessarily local), then RadpRq is nilpotent.

It is, of course, always true that any element of the radical RadpRq is nilpotent, but it is not
true for a general ring R that RadpRq is nilpotent as an ideal.

Proof. Call J “ RadpRq. Consider the decreasing filtration

R Ą J Ą J2 Ą J3 Ą . . . .

We want to show that this stabilizes at zero. A priori, we know that it stabilizes somewhere. For
some n, we have

Jn “ Jn
1

, n1 ě n.

Call the eventual stabilization of these ideals I. Consider ideals I 1 such that

II 1 ‰ 0.

There are now two cases:

1. No such I 1 exists. Then I “ 0, and we are done: the powers of Jn stabilize at zero.
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2. Otherwise, there is a minimal such I 1 (minimal for satisfying II 1 ‰ 0) as R is artinian.
Necessarily I 1 is nonzero, and furthermore there is x P I 1 with xI ‰ 0.

It follows by minimality that
I 1 “ pxq,

so I 1 is principal. Then xI ‰ 0; observe that xI is also pxIqI as I2 “ I from the definition
of I. Since pxIqI ‰ 0, it follows again by minimality that

xI “ pxq.

Hence, there is y P I such that xy “ x; but now, by construction I Ă J “ RadpRq,
implying that y is nilpotent. It follows that

x “ xy “ xy2 “ ¨ ¨ ¨ “ 0

as y is nilpotent. However, x ‰ 0 as xI ‰ 0. This is a contradiction, which implies that
the second case cannot occur.

We have now proved the lemma.

Finally, we may prove:

2.4.12 Lemma A local artinian ring R is noetherian.

Proof. We have the filtration R Ą m Ą m2 Ą . . . . This eventually stabilizes at zero by 2.4.11.
I claim that R is noetherian as an R-module. To prove this, it suffices to show that mk{mk`1

is noetherian as an R-module. But of course, this is annihilated by m, so it is really a vector
space over the field R{m. But mk{mk`1 is a subquotient of an artinian module, so is artinian
itself. We have to show that it is noetherian. It suffices to show now that if k is a field, and V a
k-vector space, then TFAE:

1. V is artinian.

2. V is noetherian.

3. V is finite-dimensional.

This is evident by linear algebra.

Now, finally, we have shown that an artinian ring is noetherian. We have to discuss the converse.
Let us assume now that R is noetherian and has only maximal prime ideals. We show that R is
artinian. Let us consider SpecR; there are only finitely many minimal primes by the theory of
associated primes: every prime ideal is minimal in this case. Once again, we learn that SpecR
is finite and has the discrete topology. This means that R is a product of factors

ś

Ri where
each Ri is a local noetherian ring with a unique prime ideal. We might as well now prove:

2.4.13 Lemma Let pR,mq be a local noetherian ring with one prime ideal. Then R is artinian.
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Proof. We know that m “ radpRq. So m consists of nilpotent elements, so by finite generatedness
it is nilpotent. Then we have a finite filtration

R Ą m Ą ¨ ¨ ¨ Ą mk “ 0.

Each of the quotients are finite-dimensional vector spaces, so artinian; this implies that R itself
is artinian.

2.4.14 Remark Note that artinian implies noetherian! This statement is true for rings (even
non-commutative rings), but not for modules. Take the same example M “ lim

ÝÑ
Z{pnZ over Z.

However, there is a module-theoretic statement which is related.

2.4.15 Corollary For a finitely generated moduleM over any commutative ring R, the following
are equivalent.

1. M is an artinian module.

2. M has finite length (i.e. is noetherian and artinian).

3. R{AnnM is an artinian ring.

Proof. add: proof

2.4.16 Remark If R is an artinian ring, and S is a finite R-algebra (finite as an R-module),
then S is artinian.

2.4.17 Remark Let M be an artinian module over a commutative ring R, f : M Ñ M an
injective homomorphism. Show that f is surjective, hence an isomorphism.

Vista: zero-dimensional non-noetherian rings

2.4.18 Definition (von Neumann) An element a P R is called von Neumann regular if there
is some x P R such that a “ axa.

2.4.19 Definition (McCoy) A element a P R is π-regular if some power of a is von Neumann
regular.

2.4.20 Definition A element a P R is strongly π-regular (in the commutative case) if the chain
aR Ą a2R Ą a3R Ą ¨ ¨ ¨ stabilizes.

A ring R is von Neumann regular (resp. (strongly) π-regular) if every element of R is.

2.4.21 Theorem (5.2) For a commutative ring R, the following are equivalent.

1. dimR “ 0.

2. R is rad-nil (i.e. the Jacobson radical JpRq is the nilradical ) and R{RadR is von Neumann
regular.

3. R is strongly π-regular.
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4. R is π-regular.

And any one of these implies

5. Any non-zero-divisor is a unit.

Proof. 1 ñ 2 ñ 3 ñ 4 ñ 1 and 4 ñ 5. We will not do 1 ñ 2 ñ 3 here.

(3 ñ 4) Given a P R, there is some n such that anR “ an`1R “ a2nR, which implies that
an “ anxan for some x.

(4 ñ 1) Is p maximal? Let a R p. Since a is π-regular, we have an “ a2nx, so anp1´ anxq “ 0,
so 1´ anx P p. It follows that a has an inverse mod p.

(4 ñ 5) Using 1´ anx “ 0, we get an inverse for a.

2.4.22 Example Any local rad-nil ring is zero dimensional, since 2 holds. In particular, for a
ring S and maximal ideal m, R “ S{mn is zero dimensional because it is a rad-nil local ring.

2.4.23 Example (Split-Null Extension) For a ring A and A-module M , let R “ A ‘ M
with the multiplication pa,mqpa1,m1q “ paa1, am1 ` a1mq (i.e. take the multiplication on M to
be zero). In R, M is an ideal of square zero. (A is called a retract of R because it sits in R and
can be recovered by quotienting by some complement.) If A is a field, then R is a rad-nil local
ring, with maximal ideal M .
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In algebraic geometry, working in classical affine space AnC of points in Cn turns out to be
insufficient for various reasons. Instead, it is often more convenient to consider varieties in
projective space PnC, which is the set of lines through the origin in Cn`1. In other words, it is the
set of all n` 1-tuples rz0, . . . , zns P Cn`1 ´ t0u modulo the relation that

rz0, . . . , zns “ rλz0, . . . , λzns, λ P C˚. (3.0.1)

Varieties in projective space have many convenient properties that affine varieties do not: for
instance, intersections work out much more nicely when intersections at the extra “points at
infinity” are included. Moreover, when endowed with the complex topology, (complex) projective
varieties are compact, unlike all but degenerate affine varieties (i.e. finite sets).

It is when defining the notion of a “variety” in projective space that one encounters gradedness.
Now a variety in Pn must be cut out by polynomials F1, . . . , Fk P Crx0, . . . , xns; that is, a point
represented by rz0, . . . , zns lies in the associated variety if and only if Fipz0, . . . , znq “ 0 for each
i. For this to make sense, or to be independent of the choice of z0, . . . , zn up to rescaling as in
(3.0.1), it is necessary to assume that each Fi is homogeneous.

Algebraically, AnC is the set of maximal ideals in the polynomial ring Cn. Projective space is
defined somewhat more geometrically (as a set of lines) but it turns out that there is an algebraic
interpretation here too. The points of projective space are in bijection with the homogeneous
maximal ideals of the polynomial ring Crx0, . . . , xns. We shall define more generally the Proj
of a graded ring in this chapter. Although we shall not repeatedly refer to this concept in the
sequel, it will be useful for readers interested in algebraic geometry.

We shall also introduce the notion of a filtration. A filtration allows one to endow a given module
with a topology, and one can in fact complete with respect to this topology. This construction
will be studied in ??.

3.1. Graded rings and modules

Much of the material in the present section is motivated by algebraic geometry; see ?, volume II
for the construction of ProjR as a scheme.
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Basic definitions

3.1.1 Definition A graded ring R is a ring together with a decomposition (as abelian groups)

R “ R0 ‘R1 ‘ . . .

such that RmRn Ă Rm`n for all m,n P Zě0, and where R0 is a subring (i.e. 1 P R0). A
Z-graded ring is one where the decomposition is into

À

nPZRn. In either case, the elements of
the subgroup Rn are called homogeneous of degree n.

The basic example to keep in mind is, of course, the polynomial ring Rrx1, . . . , xns for R any
ring. The graded piece of degree n consists of the homogeneous polynomials of degree n.

Consider a graded ring R.

3.1.2 Definition A graded R-module is an ordinary R-module M together with a decomposi-
tion

M “
à

kPZ
Mk

as abelian groups, such that RmMn Ă Mm`n for all m P Zě0, n P Z. Elements in one of these
pieces are called homogeneous. Any m P M is thus uniquely a finite sum

ř

mni where each
mni PMni is homogeneous of degree ni.

Clearly there is a category of graded R-modules, where the morphisms are the morphisms of
R-modules that preserve the grading (i.e. take homogeneous elements to homogeneous elements
of the same degree).

Since we shall focus on positively graded rings, we shall simply call them graded rings; when
we do have to consider rings with possibly negative gradings, we shall highlight this explicitly.
Note, however, that we allow modules with negative gradings freely.

In fact, we shall note an important construction that will generally shift the graded pieces such
that some of them might be negative:

3.1.3 Definition Given a graded module M , we define the twist Mpnq as the same R-module
but with the grading

Mpnqk “Mn`k.

This is a functor on the category of graded R-modules.

In algebraic geometry, the process of twisting allows one to construct canonical line bundles on
projective space. Namely, a twist of R itself will lead to a line bundle on projective space that
in general is not trivial. See ?, II.5.

Here are examples:

3.1.4 Example (An easy example) If R is a graded ring, then R is a graded module over
itself.
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3.1.5 Example (Another easy example) If S is any ring, then S can be considered as a
graded ring with S0 “ S and Si “ 0 for i ą 0. Then a graded S-module is just a Z-indexed
collection of (ordinary) S-modules.

3.1.6 Example (The blowup algebra) This example is a bit more interesting, and will be
used in the sequel. Let S be any ring, and let J Ă S be an ideal. We can make R “ S‘J‘J2‘. . .
(the so-called blowup algebra) into a graded ring, by defining the multiplication the normal way
except that something in the ith component times something in the jth component goes into the
i` jth component.

Given any S-moduleM , there is a graded R-moduleM‘JM‘J2M‘ . . . , where multiplication
is defined in the obvious way. We thus get a functor from S-modules to graded R-modules.

3.1.7 Definition Fix a graded ring R. Let M be a graded R-module and N Ă M an R-
submodule. Then N is called a graded submodule if the homogeneous components of anything
in N are in N . If M “ R, then a graded ideal is also called a homogeneous ideal.

In particular, a graded submodule is automatically a graded module in its own right.

3.1.8 Lemma 1. The sum of two graded submodules (in particular, homogeneous ideals) is
graded.

2. The intersection of two graded submodules is graded.

Proof. Immediate.

One can grade the quotients of a graded module by a graded submodule. If N ĂM is a graded
submodule, then M{N can be made into a graded module, via the isomorphism of abelian
groups

M{N »
à

kPZ
Mk{Nk.

In particular, if a Ă R is a homogeneous ideal, then R{a is a graded ring in a natural way.

3.1.9 Remark (exercise) Let R be a graded ring. Does the category of graded R-modules
admit limits and colimits?

Homogeneous ideals

Recall that a homogeneous ideal in a graded ring R is simply a graded submodule of R. We now
prove a useful result that enables us tell when an ideal is homogeneous.

3.1.10 Proposition Let R be a graded ring, I Ă R an ideal. Then I is a homogeneous ideal if
and only if it can be generated by homogeneous elements.
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Proof. If I is a homogeneous ideal, then by definition

I “
à

i

I XRi,

so I is generated by the sets tI XRiuiPZě0
of homogeneous elements.

Conversely, let us suppose that I is generated by homogeneous elements thαu. Let x P I be
arbitrary; we can uniquely decompose x as a sum of homogeneous elements, x “

ř

xi, where
each xi P Ri. We need to show that each xi P I in fact.

To do this, note that x “
ř

qαhα where the qα belong to R. If we take ith homogeneous
components, we find that

xi “
ÿ

pqαqi´deg hαhα,

where pqαqi´deg hα refers to the homogeneous component of qα concentrated in the degree i ´
deg hα. From this it is easy to see that each xi is a linear combination of the hα and consequently
lies in I.

3.1.11 Example If a, b Ă R are homogeneous ideals, then so is ab. This is clear from proposi-
tion 3.1.10.

3.1.12 Example Let k be a field. The ideal px2 ` yq in krx, ys is not homogeneous. However,
we find from proposition 3.1.10 that the ideal px2 ` y2, y3q is.

Since we shall need to use them to define ProjR in the future, we now prove a result about
homogeneous prime ideals specifically. Namely, “primeness” can be checked just on homogeneous
elements for a homogeneous ideal.

3.1.13 Lemma Let p Ă R be a homogeneous ideal. In order that p be prime, it is necessary
and sufficient that whenever x, y are homogeneous elements such that xy P p, then at least one
of x, y P p.

Proof. Necessity is immediate. For sufficiency, suppose a, b P R and ab P p. We must prove that
one of these is in p. Write

a “ ak1 ` a1 ` ¨ ¨ ¨ ` ak2 , b “ bm1 ` ¨ ¨ ¨ ` bm2

as a decomposition into homogeneous components (i.e. ai is the ith component of a), where
ak2 , bm2 are nonzero and of the highest degree.

Let k “ k2 ´ k1,m “ m2 ´m1. So there are k homogeneous terms in the expression for a, m in
the expression for b. We will prove that one of a, b P p by induction on m`n. When m`n “ 0,
then it is just the condition of the lemma. Suppose it true for smaller values of m` n. Then ab
has highest homogeneous component ak2bm2 , which must be in p by homogeneity. Thus one of
ak2 , bm2 belongs to p. Say for definiteness it is ak. Then we have that

pa´ ak2qb ” ab ” 0 mod p

so that pa´ ak2qb P p. But the resolutions of a´ ak2 , b have a smaller m` n-value: a´ ak2 can
be expressed with k ´ 1 terms. By the inductive hypothesis, it follows that one of these is in p,
and since ak P p, we find that one of a, b P p.
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Finiteness conditions

There are various finiteness conditions (e.g. noetherianness) that one often wants to impose in
algebraic geometry. Since projective varieties (and schemes) are obtained from graded rings, we
briefly discuss these finiteness conditions for them.

3.1.14 Definition For a graded ring R, write R` “ R1 ‘ R2 ‘ . . . . Clearly R` Ă R is a
homogeneous ideal. It is called the irrelevant ideal.

When we define the Proj of a ring, prime ideals containing the irrelevant ideal will be no good.
The intuition is that when one is working with PnC, the irrelevant ideal in the corresponding ring
Crx0, . . . , xns corresponds to all homogeneous polynomials of positive degree. Clearly these have
no zeros except for the origin, which is not included in projective space: thus the common zero
locus of the irrelevant ideal should be H Ă PnC.

3.1.15 Proposition Suppose R “ R0 ‘ R1 ‘ . . . is a graded ring. Then if a subset S Ă R`
generates the irrelevant ideal R` as R-ideal, it generates R as R0-algebra.

The converse is clear as well. Indeed, if S Ă R` generates R as an R0-algebra, clearly it generates
R` as an R-ideal.

Proof. Let T Ă R be the R0-algebra generated by S. We shall show inductively that Rn Ă T .
This is true for n “ 0. Suppose n ą 0 and the assertion true for smaller n. Then, we have

Rn “ RS XRn by assumption
“ pR0 ‘R1 ‘ ¨ ¨ ¨ ‘Rn´1qpSq XRn because S Ă R`

Ă pR0rSsqpSq XRn by inductive hypothesis
Ă R0pSq.

3.1.16 Theorem The graded ring R is noetherian if and only if R0 is noetherian and R is
finitely generated as R0-algebra.

Proof. One direction is clear by Hilbert’s basis theorem. For the other, suppose R noetherian.
Then R0 is noetherian because any sequence I1 Ă I2 Ă . . . of ideals of R0 leads to a sequence of
ideals I1R Ă I2R Ă . . . , and since these stabilize, the original I1 Ă I2 Ă . . . must stabilize too.
(Alternatively, R0 “ R{R`, and taking quotients preserves noetherianness.) Moreover, since
R` is a finitely generated R-ideal by noetherianness, it follows that R is a finitely generated
R0-algebra too: we can, by proposition 3.1.15, take as R0-algebra generators for R a set of
generators for the ideal R`.

The basic finiteness condition one often needs is that R should be finitely generated as an R0-
algebra. We may also want to have that R is generated by R1, quite frequently—in algebraic
geometry, this implies a bunch of useful things about certain sheaves being invertible. (See ?,
volume II.2.) As one example, having R generated as R0-algebra by R1 is equivalent to having
R a graded quotient of a polynomial algebra over R0 (with the usual grading). Geometrically,
this equates to having ProjR contained as a closed subset of some projective space over R0.

However, sometimes we have the first condition and not the second, though if we massage things
we can often assure generation by R1. Then the next idea comes in handy.
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3.1.17 Definition Let R be a graded ring and d P N. We set Rpdq “
À

kPZě0
Rkd; this is

a graded ring and R0-algebra. If M is a graded R-module and l P t0, 1, . . . , d´ 1u, we write
M pd,lq “

À

k”l mod dMk. Then M pd,lq is a graded Rpdq-module.

We in fact have a functor ¨pd,lq from graded R-modules to graded Rpdq-modules.

One of the implications of the next few results is that, by replacing R with Rpdq, we can make
the condition “generated by terms of degree 1” happen. But first, we show that basic finiteness
is preserved if we filter out some of the terms.

3.1.18 Proposition Let R be a graded ring and a finitely generated R0-algebra. Let M be a
finitely generated R-module.

1. Each Mi is finitely generated over R0, and the Mi become zero when i ! 0.

2. M pd,lq is a finitely generated Rpdq module for each d, l. In particular, M itself is a finitely
generated Rpdq-module.

3. Rpdq is a finitely generated R0-algebra.

Proof. Choose homogeneous generators m1, . . . ,mk PM . For instance, we can choose the homo-
geneous components of a finite set of generators for M . Then every nonzero element of M has
degree at least minpdegmiq. This proves the last part of (1). Moreover, let r1, . . . , rp be alge-
bra generators of R over R0. We can assume that these are homogeneous with positive degrees
d1, . . . , dp ą 0. Then the R0-module Mi is generated by the elements

ra1
1 . . . r

ap
p ms

where
ř

ajdj ` degms “ i. Since the dj ą 0 and there are only finitely many ms’s, there are
only finitely many such elements. This proves the rest of (1).

To prove (2), note first that it is sufficient to show thatM is finitely generated over Rpdq, because
the M pd,lq are Rpdq-homomorphic images (i.e. quotient by the M pd1,lq for d1 ‰ d). Now M is
generated as R0-module by the ra1

1 . . . r
ap
p ms for a1, . . . , ap ě 0 and s “ 1, . . . , k. In particular,

by the euclidean algorithm in elementary number theory, it follows that the ra1
1 . . . r

ap
p ms for

a1, . . . , ap P r0, d ´ 1s and s “ 1, . . . , k generate M over Rpdq, as each power rdi P Rpdq. In
particular, R is finitely generated over Rpdq.

When we apply (2) to the finitely generated R-module R`, it follows that Rpdq` is a finitely
generated Rpdq-module. This implies that Rpdq is a finitely generated R0-algebra by proposi-
tion 3.1.15.

In particular, by proposition 4.1.12 (later in the book!) R is integral over Rpdq: this means that
each element of R satisfies a monic polynomial equation with Rpdq-coefficients. This can easily
be seen directly. The dth power of a homogeneous element lies in Rpdq.

3.1.19 Remark Part (3), the preservation of the basic finiteness condition, could also be proved
as follows, at least in the noetherian case (with S “ Rpdq). We shall assume familiarity with the
material in ?? for this brief digression.
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3.1.20 Lemma Suppose R0 Ă S Ă R is an inclusion of rings with R0 noetherian. Suppose R is
a finitely generated R0-algebra and R{S is an integral extension. Then S is a finitely generated
R0-algebra.

In the case of interest, we can take S “ Rpdq. The point of the lemma is that finite generation
can be deduced for subrings under nice conditions.

Proof. We shall start by finding a subalgebra S1 Ă S such that R is integral over S1, but S1

is a finitely generated R0-algebra. The procedure will be a general observation of the flavor
of “noetherian descent” to be developed in ??. Then, since R is integral over S1 and finitely
generated as an algebra, it will be finitely generated as a S1-module. S, which is a sub-S1-
module, will equally be finitely generated as a S1-module, hence as an R0-algebra. So the point
is to make S finitely generated as a module over a “good” ring.

Indeed, let r1, . . . , rm be generators of R{R0. Each satisfies an integral equation rnkk `Pkprkq “ 0,
where Pk P SrXs has degree less than nk. Let S1 Ă S Ă R be the subring generated over R0 by
the coefficients of all these polynomials Pk.

Then R is, by definition, integral over S1. Since R is a finitely generated S1-algebra, it follows
by proposition 4.1.12 that it is a finitely generated S1-module. Then S, as a S1-submodule is a
finitely generated S1-module by noetherianness. Therefore, S is a finitely generated R0-algebra.

This result implies, incidentally, the following useful corollary:

3.1.21 Corollary Let R be a noetherian ring. If a finite group G acts on a finitely generated
R-algebra S, the ring of invariants SG is finitely generated.

Proof. Apply lemma 3.1.20 to R,SG, S. One needs to check that S is integral over SG. But each
s P S satisfies the equation

ź

σPG

pX ´ σpsqq,

which has coefficients in SG.

This ends the digression.

We next return to our main goals, and let R be a graded ring, finitely generated as an R0-algebra,
as before; let M be a finitely generated R-module. We show that we can have Rpdq generated by
terms of degree d (i.e. “degree 1” if we rescale) for d chosen large.

3.1.22 Lemma Hypotheses as above, there is a pair pd, n0q such that

RdMn “Mn`d

for n ě n0.
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Proof. Indeed, selectR-module generatorsm1, . . . ,mk PM andR0-algebra generators r1, . . . , rp P
R as in the proof of proposition 3.1.18; use the same notation for their degrees, i.e. dj “ deg rj .
Let d be the least common multiple of the dj . Consider the family of elements

si “ r
d{di
i P Rd.

Then suppose m P Mn for n ą d` sup degmi. We have that m is a sum of products of powers
of the trju and the tmiu, each term of which we can assume is of degree n. In this case, since
in each term, at least one of the trju must occur to power ě d

dj
, we can write each term in the

sum as some sj times something in Mn´d.

In particular, Mn “ RdMn´d.

3.1.23 Proposition Suppose R is a graded ring and finitely generated R0-algebra. Then there
is d P N such that Rpdq is generated over R0 by Rd.

What this proposition states geometrically is that if we apply the functor R ÞÑ Rpdq for large d
(which, geometrically, is actually harmless), one can arrange things so that ProjR (not defined
yet!) is contained as a closed subscheme of ordinary projective space.

Proof. Consider R as a finitely generated, graded R-module. Suppose d1 is as in the proposi-
tion 3.1.23 (replacing d, which we reserve for something else), and choose n0 accordingly. So we
have Rd1Rm “ Rm`d1 whenever m ě n0. Let d be a multiple of d1 which is greater than n0.

Then, iterating, we have RdRn “ Rd`n if n ě d since d is a multiple of d1. In particular, it
follows that Rnd “ pRdqn for each n P N, which implies the statement of the proposition.

As we will see below, taking Rpdq does not affect the Proj, so this is extremely useful.

3.1.24 Example Let k be a field. Then R “ krx2s Ă krxs (with the grading induced from krxs)
is a finitely generated graded k-algebra, which is not generated by its elements in degree one
(there are none!). However, Rp2q “ krx2s is generated by x2.

We next show that taking the Rpdq always preserves noetherianness.

3.1.25 Proposition If R is noetherian, then so is Rpdq for any d ą 0.

Proof. If R is noetherian, then R0 is noetherian and R is a finitely generated R0-algebra by
theorem 3.1.16. proposition 3.1.18 now implies that Rpdq is also a finitely generated R0-algebra,
so it is noetherian.

The converse is also true, since R is a finitely generated Rpdq-module.
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Localization of graded rings

Next, we include a few topics that we shall invoke later on. First, we discuss the interaction
of homogeneity and localization. Under favorable circumstances, we can give Z-gradings to
localizations of graded rings.

3.1.26 Definition If S Ă R is a multiplicative subset of a graded (or Z-graded) ring R consisting
of homogeneous elements, then S´1R is a Z-graded ring: we let the homogeneous elements of
degree n be of the form r{s where r P Rn`deg s. We write RpSq for the subring of elements of
degree zero; there is thus a map R0 Ñ RpSq.

If S consists of the powers of a homogeneous element f , we write Rpfq for RS . If p is a homoge-
neous ideal and S the set of homogeneous elements of R not in p, we write Rppq for RpSq.

Of course, RpSq has a trivial grading, and is best thought of as a plain, unadorned ring. We shall
show that Rpfq is a special case of something familiar.

3.1.27 Proposition Suppose f is of degree d. Then, as plain rings, there is a canonical iso-
morphism Rpfq » Rpdq{pf ´ 1q.

Proof. The homomorphism Rpdq Ñ Rpfq is defined to map g P Rkd to g{fd P Rpfq. This is then
extended by additivity to non-homogeneous elements. It is clear that this is multiplicative, and
that the ideal pf ´ 1q is annihilated by the homomorphism. Moreover, this is surjective.

We shall now define an inverse map. Let x{fn P Rpfq; then x must be a homogeneous element of
degree divisible by d. We map this to the residue class of x in Rpdq{pf ´ 1q. This is well-defined;
if x{fn “ y{fm, then there is N with

fN pxfm ´ yfnq “ 0,

so upon reduction (note that f gets reduced to 1!), we find that the residue classes of x, y are
the same, so the images are the same.

Clearly this defines an inverse to our map.

3.1.28 Corollary Suppose R is a graded noetherian ring. Then each of the Rpfq is noetherian.

Proof. This follows from the previous result and the fact that Rpdq is noetherian (3.1.25).

More generally, we can define the localization procedure for graded modules.

3.1.29 Definition Let M be a graded R-module and S Ă R a multiplicative subset consisting
of homogeneous elements. Then we define MpSq as the submodule of the graded module S´1M
consisting of elements of degree zero. When S consists of the powers of a homogeneous element
f P R, we write Mpfq instead of MpSq. We similarly define Mppq for a homogeneous prime ideal
p.
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Then clearly MpSq is a RpSq-module. This is evidently a functor from graded R-modules to
RpSq-modules.

We next observe that there is a generalization of 3.1.27.

3.1.30 Proposition Suppose M is a graded R-module, f P R homogeneous of degree d. Then
there is an isomorphism

Mpfq »M pdq{pf ´ 1qM pdq

of Rpdq-modules.

Proof. This is proved in the same way as 3.1.27. Alternatively, both are right-exact functors
that commute with arbitrary direct sums and coincide on R, so must be naturally isomorphic by
a well-known bit of abstract nonsense.1

In particular:

3.1.31 Corollary Suppose M is a graded R-module, f P R homogeneous of degree 1. Then we
have

Mpfq »M{pf ´ 1qM »M bR R{pf ´ 1q.

The Proj of a ring

Let R “ R0 ‘R1 ‘ . . . be a graded ring.

3.1.32 Definition Let ProjR denote the set of homogeneous prime ideals of R that do not
contain the irrelevant ideal R`.2

We can put a topology on ProjR by setting, for a homogeneous ideal b,

V pbq “ tp P ProjR : p Ą bu

. These sets satisfy

1. V p
ř

biq “
Ş

V pbiq.

2. V pabq “ V paq Y V pbq.

3. V pRad aq “ V paq.

Note incidentally that we would not get any more closed sets if we allowed all ideals b, since to
any b we can consider its “homogenization.” We could even allow all sets.

In particular, the V ’s do in fact yield a topology on ProjR (setting the open sets to be comple-
ments of the V ’s). As with the affine case, we can define basic open sets. For f homogeneous
of positive degree, define D1pfq to be the collection of homogeneous ideals (not containing R`)
that do not contain f ; clearly these are open sets.

Let a be a homogeneous ideal. Then we claim that:
1Citation needed.
2Recall that an ideal a Ă R for R graded is homogeneous if the homogeneous components of a belong to a.
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3.1.33 Lemma V paq “ V paXR`q.

Proof. Indeed, suppose p is a homogeneous prime not containing S` such that all homogeneous
elements of positive degree in a (i.e., anything in aXR`) belongs to p. We will show that a Ă p.

Choose a P a X R0. It is sufficient to show that any such a belongs to p since we are working
with homogeneous ideals. Let f be a homogeneous element of positive degree that is not in p.
Then af P aXR`, so af P p. But f R p, so a P p.

Thus, when constructing these closed sets V paq, it suffices to work with ideals contained in the
irrelevant ideal. In fact, we could take a in any prescribed power of the irrelevant ideal, since
taking radicals does not affect V .

3.1.34 Proposition We have D1pfq X D1pgq “ D1pfgq. Also, the D1pfq form a basis for the
topology on ProjR.

Proof. The first part is evident, by the definition of a prime ideal. We prove the second. Note
that V paq is the intersection of the V ppfqq for the homogeneous f P aXR`. Thus ProjR´V paq
is the union of these D1pfq. So every open set is a union of sets of the form D1pfq.

We shall now show that the topology is actually rather familiar from the affine case, which is
not surprising, since the definition is similar.

3.1.35 Proposition D1pfq is homeomorphic to SpecRpfq under the map

pÑ pRf XRpfq

sending homogeneous prime ideals of R not containing f into primes of Rpfq.

Proof. Indeed, let p be a homogeneous prime ideal of R not containing f . Consider φppq “
pRf XRpfq as above. This is a prime ideal, since pRf is a prime ideal in Rf by basic properties
of localization, and Rpfq Ă Rf is a subring. (It cannot contain the identity, because that would
imply that a power of f lay in p.)

So we have defined a map φ : D1pfq Ñ SpecRpfq. We can define its inverse ψ as follows. Given
q Ă Rpfq prime, we define a prime ideal p “ ψpqq of R by saying that a homogeneous element
x P R belongs to p if and only if xdeg f{fdeg x P q. It is easy to see that this is indeed an ideal,
and that it is prime by 3.1.13.

Furthermore, it is clear that φ ˝ψ and ψ ˝ φ are the identity. This is because x P p for p P D1pfq
if and only if fnx P p for some n.

We next need to check that these are continuous, hence homeomorphisms. If a Ă R is a homo-
geneous ideal, then V paq XD1pfq is mapped to V paRf XRpfqq Ă SpecRpfq, and vice versa.

3.2. Filtered rings

In practice, one often has something weaker than a grading. Instead of a way of saying that an
element is of degree d, one simply has a way of saying that an element is “of degree at most d.”
This leads to the definition of a filtered ring (and a filtered module). We shall use this definition
in placing topologies on rings and modules and, later, completing them.
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Definition

3.2.1 Definition A filtration on a ring R is a sequence of ideals R “ I0 Ą I1 Ą . . . such that
ImIn Ă Im`n for each m,n P Zě0. A ring with a filtration is called a filtered ring.

A filtered ring is supposed to be a generalization of a graded ring. If R “
À

Rk is graded, then
we can make R into a filtered ring in a canonical way by taking the ideal Im “

À

kěmRk (notice
that we are using the fact that R has only pieces in nonnegative gradings!).

We can make filtered rings into a category: a morphism of filtered rings φ : R Ñ S is a ring-
homomorphism preserving the filtration.

3.2.2 Example (The I-adic filtration) Given an ideal I Ă R, we can take powers of I to
generate a filtration. This filtration R Ą I Ą I2 Ą . . . is called the I-adic filtration, and is
especially important when R is local and I the maximal ideal.

If one chooses the polynomial ring krx1, . . . , xns over a field with n variables and takes the
px1, . . . , xnq-adic filtration, one gets the same as the filtration induced by the usual grading.

3.2.3 Example As a specialization of the previous example, consider the power series ring
R “ krrxss over a field k with one indeterminate x. This is a local ring (with maximal ideal pxq),
and it has a filtration with Ri “ pxiq. Note that this ring, unlike the polynomial ring, is not a
graded ring in any obvious way.

When we defined graded rings, the first thing we did thereafter was to define the notion of a
graded module over a graded ring. We do the analogous thing for filtered modules.

3.2.4 Definition Let R be a filtered ring with a filtration I0 Ą I1 Ą . . . . A filtration on an
R-module M is a decreasing sequence of submodules

M “M0 ĄM1 ĄM2 Ą . . .

such that ImMn ĂMn`m for each m,n. A module together with a filtration is called a filtered
module.

As usual, there is a category of filtered modules over a fixed filtered ring R, with morphisms the
module-homomorphisms that preserve the filtrations.

3.2.5 Example (The I-adic filtration for modules) LetR be any ring and I Ă R any ideal.
Then if we make R into a filtered ring with the I-adic filtration, we can make any R-module M
into a filtered R-module by giving M the filtration

M Ą IM Ą I2M Ą . . . ,

which is also called the I-adic filtration.
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The associated graded

We shall now describe a construction that produces graded things from filtered ones.

3.2.6 Definition Given a filtered ring R (with filtration tInu), the associated graded ring
grpRq is the graded ring

grpRq “
8
à

n“0

In{In`1.

This is made into a ring by the following procedure. Given a P In representing a class a P In{In`1

and b P Im representing a class b P Im{Im`1, we define ab to be the class in In`m{In`m`1

represented by ab.

It is easy to check that if different choices of representing elements a, b were made in the above
description, the value of ab thus defined would still be the same, so that the definition is reason-
able.

3.2.7 Example Consider R “ Zppq (the localization at ppq) with the ppq-adic topology. Then
grpRq “ Z{prts, as a graded ring. For the successive quotients of ideals are of the form Z{p, and
it is easy to check that multiplication lines up in the appropriate form.

In general, as we will see below, when one takes the gr of a noetherian ring with the I-adic
topology for some ideal I, one always gets a noetherian ring.

3.2.8 Definition Let R be a filtered ring, and M a filtered R-module (with filtration tMnu).
We define the associated graded module grpMq as the graded grpRq-module

grpMq “
à

n

Mn{Mn`1

where multiplication by an element of grpRq is defined in a similar manner as above.

In other words, we have defined a functor gr from the category of filtered R-modules to the
category of graded grpRq modules.

Let R be a filtered ring, and M a finitely generated filtered R-module. In general, grpMq cannot
be expected to be a finitely generated grpRq-module.

3.2.9 Example Consider the ring Zppq (the localization of Z at p), which we endow with the
p2-adic (i.e., pp2q-adic) filtration. The associated graded is Z{p2rts.

Consider M “ Zppq with the filtration Mm “ pp
mq, i.e. the usual ppq-adic topology. The claim

is that grpMq is not a finitely generated Z{p2rts-module. This will follow from ?? below, but
we can see it directly: multiplication by t acts by zero on grpMq (because this corresponds to
multiplying by p2 and shifting the degree by one). However, grpMq is nonzero in every degree.
If grpMq were finitely generated, it would be a finitely generated Z{p2Z-module, which it is not.
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Topologies

We shall now see that filtered rings and modules come naturally with topologies on them.

3.2.10 Definition A topological ring is a ring R together with a topology such that the
natural maps

RˆRÑ R, px, yq ÞÑ x` y

RˆRÑ R, px, yq ÞÑ xy

RÑ R, x ÞÑ ´x

are continuous (where RˆR has the product topology).

add: discussion of algebraic objects in categories

In practice, the topological rings that we will be interested will exclusively be linearly topologized
rings.

3.2.11 Definition A topological ring is linearly topologized if there is a neighborhood basis
at 0 consisting of open ideals.

Given a filtered ring R with a filtration of ideals tInu, we can naturally linearly topologize R.
Namely, we take as a basis the cosets x ` In for x P R,n P Zě0. It is then clear that the tInu
form a neighborhood basis at the origin (because any neighborhood x ` In containing 0 must
just be In!).

3.2.12 Example For instance, given any ring R and any ideal I Ă R, we can consider the
I-adic topology on R. Here an element is “small” (i.e., close to zero) if it lies in a high power
of I.

3.2.13 Proposition A topology on R defined by the filtration tInu is Hausdorff if and only if
Ş

In “ 0.

Proof. Indeed, to say that R is Hausdorff is to say that any two distinct elements x, y P R can
be separated by disjoint neighborhoods. If

Ş

In “ 0, we can find N large such that x´ y R IN .
Then x` IN , y` IN are disjoint neighborhoods of x, y. The converse is similar: if

Ş

In ‰ 0, then
no neighborhoods can separate a nonzero element in

Ş

In from 0.

Similarly, if M is a filtered R-module with a filtration tMnu, we can topologize M by choosing
the tMnu to be a neighborhood basis at the origin. Then M becomes a topological group, that
is a group with a topology such that the group operations are continuous. In the same way, we
find:

3.2.14 Proposition The topology on M is Hausdorff if and only if
Ş

Mn “ 0.
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Moreover, because of the requirement that RmMn ĂMn`m, it is easy to see that the map

RˆM ÑM

is itself continuous. Thus, M is a topological module.

Here is another example. SupposeM is a linearly topologized module with a basis of submodules
tMαu at the origin. Then any submodule N Ă M becomes a linearly topologized module with
a basis of submodules tN XMαu at the origin with the relative topology.

3.2.15 Proposition Suppose M is filtered with the tMnu. If N Ă M is any submodule, then
the closure N is the intersection

Ş

N `Mn.

Proof. Recall that x P N is the same as stipulating that every neighborhood of x intersect N .
In other words, any basic neighborhood of x has to intersect N . This means that for each n,
x`Mn XN ‰ H, or in other words x PMn `N .

3.3. The Artin-Rees Lemma

We shall now show that for noetherian rings and modules, the I-adic topology is stable under
passing to submodules; this useful result, the Artin-Rees lemma, will become indispensable in
our analysis of dimension theory in the future.

More precisely, consider the following problem. Let R be a ring and I Ă R an ideal. Then for
any R-module M , we can endow M with the I-adic filtration tInMu, which defines a topology
on M . If N Ă M is a submodule, then N inherits the subspace topology from M (i.e. that
defined by the filtration tInM XNu). But N can also be topologized by simply taking the I-adic
topology on it. The Artin-Rees lemma states that these two approaches give the same result.

The Artin-Rees Lemma

3.3.1 Theorem (Artin-Rees lemma) Let R be noetherian, I Ă R an ideal. Suppose M is a
finitely generated R-module and M 1 Ă M a submodule. Then the I-adic topology on M induces
the I-adic topology on M 1. More precisely, there is a constant c such that

In`cM XM 1 Ă InM 1.

So the two filtrations tInM XM 1u, tInM 1u on M 1 are equivalent up to a shift.

Proof. The strategy to prove Artin-Rees will be as follows. Call a filtration tMnu on an R-module
M (which is expected to be compatible with the I-adic filtration on R, i.e. InMm Ă Mm`n for
all n,m) I-good if IMn “Mn`1 for large n " 0. Right now, we have the very I-good filtration
tInMu on M , and the induced filtration tInM XM 1u on M 1. The Artin-Rees lemma can be
rephrased as saying that this filtration on M 1 is I-good: in fact, this is what we shall prove.
It follows that if one has an I-good filtration on M , then the induced filtration on M 1 is itself
I-good.
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To do this, we shall give an interpretation of I-goodness in terms of the blowup algebra, and use
its noetherianness. Recall that this is defined as S “ R ‘ I ‘ I2 ` . . . , where multiplication
is defined in the obvious manner (see example 3.1.6). It can be regarded as a subring of the
polynomial ring Rrts where the coefficient of ti is required to be in Ii. The blowup algebra is
clearly a graded ring.

Given a filtration tMnu on an R-module M (compatible with the I-adic filtration of M), we can
make

À8
n“0Mn into a graded S-module in an obvious manner.

Here is the promised interpretation of I-goodness:

3.3.2 Lemma Then the filtration tMnu of the finitely generated R-module M is I-good if and
only if

À

Mn is a finitely generated S-module.

Proof. Let S1 Ă S be the subset of elements of degree one. If
À

Mn is finitely generated as
an S-module, then S1p

À

Mnq and
À

Mn agree in large degrees by lemma 3.1.22; however, this
means that IMn´1 “Mn for n " 0, which is I-goodness.

Conversely, if tMnu is an I-good filtration, then once the I-goodness starts (say, for n ą N ,
we have IMn “ Mn`1), there is no need to add generators beyond MN . In fact, we can use
R-generators for M0, . . . ,MN in the appropriate degrees to generate

À

Mn as an R1-module.

Finally, let tMnu be an I-good filtration on the finitely generated R-module M . Let M 1 Ă M
be a submodule; we will, as promised, show that the induced filtration on M 1 is I-good. Now
the associated module

À8
n“0pI

nM XM 1q is an S-submodule of
À8

n“0Mn, which by lemma 3.3.2
is finitely generated. We will show next that S is noetherian, and consequently submodules of
finitely generated modules are finitely generated. Applying lemma 3.3.2 again, we will find that
the induced filtration must be I-good.

3.3.3 Lemma Hypotheses as above, the blowup algebra R1 is noetherian.

Proof. Choose generators x1, . . . , xn P I; then there is a map Rry1, . . . , yns Ñ S sending yi Ñ xi
(where xi is in degree one). This is surjective. Hence by the basis theorem (corollary 2.1.13), R1

is noetherian.

The Krull intersection theorem

We now prove a useful consequence of the Artin-Rees lemma and Nakayama’s lemma. In fancier
language, this states that the map from a noetherian local ring into its completion is an embed-
ding. A priori, this might not be obvious. For instance, it might be surprising that the inverse
limit of the highly torsion groups Z{pn turns out to be the torsion-free ring of p-adic integers.

3.3.4 Theorem (Krull intersection theorem) Let R be a local noetherian ring with maximal
ideal m. Then,

č

mi “ p0q.

300



III.3. Graded and filtered rings 3.3. The Artin-Rees Lemma

Proof. Indeed, the m-adic topology on
Ş

mi is the restriction of the m-adic topology of R on
Ş

mi by the Artin-Rees lemma (3.3.1). However,
Ş

mi is contained in every m-adic neighborhood
of 0 in R; the induced topology on

Ş

mi is thus the indiscrete topology.

But to say that the m-adic topology on a module N is indiscrete is to say that mN “ N , so
N “ 0 by Nakayama. The result is thus clear.

By similar logic, or by localizing at each maximal ideal, we find:

3.3.5 Corollary If R is a commutative ring and I is contained in the Jacobson radical of R,
then

Ş

In “ 0.

It turns out that the Krull intersection theorem can be proved in the following elementary manner,
due to Perdry in ?. The argument does not use the Artin-Rees lemma. One can prove:

3.3.6 Theorem (?) Suppose R is a noetherian ring, I Ă R an ideal. Suppose b P
Ş

In. Then
as ideals pbq “ pbqI.

In particular, it follows easily that
Ş

In “ 0 under either of the following conditions:

1. I is contained in the Jacobson radical of R.

2. R is a domain and I is proper.

Proof. Let a1, . . . , ak P I be generators. For each n, the ideal In consists of the values of all
homogeneous polynomials in Rrx1, . . . , xks of degree n evaluated on the tuple pa1, . . . , akq, as
one may easily see.

It follows that if b P
Ş

In, then for each n there is a polynomial Pn P Rrx1, . . . , xks which is
homogeneous of degree n and which satisfies

Pnpa1, . . . , akq “ b.

The ideal generated by all the Pn in Rrx1, . . . , xks is finitely generated by the Hilbert basis
theorem. Thus there is N such that

PN “ Q1P1 `Q2P2 ` ¨ ¨ ¨ `QN´1PN´1

for some polynomials Qi P Rrx1, . . . , xks. By taking homogeneous components, we can assume
moreover that Qi is homogeneous of degree N ´ i for each i. If we evaluate each at pa1, . . . , akq
we find

b “ bpQ1pa1, . . . , akq ` ¨ ¨ ¨ `QN´1pa1, . . . , akqq.

But the Qipa1, . . . , akq lie in I as all the ai do and Qi is homogeneous of positive degree. Thus
b equals b times something in I.
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The notion of integrality is familiar from number theory: it is similar to “algebraic” but with
the polynomials involved are required to be monic. In algebraic geometry, integral extensions
of rings correspond to correspondingly nice morphisms on the Spec’s—when the extension is
finitely generated, it turns out that the fibers are finite. That is, there are only finitely many
ways to lift a prime ideal to the extension: if A Ñ B is integral and finitely generated, then
SpecB Ñ SpecA has finite fibers.

Integral domains that are integrally closed in their quotient field will play an important role for
us. Such “normal domains” are, for example, regular in codimension one, which means that the
theory of Weil divisors (see section 5.2) applies to them. It is particularly nice because Weil
divisors are sufficient to determine whether a function is regular on a normal variety.

A canonical example of an integrally closed ring is a valuation ring; we shall see in this chapter
that any integrally closed ring is an intersection of such.

4.1. Integrality

Fundamentals

As stated in the introduction to the chapter, integrality is a condition on rings parallel to that
of algebraicity for field extensions.

4.1.1 Definition Let R be a ring, and R1 an R-algebra. An element x P R1 is said to be integral
over R if x satisfies a monic polynomial equation in RrXs, say

xn ` r1x
n´1 ` ¨ ¨ ¨ ` rn “ 0, r1, . . . , rn P R.

We can say that R1 is integral over R if every x P R1 is integral over R.

Note that in the definition, we are not requiring R to be a subring of R1.

4.1.2 Example 1`
?
´3

2 is integral over Z; it is in fact a sixth root of unity, thus satisfying the
equation X6 ´ 1 “ 0. However, 1`

?
5

2 is not integral over Z. To explain this, however, we will
need to work a bit more (see proposition 4.1.5 below).

4.1.3 Example Let L{K be a field extension. Then L{K is integral if and only if it is algebraic,
since K is a field and we can divide polynomial equations by the leading coefficient to make them
monic.
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4.1.4 Example Let R be a graded ring. Then the subring Rpdq Ă R was defined in defini-
tion 3.1.17; recall that this consists of elements of R all of whose nonzero homogeneous compo-
nents live in degrees that are multiples of d. Then the dth power of any homogeneous element
in R is in Rpdq. As a result, every homogeneous element of R is integral over Rpdq.

We shall now interpret the condition of integrality in terms of finite generation of certain modules.
Suppose R is a ring, and R1 an R-algebra. Let x P R1.

4.1.5 Proposition x P R1 is integral over R if and only if the subalgebra Rrxs Ă R1 (generated
by R, x) is a finitely generated R-module.

This notation is an abuse of notation (usually Rrxs refers to a polynomial ring), but it should
not cause confusion.

This result for instance lets us show that 1`
?
´5

2 is not integral over Z, because when you keep
taking powers, you get arbitrarily large denominators: the arbitrarily large denominators imply
that it cannot be integral.

Proof. If x P R1 is integral, then x satisfies

xn ` r1x
n´1 ` ¨ ¨ ¨ ` rn “ 0, ri P R.

Then Rrxs is generated as an R-module by 1, x, . . . , xn´1. This is because the submodule of R1

generated by 1, x, . . . , xn´1 is closed under multiplication by R and by multiplication by x (by
the above equation).

Now suppose x generates a subalgebra Rrxs Ă R1 which is a finitely generated R-module. Then
the increasing sequence of R-modules generated by t1u, t1, xu ,

 

1, x, x2
(

, . . . must stabilize, since
the union is Rrxs.1 It follows that some xn can be expressed as a linear combination of smaller
powers of x. Thus x is integral over R.

So, if R1 is an R-module, we can say that an element x P R1 is integral over R if either of the
following equivalent conditions are satisfied:

1. There is a monic polynomial in RrXs which vanishes on x.

2. Rrxs Ă R1 is a finitely generated R-module.

4.1.6 Example Let F be a field, V a finite-dimensional F -vector space, T : V Ñ V a linear
transformation. Then the ring generated by T and F inside EndF pV q (which is a noncommutative
ring) is finite-dimensional over F . Thus, by similar reasoning, T must satisfy a polynomial
equation with coefficients in F (e.g. the characteristic polynomial).

1As an easy exercise, one may see that if a finitely generated module M is the union of an increasing sequence
of submodules M1 Ă M2 Ă M3 Ă . . . , then M “ Mn for some n; we just need to take n large enough such
that Mn contains each of the finitely many generators of M .
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Of course, if R1 is integral over R, R1 may not be a finitely generated R-module. For instance,
Q is not a finitely generated Q-module, although the extension is integral. As we shall see in the
next section, this is always the case if R1 is a finitely generated R-algebra.

We now will add a third equivalent condition to this idea of “integrality,” at least in the case
where the structure map is an injection.

4.1.7 Proposition Let R be a ring, and suppose R is a subring of R1. x P R1 is integral if
and only if there exists a finitely generated faithful R-module M Ă R1 such that R Ă M and
xM ĂM .

A module M is faithful if xM “ 0 implies x “ 0. That is, the map from R into the Z-
endomorphisms of M is injective. If R is a subring of R1 (i.e. the structure map R Ñ R1 is
injective), then R1 for instance is a faithful R-module.

Proof. It’s obvious that the second condition above (equivalent to integrality) implies the con-
dition of this proposition. Indeed, one could just take M “ Rrxs.

Now let us prove that if there exists such an M which is finitely generated, then x is integral.
Just because M is finitely generated, the submodule Rrxs is not obviously finitely generated. In
particular, this implication requires a bit of proof.

We shall prove that the condition of this proposition implies integrality. Suppose y1, . . . , yk PM
generate M as R-module. Then multiplication by x gives an R-module map M Ñ M . In
particular, we can write

xyi “
ÿ

aijyj

where each aij P R. These taiju may not be unique, but let us make some choices; we get a
k-by-k matrix A PMkpRq. The claim is that x satisfies the characteristic polynomial of A.

Consider the matrix
px1´Aq PMnpR

1q.

Note that px1 ´ Aq annihilates each yi, by the choice of A. We can consider the adjoint B “

px1´Aqadj . Then
Bpx1´Aq “ detpx1´Aq1.

This product of matrices obviously annihilates each vector yi. It follows that

pdetpx1´Aqyi “ 0, @i,

which implies that detpx1´Aq kills M . This implies that detpx1´Aq “ 0 since M is faithful.

As a result, x satisfies the characteristic polynomial.

4.1.8 Remark (exercise) Let R be a noetherian local domain with maximal ideal m. As we
will define shortly, R is integrally closed if every element of the quotient field K “ KpRq integral
over R belongs to R itself. Then if x P K and xm Ă m, we have x P R.
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4.1.9 Remark (exercise) Let us say that an A-module is n-generated if it is generated by at
most n elements.

Let A and B be two rings such that A Ă B, so that B is an A-module.

Let n P N. Let u P B. Then, the following four assertions are equivalent:

1. There exists a monic polynomial P P A rXs with degP “ n and P puq “ 0.

2. There exist a B-module C and an n-generated A-submodule U of C such that uU Ă U
and such that every v P B satisfying vU “ 0 satisfies v “ 0. (Here, C is an A-module,
since C is a B-module and A Ă B.)

3. There exists an n-generated A-submodule U of B such that 1 P U and uU Ă U .

4. As an A-module, Arus is spanned by 1, u, . . . , un´1.

We proved this to show that the set of integral elements is well behaved.

4.1.10 Proposition Let R Ă R1. Let S “ tx P R1 : x is integral over Ru. Then S is a subring
of R1. In particular, it is closed under addition and multiplication.

Proof. Suppose x, y P S. We can consider the finitely generated modules Rrxs, Rrys Ă R1

generated (as algebras) by x over R. By assumption, these are finitely generated R-modules. In
particular, the tensor product

Rrxs bR Rrys

is a finitely generated R-module (by proposition 4.3.12).

We have a ring-homomorphism RrxsbRRrys Ñ R1 which comes from the inclusions Rrxs, Rrys�
R1. Let M be the image of Rrxs bR Rrys in R1. Then M is an R-submodule of R1, indeed an
R-subalgebra containing x, y. Also, M is finitely generated. Since x ` y, xy P M and M is a
subalgebra, it follows that

px` yqM ĂM, xyM ĂM.

Thus x` y, xy are integral over R.

Let us consider the ring Zr
?
´5s; this is the canonical example of a ring where unique factorization

fails. This is because 6 “ 2 ˆ 3 “ p1 `
?
´5qp1 ´

?
´5q. One might ask: what about Zr

?
´3s?

It turns out that Zr
?
´3s lacks unique factorization as well. Indeed, here we have

p1´
?
´3qp1`

?
´3q “ 4 “ 2ˆ 2.

These elements can be factored no more, and 1 ´
?
´3 and 2 do not differ by units. So in this

ring, we have a failure of unique factorization. Nonetheless, the failure of unique factorization
in Zr

?
´3s is less noteworthy, because Zr

?
´3s is not integrally closed. Indeed, it turns out that

Zr
?
´3s is contained in the larger ring Z

”

1`
?
´3

2

ı

, which does have unique factorization, and
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this larger ring is finite over Zr
?
´3s.2 Since being integrally closed is a prerequisite for having

unique factorization (see ?? below), the failure in Zr
?
´3s is not particularly surprising.

Note that, by contrast, Zr1`
?
´5

2 s does not contain Zr
?
´5s as a finite index subgroup—it cannot

be slightly enlarged in the same sense. When one enlarges Zr
?
´5s, one has to add a lot of stuff.

We will see more formally that Zr
?
´5s is integrally closed in its quotient field, while Zr

?
´3s

is not. Since unique factorization domains are automatically integrally closed, the failure of
Zr
?
´5s to be a UFD is much more significant than that of Zr

?
´3s.

Le sorite for integral extensions

In commutative algebra and algebraic geometry, there are a lot of standard properties that a
morphism of rings φ : RÑ S can have: it could be of finite type (that is, S is finitely generated
over φpRq), it could be finite (that is, S is a finite R-module), or it could be integral (which we
have defined in definition 4.1.1). There are many more examples that we will encounter as we
dive deeper into commutative algebra. In algebraic geometry, there are corresponding properties
of morphisms of schemes, and there are many more interesting ones here.

In these cases, there is usually—for any reasonable property—a standard and familiar list of
properties that one proves about them. We will refer to such lists as “sorites,” and prove our first
one now.

4.1.11 Proposition (Le sorite for integral morphisms) 1. For any ring R and any ideal
I Ă R, the map RÑ R{I is integral.

2. If φ : RÑ S and ψ : S Ñ T are integral morphisms, then so is ψ ˝ φ : RÑ T .

3. If φ : R Ñ S is an integral morphism and R1 is an R-algebra, then the base-change
R1 Ñ R1 bR S is integral.

Proof. The first property is obvious. For the second, the condition of integrality in a morphism of
rings depends on the inclusion of the image in the codomain. So we can suppose that R Ă S Ă T .
Suppose t P T . By assumption, there is a monic polynomial equation

tn ` s1t
n´1 ` ¨ ¨ ¨ ` sn “ 0

that t satisfies, where each si P S.

In particular, we find that t is integral over Rrs1, . . . , sns. As a result, the module Rrs1, . . . , sn, ts
is finitely generated over the ring R1 “ Rrs1, . . . , sns. By the following proposition 4.1.12, R1 is a
finitely generated R-module. In particular, Rrs1, . . . , sn, ts is a finitely generated R-module (not
just a finitely generated R1-module).

Thus the R-module Rrs1, . . . , sn, ts is a faithful R1 module, finitely generated over R, which is
preserved under multiplication by t.

2In fact, Zr
?
´3s is an index two subgroup of Z

”

1`
?
´3

2

ı

, as the ring Zr 1`
?
´3

2
s can be described as the set of

elements a ` b
?
´3 where a, b are either both integers or both integers plus 1

2
, as is easily seen: this set is

closed under addition and multiplication.
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We now prove a result that can equivalently be phrased as “finite type plus integral implies finite”
for a map of rings.

4.1.12 Proposition Let R1 be a finitely generated, integral R-algebra. Then R1 is a finitely
generated R-module: that is, the map RÑ R1 is finite.

Proof. Induction on the number of generators of R1 as R-algebra. For one generator, this follows
from Proposition 4.1.5. In general, we will have R1 “ Rrα1, . . . , αns for some αi P R1. By the
inductive hypothesis, Rrα1, . . . , αn´1s is a finite R-module; by the case of one generator, R1 is a
finite Rrα1, . . . , αn´1s-module. This establishes the result by the next exercise.

4.1.13 Remark (exercise) Let R Ñ S, S Ñ T be morphisms of rings. Suppose S is a finite
R-module and T a finite T -module. Then T is a finite R-module.

Integral closure

Let R,R1 be rings.

4.1.14 Definition If R Ă R1, then the set S “ tx P R1 : x is integralu is called the integral
closure of R in R1. We say that R is integrally closed in R1 if S “ R1.

When R is a domain, and K is the quotient field, we shall simply say that R is integrally closed
if it is integrally closed in K. Alternatively, some people say that R is normal in this case.

Integral closure (in, say, the latter sense) is thus an operation that maps integral domains to
integral domains. It is easy to see that the operation is idempotent: the integral closure of the
integral closure is the integral closure.

4.1.15 Example The integers Z Ă C have as integral closure (in C) the set of complex numbers
satisfying a monic polynomial with integral coefficients. This set is called the set of algebraic
integers.

For instance, i is an algebraic integer because it satisfies the equation X2 ` 1 “ 0. 1´
?
´3

2 is an
algebraic integer, as we talked about last time; it is a sixth root of unity. On the other hand,
1`
?
´5

2 is not an algebraic integer.

4.1.16 Example Take Z Ă Q. The claim is that Z is integrally closed in its quotient field Q,
or simply—integrally closed.

Proof. We will build on this proof later. Here is the point. Suppose a
b P Q satisfying an equation

P pa{bq “ 0, P ptq “ tn ` c1t
n´1 ` ¨ ¨ ¨ ` c0, @ci P Z.

Assume that a, b have no common factors; we must prove that b has no prime factors, so is ˘1.
If b had a prime factor, say q, then we must obtain a contradiction.

We interrupt with a definition.

4.1.17 Definition The valuation at q (or q-adic valuation) is the map vq : Q˚ Ñ Z is the
function sending qkpa{bq to k if q - a, b. We extend this to all rational numbers via vp0q “ 8.
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In general, this just counts the number of factors of q in the expression.

Note the general property that

vqpx` yq ě minpvqpxq, vqpyqq. (4.1.1)

If x, y are both divisible by some power of q, so is x ` y; this is the statement above. We also
have the useful property

vqpxyq “ vqpxq ` vqpyq. (4.1.2)

Now return to the proof that Z is normal. We would like to show that vqpa{bq ě 0. This will
prove that b is not divisible by q. When we show this for all q, it will follow that a{b P Z.

We are assuming that P pa{bq “ 0. In particular,
´a

b

¯n
“ ´c1

´a

b

¯n´1
´ ¨ ¨ ¨ ´ c0.

Apply vq to both sides:
nvqpa{bq ě min

ią0
vqpcipa{bq

n´iq.

Since the ci P Z, their valuations are nonnegative. In particular, the right hand side is at least

min
ią0
pn´ iqvqpa{bq.

This cannot happen if vqpa{bq ă 0, because n´ i ă n for each i ą 0.

This argument applies more generally. If K is a field, and R Ă K is a subring “defined by
valuations,” such as the vq, then R is integrally closed in its quotient field. More precisely, note
the reasoning of the previous example: the key idea was that Z Ă Q was characterized by the
rational numbers x such that vqpxq ě 0 for all primes q. We can abstract this idea as follows. If
there exists a family of functions V from K˚ Ñ Z (such as tvq : Q˚ Ñ Zu) satisfying (4.1.1) and
(4.1.2) above such that R is the set of elements such that vpxq ě 0, v P V (along with 0), then R
is integrally closed in K. We will talk more about this, and about valuation rings, below.

4.1.18 Example We saw earlier (example 4.1.2) that Zr
?
´3s is not integrally closed, as 1`

?
´3

2
is integral over this ring and in the quotient field, but not in the ring.

We shall give more examples in the next subsec.

Geometric examples

Let us now describe the geometry of a non-integrally closed ring. Recall that finitely generated
(reduced) C-algebras are supposed to correspond to affine algebraic varieties. A smooth variety
(i.e., one that is a complex manifold) will always correspond to an integrally closed ring (though
this relies on a deep result that a regular local ring is a factorization domain, and consequently
integrally closed): non-normality is a sign of singularities.
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4.1.19 Example Here is a ring which is not integrally closed. Take Crx, ys{px2 ´ y3q. Alge-
braically, this is the subring of the polynomial ring Crts generated by t2 and t3.

In the complex plane, C2, this corresponds to the subvariety C Ă C2 defined by x2 “ y3. In R2,
this can be drawn: it has a singularity at px, yq “ 0.

Note that x2 “ y3 if and only if there is a complex number z such that x “ z3, y “ z2. This
complex number z can be recovered via x{y when x, y ‰ 0. In particular, there is a map CÑ C
which sends z Ñ pz3, z2q. At every point other than the origin, the inverse can be recovered
using rational functions. But this does not work at the origin.

We can think of Crx, ys{px2 ´ y3q as the subring R1 of Crzs generated by tzn, n ‰ 1u. There is
a map from Crx, ys{px2 ´ y3q sending xÑ z3, y Ñ z2. Since these two domains are isomorphic,
and R1 is not integrally closed, it follows that Crx, ys{px2 ´ y3q is not integrally closed. The
element z can be thought of as an element of the fraction field of R1 or of Crx, ys{px2 ´ y3q. It
is integral, though.

The failure of the ring to be integrally closed has to do with the singularity at the origin.

We now give a generalization of the above example.

4.1.20 Example This example is outside the scope of the present course. Say that X Ă Cn is
given as the zero locus of some holomorphic functions tfi : Cn Ñ Cu. We just gave an example
when n “ 2. Assume that 0 P X, i.e. each fi vanishes at the origin.

Let R be the ring of germs of holomorphic functions 0, in other words holomorphic functions
from small open neighborhoods of zero. Each of these fi becomes an element of R. The ring
R{ptfiuq is called the ring of germs of holomorphic functions on X at zero.

Assume that R is a domain. This assumption, geometrically, means that near the point zero in
X, X can’t be broken into two smaller closed analytic pieces. The fraction field of R is to be
thought of as the ring of germs of meromorphic functions on X at zero.

We state the following without proof:

4.1.21 Theorem Let g{g1 be an element of the fraction field, i.e. g, g1 P R. Then g{g1 is integral
over R if and only if g{g1 is bounded near zero.

In the previous example of X defined by x2 “ y3, the function x{y (defined near the origin on the
curve) is bounded near the origin, so it is integral over the ring of germs of regular functions. The
reason it is not defined near the origin is not that it blows up. In fact, it extends continuously,
but not holomorphically, to the rest of the variety X.
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4.2. Lying over and going up

We now interpret integrality in terms of the geometry of Spec. In general, for R Ñ S a ring-
homomorphism, the induced map SpecS Ñ SpecR need not be topologically nice; for instance,
even if S is a finitely generated R-algebra, the image of SpecS in SpecR need not be either open
or closed.3

We shall see that under conditions of integrality, more can be said.

Lying over

In general, given a morphism of algebraic varieties f : X Ñ Y , the image of a closed subset
Z Ă X is far from closed. For instance, a regular function f : X Ñ C that is a closed map would
have to be either surjective or constant (if X is connected, say). Nonetheless, under integrality
hypotheses, we can say more.

4.2.1 Proposition (Lying over) If φ : RÑ R1 is an integral morphism, then the induced map

SpecR1 Ñ SpecR

is a closed map; it is surjective if φ is injective.

Another way to state the last claim, without mentioning SpecR1, is the following. Assume φ is
injective and integral. Then if p Ă R is prime, then there exists q Ă R1 such that p is the inverse
image φ´1pqq.

Proof. First suppose φ injective, in which case we must prove the map SpecR1 Ñ SpecR sur-
jective. Let us reduce to the case of a local ring. For a prime p P SpecR, we must show that p
arises as the inverse image of an element of SpecR1. So we replace R with Rp. We get a map

φp : Rp Ñ pR´ pq´1R1

which is injective if φ is, since localization is an exact functor. Here we have localized both R,R1

at the multiplicative subset R´ p.

Note that φp is an integral extension too. This follows because integrality is preserved by base-
change. We will now prove the result for φp; in particular, we will show that there is a prime
ideal of pR ´ pq´1R1 that pulls back to pRp. These will imply that if we pull this prime ideal
back to R1, it will pull back to p in R. In detail, we can consider the diagram

SpecpR´ pq´1R1

��

// SpecRp

��
SpecR1 // SpecR

3It is, however, true that if R is noetherian (see Chapter III.2) and S finitely generated over R, then the image
of SpecS is constructible, that is, a finite union of locally closed subsets. To be added: this result should
be added sometime.
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which shows that if pRp appears in the image of the top map, then p arises as the image of
something in SpecR1. So it is sufficient for the proposition (that is, the case of φ injective) to
handle the case of R local, and p the maximal ideal.

In other words, we need to show that:

If R is a local ring, φ : R ãÑ R1 an injective integral morphism, then the maximal
ideal of R is the inverse image of something in SpecR1.

Assume R is local with maximal ideal p. We want to find a prime ideal q Ă R1 such that
p “ φ´1pqq. Since p is already maximal, it will suffice to show that p Ă φ´1pqq. In particular,
we need to show that there is a prime ideal q such that pR1 Ă q. The pull-back of this will be p.

If pR1 ‰ R1, then q exists, since every proper ideal of a ring is contained in a maximal ideal. We
will in fact show

pR1 ‰ R1, (4.2.1)

or that p does not generate the unit ideal in R1. If we prove (4.2.1), we will thus be able to find
our q, and we will be done.

Suppose the contrary, i.e. pR1 “ R1. We will derive a contradiction using Nakayama’s lemma
(lemma 4.1.22). Right now, we cannot apply Nakayama’s lemma directly because R1 is not a
finite R-module. The idea is that we will “descend” the “evidence” that (4.2.1) fails to a small
subalgebra of R1, and then obtain a contradiction. To do this, note that 1 P pR1, and we can
write

1 “
ÿ

xiφpyiq

where xi P R1, yi P p. This is the “evidence” that (4.2.1) fails, and it involves only a finite amount
of data.

Let R2 be the subalgebra of R1 generated by φpRq and the xi. Then R2 Ă R1 and is finitely
generated as an R-algebra, because it is generated by the xi. However, R2 is integral over R and
thus finitely generated as an R-module, by proposition 4.1.12. This is where integrality comes
in.

So R2 is a finitely generated R-module. Also, the expression 1 “
ř

xiφpyiq shows that pR2 “ R2.
However, this contradicts Nakayama’s lemma. That brings the contradiction, showing that p
cannot generate p1q in R1, and proving the surjectivity part of lying over theorem.

Finally, we need to show that if φ : RÑ R1 is any integral morphism, then SpecR1 Ñ SpecR is
a closed map. Let X “ V pIq be a closed subset of SpecR1. Then the image of X in SpecR is
the image of the map

SpecR1{I Ñ SpecR

obtained from the morphism RÑ R1 Ñ R1{I, which is integral; thus we are reduced to showing
that any integral morphism φ has closed image on the Spec. Thus we are reduced toX “ SpecR1,
if we throw out R1 and replace it by R1{I.

In other words, we must prove the following statement. Let φ : RÑ R1 be an integral morphism;
then the image of SpecR1 in SpecR is closed. But, quotienting by kerφ and taking the map
R{ kerφ Ñ R1, we may reduce to the case of φ injective; however, then this follows from the
surjectivity result already proved.
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In general, there will be many lifts of a given prime ideal. Consider for instance the inclusion
Z Ă Zris. Then the prime ideal p5q P SpecZ can be lifted either to p2 ` iq P SpecZris or
p2 ´ iq P SpecZris. These are distinct prime ideals: 2`i

2´i R Zris. But note that any element of
Z divisible by 2 ` i is automatically divisible by its conjugate 2 ´ i, and consequently by their
product 5 (because Zris is a UFD, being a euclidean domain).

Nonetheless, the different lifts are incomparable.

4.2.2 Proposition Let φ : R Ñ R1 be an integral morphism. Then given p P SpecR, there are
no inclusions among the elements q P SpecR1 lifting p.

In other words, if q, q1 P SpecR1 lift p, then q Ć q1.

Proof. We will give a “slick” proof by various reductions. Note that the operations of localization
and quotienting only shrink the Spec’s: they do not “merge” heretofore distinct prime ideals into
one. Thus, by quotienting R by p, we may assume R is a domain and that p “ 0. Suppose
we had two primes q Ĺ q1 of R1 lifting p0q P SpecR. Quotienting R1 by q, we may assume that
q “ 0. We could even assume R Ă R1, by quotienting by the kernel of φ. The next lemma thus
completes the proof, because it shows that q1 “ 0, contradiction.

4.2.3 Lemma Let R Ă R1 be an inclusion of integral domains, which is an integral morphism.
If q P SpecR1 is a nonzero prime ideal, then qXR is nonzero.

Proof. Let x P q1 be nonzero. There is an equation

xn ` r1x
n´1 ` ¨ ¨ ¨ ` rn “ 0, ri P R,

that x satisfies, by assumption. Here we can assume rn ‰ 0; then rn P q1 X R by inspection,
though. So this intersection is nonzero.

4.2.4 Corollary Let R Ă R1 be an inclusion of integral domains, such that R1 is integral over
R. Then if one of R,R1 is a field, so is the other.

Proof. Indeed, SpecR1 Ñ SpecR is surjective by proposition 4.2.1: so if SpecR1 has one element
(i.e., R1 is a field), the same holds for SpecR (i.e., R is a field). Conversely, suppose R a
field. Then any two prime ideals in SpecR1 pull back to the same element of SpecR. So, by
proposition 4.2.2, there can be no inclusions among the prime ideals of SpecR1. But R1 is a
domain, so it must then be a field.

4.2.5 Remark (exercise) Let k be a field. Show that krQě0s is integral over the polynomial
ring krT s. Although this is a huge extension, the prime ideal pT q lifts in only one way to
Spec krQě0s.

4.2.6 Remark (exercise) Suppose A Ă B is an inclusion of rings over a field of characteristic
p. Suppose Bp Ă A, so that B{A is integral in a very strong sense. Show that the map
SpecB Ñ SpecA is a homeomorphism.
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Going up

Let R Ă R1 be an inclusion of rings with R1 integral over R. We saw in the lying over theorem
(proposition 4.2.1) that any prime p P SpecR has a prime q P SpecR1 “lying over” p, i.e. such
that RX q “ p. We now want to show that we can lift finite inclusions of primes to R1.

4.2.7 Proposition (Going up) Let R Ă R1 be an integral inclusion of rings. Suppose p1 Ă

p2 Ă ¨ ¨ ¨ Ă pn Ă R is a finite ascending chain of prime ideals in R. Then there is an ascending
chain q1 Ă q2 Ă ¨ ¨ ¨ Ă qn in SpecR1 lifting this chain.

Moreover, q1 can be chosen arbitrarily so as to lift p1.

Proof. By induction and lying over (proposition 4.2.1), it suffices to show:

Let p1 Ă p2 be an inclusion of primes in SpecR. Let q1 P SpecR1 lift p1. Then there
is q2 P SpecR1, which satisfies the dual conditions of lifting p2 and containing q1.

To show that this is true, we apply proposition 4.2.1 to the inclusion R{p1 ãÑ R1{q1. There is
an element of SpecR1{q1 lifting p2{p1; the corresponding element of SpecR1 will do for q2.

4.3. Valuation rings

A valuation ring is a special type of local ring. Its distinguishing characteristic is that divisibility
is a “total preorder.” That is, two elements of the quotient field are never incompatible under
divisibility. We shall see in this section that integrality can be detected using valuation rings
only.

Geometrically, the valuation ring is something like a local piece of a smooth curve. In fact, in
algebraic geometry, a more compelling reason to study valuation rings is provided by the valuative
criteria for separatedness and properness (cf. ? or ?). One key observation about valuation rings
that leads the last results is that any local domain can be “dominated” by a valuation ring with
the same quotient field (i.e. mapped into a valuation ring via local homomorphism), but valuation
rings are the maximal elements in this relation of domination.

Definition

4.3.1 Definition A valuation ring is a domain R such that for every pair of elements a, b P R,
either a | b or b | a.

4.3.2 Example Z is not a valuation ring. It is neither true that 2 divides 3 nor that 3 divides
2.

4.3.3 Example Zppq, which is the set of all fractions of the form a{b P Q where p - b, is a
valuation ring. To check whether a{b divides a1{b1 or vice versa, one just has to check which is
divisible by the larger power of p.
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4.3.4 Proposition Let R be a domain with quotient field K. Then R is a valuation ring if and
only if for every x P K, either x or x´1 lies in R.

Proof. Indeed, if x “ a{b, a, b P R, then either a | b or b | a, so either x or x´1 P R. This
condition is equivalent to R’s being a valuation ring.

Valuations

The reason for the name “valuation ring” is provided by the next definition. As we shall see, any
valuation ring comes from a “valuation.”

By definition, an ordered abelian group is an abelian group A together with a set of positive
elements A` Ă A. This set is required to be closed under addition and satisfy the property that
if x P A, then precisely one of the following is true: x P A`, ´x P A`, and x “ 0. This allows
one to define an ordering ă on A by writing x ă y if y ´ x P A`. Given A, we often formally
adjoin an element 8 which is bigger than every element in A.

4.3.5 Definition Let K be a field. A valuation on K is a map v : K Ñ A Y t8u for some
ordered abelian group A satisfying:

1. vp0q “ 8 and vpK˚q Ă A.

2. For x, y P K˚, vpxyq “ vpxq ` vpyq. That is, v|K˚ is a homomorphism.

3. For x, y P K, vpx` yq ě minpvpxq, vpyqq.

Suppose that K is a field and v : K Ñ A Y t8u is a valuation (i.e. vp0q “ 8). Define
R “ tx P K : vpxq ě 0u.

4.3.6 Proposition R as just defined is a valuation ring.

Proof. First, we prove that R is a ring. R is closed under addition and multiplication by the two
conditions

vpxyq “ vpxq ` vpyq

and
vpx` yq ě min vpxq, vpyq,

so if x, y P R, then x` y, xy have nonnegative valuations.

Note that 0 P R because vp0q “ 8. Also vp1q “ 0 since v : K˚ Ñ A is a homomorphism. So
1 P R too. Finally, ´1 P R because vp´1q “ 0 since A is totally ordered. It follows that R is
also a group.

Let us now show that R is a valuation ring. If x P K˚, either vpxq ě 0 or vpx´1q ě 0 since A is
totally ordered.4 So either x, x´1 P R.

In particular, the set of elements with nonnegative valuation is a valuation ring. The converse
also holds. Whenever you have a valuation ring, it comes about in this manner.

4Otherwise 0 “ vpxq ` vpx´1
q ă 0, contradiction.
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4.3.7 Proposition Let R be a valuation ring with quotient field K. There is an ordered abelian
group A and a valuation v : K˚ Ñ A such that R is the set of elements with nonnegative
valuation.

Proof. First, we construct A. In fact, it is the quotient of K˚ by the subgroup of units R˚ of R.
We define an ordering by saying that x ď y if y{x P R—this doesn’t depend on the representatives
in K˚ chosen. Note that either x ď y or y ď x must hold, since R is a valuation ring. The
combination of x ď y and y ď x implies that x, y are equivalent classes. The nonnegative
elements in this group are those whose representatives in K˚ belong to R.

It is easy to see that K˚{R˚ in this way is a totally ordered abelian group with the image of 1
as the unit. The reduction map K˚ Ñ K˚{R˚ defines a valuation whose corresponding ring is
just R. We have omitted some details; for instance, it should be checked that the valuation of
x` y is at least the minimum of vpxq, vpyq.

To summarize:

Every valuation ring R determines a valuation v from the fraction field of R into
AYt8u for A a totally ordered abelian group such that R is just the set of elements
of K with nonnegative valuation. As long as we require that v : K˚ Ñ A is surjective,
then A is uniquely determined as well.

4.3.8 Definition A valuation ring R is discrete if we can choose A to be Z.

4.3.9 Example Zppq is a discrete valuation ring.

The notion of a valuation ring is a useful one.

General remarks

Let R be a commutative ring. Then SpecR is the set of primes of R, equipped with a certain
topology. The space SpecR is almost never Hausdorff. It is almost always a bad idea to apply the
familiar ideas from elementary topology (e.g. the fundamental group) to SpecR. Nonetheless,
it has some other nice features that substitute for its non-Hausdorffness.

For instance, if R “ Crx, ys, then SpecR corresponds to C2 with some additional nonclosed
points. The injection of C2 with its usual topology into SpecR is continuous. While in SpecR
you don’t want to think of continuous paths, you can in C2.

Suppose you had two points x, y P C2 and their images in SpecR. Algebraically, you can
still think about algebraic curves passing through x, y. This is a subset of x, y defined by a
single polynomial equation. This curve will have what’s called a “generic point,” since the ideal
generated by this curve will be a prime ideal. The closure of this generic point will be precisely
this algebraic curve—including x, y.
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4.3.10 Remark If p, p1 P SpecR, then
p1 P tpu

iff
p1 Ą p.

Why is this? Well, the closure of tpu is just V ppq, since this is the smallest closed subset of
SpecR containing p.

The point of this discussion is that instead of paths, one can transmit information from point to
point in SpecR by having one point be in a closure of another. However, we will show that this
relation is contained by the theory of valuation rings.

4.3.11 Theorem Let R be a domain containing a prime ideal p. Let K be the fraction field of
R.

Then there is a valuation v on K defining a valuation ring R1 Ă K such that

1. R Ă R1.

2. p “ tx P R : vpxq ą 0u.

Let us motivate this by the remark:

4.3.12 Remark A valuation ring is automatically a local ring. A local ring is a ring where
either x, 1´x is invertible for all x in the ring. Let us show that this is true for a valuation ring.

If x belongs to a valuation ring R with valuation v, it is invertible if vpxq “ 0. So if x, 1´x were
both noninvertible, then both would have positive valuation. However, that would imply that
vp1q ě min vpxq, vp1´ xq is positive, contradiction.

If R1 is any valuation ring (say defined by a valuation v), then R1 is local with maximal
ideal consisting of elements with positive valuation.

The theorem above says that there’s a good supply of valuation rings. In particular, if R is
any domain, p Ă R a prime ideal, then we can choose a valuation ring R1 Ą R such that p is
the intersection of the maximal ideal of R1 intersected with R. So the map SpecR1 Ñ SpecR
contains p.

Proof. Without loss of generality, replace R by Rp, which is a local ring with maximal ideal pRp.
The maximal ideal intersects R only in p.

So, we can assume without loss of generality that

1. R is local.

2. p is maximal.

Let P be the collection of all subrings R1 Ă K such that R1 Ą R but pR1 ‰ R1. Then P is a
poset under inclusion. The poset is nonempty, since R P P . Every totally ordered chain in P
has an upper bound. If you have a totally ordered subring of elements in P , then you can take
the union. We invoke:
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4.3.13 Lemma Let Rα be a chain in P and R1 “
Ť

Rα. Then R1 P P .

Proof. Indeed, it is easy to see that this is a subalgebra of K containing R. The thing to observe
is that

pR1 “
ď

α

pRα;

since by assumption, 1 R pRα (because each Rα P P ), 1 R pR1. In particular, R1 R P .

By the lemma, Zorn’s lemma to the poset P . In particular, P has a maximal element R1. By
construction, R1 is some subalgebra of K and pR1 ‰ R1. Also, R1 is maximal with respect to
these properties.

We show first that R1 is local, with maximal ideal m satisfying

mXR “ p.

The second part is evident from locality of R1, since m must contain the proper ideal pR1, and
p Ă R is a maximal ideal.

Suppose that x P R1; we show that either x, 1 ´ x belongs to R1˚ (i.e. is invertible). Take the
ring R1rx´1s. If x is noninvertible, this properly contains R1. By maximality, it follows that
pR1rx´1s “ R1rx´1s.

And we’re out of time. We’ll pick this up on Monday.

Let us set a goal.

First, recall the notion introduced last time. A valuation ring is a domain R where for all x in
the fraction field of R, either x or x´1 lies in R. We saw that if R is a valuation ring, then R is
local. That is, there is a unique maximal ideal m Ă R, automatically prime. Moreover, the zero
ideal p0q is prime, as R is a domain. So if you look at the spectrum SpecR of a valuation ring
R, there is a unique closed point m, and a unique generic point p0q. There might be some other
prime ideals in SpecR; this depends on where the additional valuation lives.

4.3.14 Example Suppose the valuation defining the valuation ring R takes values in R. Then
the only primes are m and zero.

Let R now be any ring, with SpecR containing prime ideals p Ă q. In particular, q lies in the
closure of p. As we will see, this implies that there is a map

φ : RÑ R1

such that p “ φ´1p0q and q “ φ´1pmq, where m is the maximal ideal of R1. This statement
says that the relation of closure in SpecR is always controlled by valuation rings. In yet another
phrasing, in the map

SpecR1 Ñ SpecR

the closed point goes to q and the generic point to p. This is our eventual goal.

To carry out this goal, we need some more elementary facts. Let us discuss things that don’t
have any obvious relation to it.
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Back to the goal

Now we return to the goal of the lecture. Again, R was any ring, and we had primes p Ă q Ă R.
We wanted a valuation ring R1 and a map φ : R Ñ R1 such that zero pulled back to p and the
maximal ideal pulled back to q.

What does it mean for p to be the inverse image of p0q Ă R1? This means that p “ kerφ. So we
get an injection

R{p � R1.

We will let R1 be a subring of the quotient field K of the domain R{p. Of course, this subring
will contain R{p.

In this case, we will get a map R Ñ R1 such that the pull-back of zero is p. What we want,
further, to be true is that R1 is a valuation ring and the pull-back of the maximal ideal is q.

This is starting to look at the problem we discussed last time. Namely, let’s throw out R, and
replace it with R{p. Moreover, we can replace R with Rq and assume that R is local with
maximal ideal q. What we need to show is that a valuation ring R1 contained in the fraction
field of R, containing R, such that the intersection of the maximal ideal of R1 with R is equal to
q Ă R. If we do this, then we will have accomplished our goal.

4.3.15 Lemma Let R be a local domain. Then there is a valuation subring R1 of the quotient
field of R that dominates R, i.e .the map RÑ R1 is a local homomorphism.

Let’s find R1 now.

Choose R1 maximal such that qR1 ‰ R1. Such a ring exists, by Zorn’s lemma. We gave this
argument at the end last time.

4.3.16 Lemma R1 as described is local.

Proof. Look at qR1 Ă R1; it is a proper subset, too, by assumption. In particular, qR1 is contained
in some maximal ideal m Ă R1. Replace R1 by R2 “ R1m. Note that

R1 Ă R2

and
qR2 ‰ R2

because mR2 ‰ R2. But R1 is maximal, so R1 “ R2, and R2 is a local ring. So R1 is a local
ring.

Let m be the maximal ideal of R1. Then m Ą qR, so mXR “ q. All that is left to prove now is
that R1 is a valuation ring.

4.3.17 Lemma R1 is integrally closed.
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Proof. Let R2 be its integral closure. Then mR2 ‰ R2 by lying over, since m (the maximal ideal
of R1) lifts up to R2. So R2 satisfies

qR2 ‰ R2

and by maximality, we have R2 “ R1.

To summarize, we know that R1 is a local, integrally closed subring of the quotient field of R,
such that the maximal ideal of R1 pulls back to q in R. All we now need is:

4.3.18 Lemma R1 is a valuation ring.

Proof. Let x lie in the fraction field. We must show that either x or x´1 P R1. Say x R R1. This
means by maximality of R1 that R2 “ R1rxs satisfies

qR2 “ R2.

In particular, we can write
1 “

ÿ

qix
i, qi P qR

1 Ă R1.

This implies that
p1´ q0q `

ÿ

ią0

´qix
i “ 0.

But 1´ q0 is invertible in R1, since R1 is local. We can divide by the highest power of x:

x´N `
ÿ

ią0

´qi
1´ q0

x´N`i “ 0.

In particular, 1{x is integral over R1; this implies that 1{x P R1 since R1 is integrally closed and
q0 is a nonunit. So R1 is a valuation ring.

We can state the result formally.

4.3.19 Theorem Let R be a ring, p Ă q prime ideals. Then there is a homomorphism φ : RÑ
R1 into a valuation ring R1 with maximal ideal m such that

φ´1p0q “ p

and
φ´1pmq “ q.

There is a related fact which we now state.

4.3.20 Theorem Let R be any domain. Then the integral closure of R in the quotient field K
is the intersection

č

Rα

of all valuation rings Rα Ă K containing R.

So an element of the quotient field is integral over R if and only if its valuation is nonnegative
at every valuation which is nonnegative on R.
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Proof. The Ă argument is easy, because one can check that a valuation ring is integrally closed.
(Exercise.) The interesting direction is to assume that vpxq ě 0 for all v nonnegative on R.

Let us suppose x is nonintegral. Suppose R1 “ Rr1{xs and I be the ideal px´1q Ă R1. There are
two cases:

1. I “ R1. Then in the ring R1, x´1 is invertible. In particular, x´1P px´1q “ 1. Multiplying
by a high power of x shows that x is integral over R. Contradiction.

2. Suppose I Ĺ R1. Then I is contained in a maximal ideal q Ă R1. There is a valuation
subring R2 Ă K , containing R1, such that the corresponding valuation is positive on q. In
particular, this valuation is positive on x´1, so it is negative on x, contradiction.

So the integral closure has this nice characterization via valuation rings. In some sense, the proof
that Z is integrally closed has the property that every integrally closed ring is integrally closed
for that reason: it’s the common nonnegative locus for some valuations.

4.4. The Hilbert Nullstellensatz

The Nullstellensatz is the basic algebraic fact, which we have invoked in the past to justify various
examples, that connects the idea of the Spec of a ring to classical algebraic geometry.

Statement and initial proof of the Nullstellensatz

There are several ways in which the Nullstellensatz can be stated. Let us start with the following
very concrete version.

4.4.1 Theorem All maximal ideals in the polynomial ring R “ Crx1, . . . , xns come from points
in Cn. In other words, if m Ă R is maximal, then there exist a1, . . . , an P C such that m “

px1 ´ a1, . . . , xn ´ anq.

The maximal spectrum of R “ Crx1, . . . , xns is thus identified with Cn.

We shall now reduce Theorem 4.4.1 to an easier claim. Let m Ă R be a maximal ideal. Then
there is a map

CÑ RÑ R{m

where R{m is thus a finitely generated C-algebra, as R is. The ring R{m is also a field by
maximality.

We would like to show that R{m is a finitely generated C-vector space. This would imply that
R{m is integral over C, and there are no proper algebraic extensions of C. Thus, if we prove this,
it will follow that the map CÑ R{m is an isomorphism. If ai P C (1 ď i ď n) is the image of xi
in R{m “ C, it will follow that px1 ´ a1, . . . , xn ´ anq Ă m, so px1 ´ a1, . . . , xn ´ anq “ m.

Consequently, the Nullstellensatz in this form would follow from the next claim:
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4.4.2 Proposition Let k be a field, L{k an extension of fields. Suppose L is a finitely generated
k-algebra. Then L is a finite k-vector space.

This is what we will prove.

We start with an easy proof in the special case:

4.4.3 Lemma Assume k is uncountable (e.g. C, the original case of interest). Then the above
proposition is true.

Proof. Since L is a finitely generated k-algebra, it suffices to show that L{k is algebraic. If not,
there exists x P L which isn’t algebraic over k. So x satisfies no nontrivial polynomials. I claim
now that the uncountably many elements 1

x´λ , λ P K are linearly independent over K. This will
be a contradiction as L is a finitely generated k-algebra, hence at most countably dimensional
over k. (Note that the polynomial ring is countably dimensional over k, and L is a quotient.)

So let’s prove this. Suppose not. Then there is a nontrivial linear dependence
ÿ ci

x´ λi
“ 0, ci, λi P K.

Here the λj are all distinct to make this nontrivial. Clearing denominators, we find
ÿ

i

ci
ź

j‰i

px´ λjq “ 0.

Without loss of generality, c1 ‰ 0. This equality was in the field L. But x is transcendental over
k. So we can think of this as a polynomial ring relation. Since we can think of this as a relation
in the polynomial ring, we see that doing so, all but the i “ 1 term in the sum is divisible by
x´ λ1 as a polynomial. It follows that, as polynomials in the indeterminate x,

x´ λ1 | c1

ź

j‰1

px´ λjq.

This is a contradiction since all the λi are distinct.

This is kind of a strange proof, as it exploits the fact that C is uncountable. This shouldn’t be
relevant.

The normalization lemma

Let’s now give a more algebraic proof. We shall exploit the following highly useful fact in
commutative algebra:

4.4.4 Theorem (Noether normalization lemma) Let k be a field, and R “ krx1, . . . , xns{p
be a finitely generated domain over k (where p is a prime ideal in the polynomial ring).

Then there exists a polynomial subalgebra kry1, . . . , yms Ă R such that R is integral over kry1, . . . , yms.

321



III.4. Integrality and valuation rings 4.4. The Hilbert Nullstellensatz

Later we will see that m is the dimension of R.

There is a geometric picture here. Then SpecR is some irreducible algebraic variety in kn (plus
some additional points), with a smaller dimension than n if p ‰ 0. Then there exists a finite map
to km. In particular, we can map surjectively SpecR Ñ km which is integral. The fibers are in
fact finite, because integrality implies finite fibers. (We have not actually proved this yet.)

How do we actually find such a finite projection? In fact, in characteristic zero, we just take a
vector space projection Cn Ñ Cm. For a “generic” projection onto a subspace of the appropriate
dimension, the projection will will do as our finite map. In characteristic p, this may not work.

Proof. First, note that m is uniquely determined as the transcendence degree of the quotient
field of R over k.

Among the variables x1, . . . , xn P R (which we think of as in R by an abuse of notation), choose
a maximal subset which is algebraically independent. This subset has no nontrivial polynomial
relations. In particular, the ring generated by that subset is just the polynomial ring on that
subset. We can permute these variables and assume that

tx1, . . . , xmu

is the maximal subset. In particular, R contains the polynomial ring krx1, . . . , xms and is gener-
ated by the rest of the variables. The rest of the variables are not adjoined freely though.

The strategy is as follows. We will implement finitely many changes of variable so that R becomes
integral over krx1, . . . , xms.

The essential case is where m “ n´ 1. Let us handle this. So we have

R0 “ krx1, . . . , xms Ă R “ R0rxns{p.

Since xn is not algebraically independent, there is a nonzero polynomial fpx1, . . . , xm, xnq P p.

We want f to be monic in xn. This will buy us integrality. A priori, this might not be true. We
will modify the coordinate system to arrange that, though. Choose N " 0. Define for 1 ď i ď m,

x1i “ xi ` x
N i

n .

Then the equation becomes:

0 “ fpx1, . . . , xm, xnq “ fp
!

x1i ´ x
N i

n

)

, xnq.

Now fpx1, . . . , xn, xn`1q looks like some sum
ÿ

λa1...bx
a1
1 . . . xamm xbn, λa1...b P k.

But N is really really big. Let us expand this expression in the x1i and pay attention to the
largest power of xn we see. We find that

fp
 

x1i ´ x
Ni
n

(

, xnq
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has the largest power of xn precisely where, in the expression for f , am is maximized first, then
am´1, and so on. The largest exponent would have the form

xamN
m`am´1Nm´1`¨¨¨`b

n .

We can’t, however, get any exponents of xn in the expression fp
 

x1i ´ x
Ni
n

(

, xnq other than these.
If N is super large, then all these exponents will be different from each other. In particular, each
power of xn appears precisely once in the expansion of f . We see in particular that xn is integral
over x11, . . . , x1n. Thus each xi is as well.

So we find

R is integral over krx11, . . . , x1ms.

We have thus proved the normalization lemma in the codimension one case. What about the
general case? We repeat this. Say we have

krx1, . . . , xms Ă R.

LetR1 be the subring ofR generated by x1, . . . , xm, xm`1. The argument we just gave implies that
we can choose x11, . . . , x1m such that R1 is integral over krx11, . . . , x1ms, and the x1i are algebraically
independent. We know in fact that R1 “ krx11, . . . , x

1
m, xm`1s.

Let us try repeating the argument while thinking about xm`2. Let R2 “ krx11, . . . , x
1
m, xm`2s

modulo whatever relations that xm`2 has to satisfy. So this is a subring of R. The same argument
shows that we can change variables such that x21, . . . , x2m are algebraically independent and R2

is integral over krx21, . . . , x2ms. We have furthermore that krx21, . . . , x2m, xm`2s “ R2.

Having done this, let us give the argument where m “ n ´ 2. You will then see how to do the
general case. Then I claim that:

R is integral over krx21, . . . , x2ms.

For this, we need to check that xm`1, xm`2 are integral (because these together with the x2i
generate R2rxm`2srxm`2s “ R. But xm`2 is integral over this by construction. The integral
closure of krx21, . . . , x2ms in R thus contains

krx21, . . . , x
2
m, xm`2s “ R2.

However, R2 contains the elements x11, . . . , x1m. But by construction, xm`1 is integral over the
x11, . . . , x

1
m. The integral closure of krx21, . . . , x2ms must contain xm`2. This completes the proof

in the case m “ n ´ 2. The general case is similar; we just make several changes of variables,
successively.
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Back to the Nullstellensatz

Consider a finitely generated k-algebra R which is a field. We need to show that R is a finite
k-module. This will prove the proposition. Well, note that R is integral over a polynomial ring
krx1, . . . , xms for some m. If m ą 0, then this polynomial ring has more than one prime. For
instance, p0q and px1, . . . , xmq. But these must lift to primes in R. Indeed, we have seen that
whenever you have an integral extension, the induced map on spectra is surjective. So

SpecRÑ Spec krx1, . . . , xms

is surjective. If R is a field, this means Spec krx1, . . . , xms has one point and m “ 0. So R is
integral over k, thus algebraic. This implies that R is finite as it is finitely generated. This proves
one version of the Nullstellensatz.

Another version of the Nullstellensatz, which is more precise, says:

4.4.5 Theorem Let I Ă Crx1, . . . , xns. Let V Ă Cn be the subset of Cn defined by the ideal I
(i.e. the zero locus of I).

Then RadpIq is precisely the collection of f such that f |V “ 0. In particular,

RadpIq “
č

mĄI,m maximal

m.

In particular, there is a bijection between radical ideals and algebraic subsets of Cn.

The last form of the theorem, which follows from the expression of maximal ideals in the poly-
nomial ring, is very similar to the result

RadpIq “
č

pĄI,p prime

p,

true in any commutative ring. However, this general result is not necessarily true.

4.4.6 Example The intersection of all primes in a DVR is zero, but the intersection of all
maximals is nonzero.

Proof of theorem 4.4.5. It now suffices to show that for every p Ă Crx1, . . . , xns prime, we have

p “
č

mĄI maximal

m

since every radical ideal is an intersection of primes.

Let R “ Crx1, . . . , xns{p. This is a domain finitely generated over C. We want to show that the
intersection of maximal ideals in R is zero. This is equivalent to the above displayed equality.

So fix f P R ´ t0u. Let R1 be the localization R1 “ Rf . Then R1 is also an integral domain,
finitely generated over C. R1 has a maximal ideal m (which a priori could be zero). If we look at
the map R1 Ñ R1{m, we get a map into a field finitely generated over C, which is thus C. The
composite map

RÑ R1 Ñ R1{m
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is just given by an n-tuple of complex numbers, i.e. to a point in Cn which is even in V as it is a
map out of R. This corresponds to a maximal ideal in R. This maximal ideal does not contain
f by construction.

4.4.7 Remark (exercise) Prove the following result, known as “Zariski’s lemma” (which easily
implies the Nullstellensatz): if k is a field, k1 a field extension of k which is a finitely generated
k-algebra, then k1 is finite algebraic over k. Use the following argument of McCabe (in ?):

1. k1 contains a subring S of the form S “ krx1, . . . , xts where the x1, . . . , xt are algebraically
independent over k, and k1 is algebraic over the quotient field of S (which is a polynomial
ring).

2. If k1 is not algebraic over k, then S ‰ k is not a field.

3. Show that there is y P S such that k1 is integral over Sy. Deduce that Sy is a field.

4. Since SpecpSyq “ t0u, argue that y lies in every non-zero prime ideal of SpecS. Conclude
that 1` y P k, and S is a field—contradiction.

A little affine algebraic geometry

In what follows, let k be algebraically closed, and let A be a finitely generated k-algebra. Recall
that SpecmaxA denotes the set of maximal ideals in A. Consider the natural k-algebra structure
on FunctpSpecmaxA, kq. We have a map

AÑ FunctpSpecmaxA, kq

which comes from the Weak Nullstellensatz as follows. Maximal ideals m Ă A are in bijection
with maps ϕm : A Ñ k where kerpϕmq “ m, so we define a ÞÝÑ rm ÞÝÑ ϕmpaqs. If A is reduced,
then this map is injective because if a P A maps to the zero function, then a P Xm Ñ a is
nilpotent Ñ a “ 0.

4.4.8 Definition A function f P FunctpSpecmaxA, kq is called algebraic if it is in the image of
A under the above map. (Alternate words for this are polynomial and regular.)

Let A and B be finitely generated k-algebras and φ : A Ñ B a homomorphism. This yields a
map Φ : SpecmaxB Ñ SpecmaxA given by taking pre-images.

4.4.9 Definition A map Φ : SpecmaxB Ñ SpecmaxA is called algebraic if it comes from a
homomorphism φ as above.

To demonstrate how these definitions relate to one another we have the following proposition.

4.4.10 Proposition A map Φ : SpecmaxB Ñ SpecmaxA is algebraic if and only if for any
algebraic function f P FunctpSpecmaxA, kq, the pullback f ˝Φ P FunctpSpecmaxB, kq is algebraic.
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Proof. Suppose that Φ is algebraic. It suffices to check that the following diagram is commutative:

FunctpSpecmaxA, kq
´˝Φ // FunctpSpecmaxB, kq

A

OO

φ
// B

OO

where φ : AÑ B is the map that gives rise to Φ.

[ð] Suppose that for all algebraic functions f P FunctpSpecmaxA, kq, the pull-back f ˝ Φ is
algebraic. Then we have an induced map, obtained by chasing the diagram counter-clockwise:

FunctpSpecmaxA, kq
´˝Φ // FunctpSpecmaxB, kq

A

OO

φ
// B

OO

From φ, we can construct the map Φ1 : SpecmaxB Ñ SpecmaxA given by Φ1pmq “ φ´1pmq. I
claim that Φ “ Φ1. If not, then for some m P SpecmaxB we have Φpmq ‰ Φ1pmq. By definition,
for all algebraic functions f P FunctpSpecmaxA, kq, f ˝Φ “ f ˝Φ1 so to arrive at a contradiction
we show the following lemma:
Given any two distinct points in SpecmaxA “ V pIq Ă kn, there exists some algebraic f that
separates them. This is trivial when we realize that any polynomial function is algebraic, and
such polynomials separate points.

4.5. Serre’s criterion and its variants

We are going to now prove a useful criterion for a noetherian ring to be a product of normal
domains, due to Serre: it states that a (noetherian) ring is normal if and only if most of the
localizations at prime ideals are discrete valuation rings (this corresponds to the ring being regular
in codimension one, though we have not defined regularity yet) and a more technical condition
that we will later interpret in terms of depth. One advantage of this criterion is that it does not
require the ring to be a product of domains a priori.

Reducedness

There is a “baby” version of Serre’s criterion for testing whether a ring is reduced, which we star
with.

Recall:

4.5.1 Definition A ring R is reduced if it has no nonzero nilpotents.

4.5.2 Proposition If R is noetherian, then R is reduced if and only if it satisfies the following
conditions:
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1. Every associated prime of R is minimal (no embedded primes).

2. If p is minimal, then Rp is a field.

Proof. First, assume R reduced. What can we say? Say p is a minimal prime; then Rp has
precisely one prime ideal (namely, m “ pRp). It is in fact a local artinian ring, though we don’t
need that fact. The radical of Rp is just m. But R was reduced, so Rp was reduced; it’s an easy
argument that localization preserves reducedness. So m “ 0. The fact that 0 is a maximal ideal
in Rp says that it is a field.

On the other hand, we still have to do part 1. R is reduced, so RadpRq “
Ş

pPSpecR p “ 0. In
particular,

č

p minimal

p “ 0.

The map
RÑ

ź

p minimal

R{p

is injective. The associated primes of the product, however, are just the minimal primes. So
AsspRq can contain only minimal primes.

That’s one direction of the proposition. Let us prove the converse now. Assume R satisfies
the two conditions listed. In other words, AsspRq consists of minimal primes, and each Rp for
p P AsspRq is a field. We would like to show that R is reduced. Primary decomposition tells us
that there is an injection

R ãÑ
ź

pi minimal

Mi, Mi pi ´ primary.

In this case, each Mi is primary with respect to a minimal prime. We have a map

R ãÑ
ź

Mi Ñ
ź

pMiqpi ,

which is injective, because when you localize a primary module at its associated prime, you don’t
kill anything by definition of primariness. Since we can draw a diagram

R //

��

ś

Mi

��
ś

Rpi
//
ś

pMiqpi

and the map RÑ
ś

pMiqpi is injective, the downward arrow on the right injective. Thus R can
be embedded in a product of the fields

ś

Rpi , so is reduced.

This proof actually shows:

4.5.3 Proposition (Scholism) A noetherian ring R is reduced iff it injects into a product of
fields. We can take the fields to be the localizations at the minimal primes.
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4.5.4 Example Let R “ krXs be the coordinate ring of a variety X in Cn. Assume X is
reduced. Then MaxSpecR is a union of irreducible components Xi, which are the closures of
the minimal primes of R. The fields you get by localizing at minimal primes depend only on the
irreducible components, and in fact are the rings of meromorphic functions on Xi. Indeed, we
have a map

krXs Ñ
ź

krXis Ñ
ź

kpXiq.

If we don’t assume that R is radical, this is not true.

There is a stronger condition than being reduced we could impose. We could say:

4.5.5 Proposition If R is a noetherian ring, then R is a domain iff

1. R is reduced.

2. R has a unique minimal prime.

Proof. One direction is obvious. A domain is reduced and p0q is the minimal prime.

The other direction is proved as follows. Assume 1 and 2. Let p be the unique minimal prime
of R. Then RadpRq “ 0 “ p as every prime ideal contains p. As p0q is a prime ideal, R is a
domain.

We close by making some remarks about this embedding of R into a product of fields.

4.5.6 Definition Let R be any ring, not necessarily a domain. Let KpRq be the localized ring
S´1R where S is the multiplicatively closed set of non-zero-divisors in R. KpRq is called the
total ring of fractions of R.

When R is a field, this is the quotient field.

First, to get a feeling for this, we show:

4.5.7 Proposition Let R be noetherian. The set of non-zero-divisors S can be described by
S “ R´

Ť

pPAsspRq p.

Proof. If x P p P AsspRq, then x must kill something in R as it is in an associated prime. So x
is a zero divisor.

Conversely, suppose x is a zero divisor, say xy “ 0 for some y P R´t0u. In particular, x P Annpyq.
We have an injection R{Annpyq ãÑ R sending 1 to y. But R{Annpyq is nonzero, so it has an
associated prime p of R{Annpyq, which contains Annpyq and thus x. But AsspR{Annpyqq Ă
AsspRq. So x is contained in a prime in AsspRq.

Assume now that R is reduced. Then KpRq “ S´1R where S is the complement of the union of
the minimal primes. At least, we can claim:

4.5.8 Proposition Let R be reduced and noetherian. Then KpRq “
ś

pi minimalRpi .
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So KpRq is the product of fields into which R embeds.

We now continue the discussion begun last time. Let R be noetherian andM a finitely generated
R-module. We would like to understand very rough features of M . We can embed M into a
larger R-module. Here are two possible approaches.

1. S´1M , where S is a large multiplicatively closed subset of M . Let us take S to be the set
of all a P R such that M a

ÑM is injective, i.e. a is not a zero divisor on M . Then the map

M Ñ S´1M

is an injection. Note that S is the complement of the union of AsspRq.

2. Another approach would be to use a primary decomposition

M ãÑ
ź

Mi,

where each Mi is pi-primary for some prime pi (and these primes range over AsspMq).
In this case, it is clear that anything not in each pi acts injectively. So we can draw a
commutative diagram

M

��

//
ś

Mi

��
ś

Mpi
//
ś

pMiqpi

.

The map going right and down is injective. It follows that M injects into the product of
its localizations at associated primes.

The claim is that these constructions agree if M has no embedded primes. I.e., if there are no
nontrivial containments among the associated primes ofM , then S´1M (for S “ R´

Ť

pPAsspMq p)
is just

ś

Mp. To see this, note that any element of S must act invertibly on
ś

Mp. We thus see
that there is always a map

S´1M Ñ
ź

pPAsspMq

Mp.

4.5.9 Proposition This is an isomorphism if M has no embedded primes.

Proof. Let us go through a series of reductions. Let I “ AnnpMq “ ta : aM “ 0u. Without loss
of generality, we can replace R by R{I. This plays nice with the associated primes.

The assumption is now that AsspMq consists of the minimal primes of R.

Without loss of generality, we can next replace R by S´1R and M by S´1M , because that
doesn’t affect the conclusion; localization plays nice with associated primes.

Now, however, R is artinian: i.e., all primes of R are minimal (or maximal). Why is this? Let
R be any noetherian ring and S “ R ´

Ť

p minimal p. Then I claim that S´1R is artinian. We’ll
prove this in a moment.
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So R is artinian, hence a product
ś

Ri where each Ri is local artinian. Without loss of generality,
we can replace R by Ri by taking products. The condition we are trying to prove is now that

S´1M ÑMm

for m Ă R the maximal ideal. But S is the complement of the union of the minimal primes, so it
is R´m as R has one minimal (and maximal) ideal. This is obviously an isomorphism: indeed,
both are M .

To be added: proof of artianness

4.5.10 Corollary Let R be a noetherian ring with no embedded primes (i.e. AsspRq consists of
minimal primes). Then KpRq “

ś

pi minimalRpi.

If R is reduced, we get the statement made last time: there are no embedded primes, and KpRq
is a product of fields.

The image of M Ñ S´1M

Let’s ask now the following question. Let R be a noetherian ring, M a finitely generated R-
module, and S the set of non-zero-divisors on M , i.e. R´

Ť

pPAsspMq p. We have seen that there
is an imbedding

φ : M ãÑ S´1M.

What is the image? Given x P S´1M , when does it belong to the imbedding above.

To answer such a question, it suffices to check locally. In particular:

4.5.11 Proposition x belongs to the image of M in S´1M iff for every p P SpecR, the image
of x in pS´1Mqp lies inside Mp.

This isn’t all that interesting. However, it turns out that you can check this at a smaller set of
primes.

4.5.12 Proposition In fact, it suffices to show that x is in the image of φp for every p P
AsspM{sMq where s P S.

This is a little opaque; soon we’ll see what it actually means. The proof is very simple.

Proof. Remember that x P S´1M . In particular, we can write x “ y{s where y P M, s P S.
What we’d like to prove that x P M , or equivalently that y P sM .5 In particular, we want to
know that y maps to zero in M{sM . If not, there exists an associated prime p P AsspM{sMq
such that y does not get killed in pM{sMqp. We have assumed, however, for every associated
prime p P AsspMq, x P pS´1Mqp lies in the image of Mp. This states that the image of y in this
quotient pM{sMqp is zero, or that y is divisible by s in this localization.

5In general, this would be equivalent to ty P tsM for some t P S; but S consists of non-zero-divisors on M .
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The case we actually care about is the following:

Take R as a noetherian domain and M “ R. Then S “ R ´ t0u and S´1M is just the fraction
field KpRq. The goal is to describe R as a subset of KpRq. What we have proven is that R is
the intersection in the fraction field

R “
č

pPAsspR{sq,sPR´0

Rp.

So to check that something belongs to R, we just have to check that in a certain set of localiza-
tions.

Let us state this as a result:

4.5.13 Theorem If R is a noetherian domain

R “
č

pPAsspR{sq,sPR´0

Rp

Serre’s criterion

We can now state a result.

4.5.14 Theorem (Serre) Let R be a noetherian domain. Then R is integrally closed iff it
satisfies

1. For any p Ă R of height one, Rp is a DVR.

2. For any s ‰ 0, R{s has no embedded primes (i.e. all the associated primes of R{s are
height one).

Here is the non-preliminary version of the Krull theorem.

4.5.15 Theorem (Algebraic Hartogs) Let R be a noetherian integrally closed ring. Then

R “
č

p height one

Rp,

where each Rp is a DVR.

Proof. Now evident from the earlier result theorem 4.5.13 and Serre’s criterion.

Earlier in the class, we proved that a domain was integrally closed if and only if it could be
described as an intersection of valuation rings. We have now shown that when R is noetherian,
we can take discrete valuation rings.
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4.5.16 Remark In algebraic geometry, say R “ Crx1, . . . , xns{I. Its maximal spectrum is a
subset of Cn. If I is prime, and R a domain, this variety is irreducible. We are trying to describe
R inside its field of fractions.

The field of fractions are like the “meromorphic functions”; R is like the holomorphic functions.
Geometrically, this states to check that a meromorphic function is holomorphic, you can just
check this by computing the “poleness” along each codimension one subvariety. If the function
doesn’t blow up on each of the codimension one subvarieties, and R is normal, then you can
extend it globally.

This is an algebraic version of Hartog’s theorem: this states that a holomorphic function on
C2 ´ p0, 0q extends over the origin, because this has codimension ą 1.

All the obstructions of extending a function to all of SpecR are in codimension one.

Now, we prove Serre’s criterion.

Proof. Let us first prove that R is integrally closed if 1 and 2 occur. We know that

R “
č

pPAsspR{xq,x‰0

Rp;

by condition 1, each such p is of height one, and Rp is a DVR. So R is the intersection of DVRs
and thus integrally closed.

The hard part is going in the other direction. Assume R is integrally closed. We want to prove
the two conditions. In R, consider the following conditions on a prime ideal p:

1. p is an associated prime of R{x for some x ‰ 0.

2. p is height one.

3. pp is principal in Rp.

First, 3 implies 2 implies 1. 3 implies that p contains an element x which generates p after
localizing. It follows that there can be no prime between pxq and p because that would be
preserved under localization. Similarly, 2 implies 1 is easy. If p is minimal over pxq, then
p P AssR{pxq since the minimal primes in the support are always associated.

We are trying to prove the inverse implications. In that case, the claims of the theorem will be
proved. We have to show that 1 implies 3. This is an argument we really saw last time, but
let’s see it again. Say p P AsspR{xq. We can replace R by Rp so that we can assume that p is
maximal. We want to show that p is generated by one element.

What does the condition p P AsspR{xq buy us? It tells us that there is y P R{x such that
Annpyq “ p. In particular, there is y P R such that py Ă pxq and y R pxq. We have the element
y{x P KpRq which sends p into R. That is,

py{xqp Ă R.

There are two cases to consider, as in last time:

1. py{xqp “ R. Then p “ Rpx{yq so p is principal.
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2. py{xqp ‰ R. In particular, py{xqp Ă p. Then since p is finitely generated, we find that y{x
is integral over R, hence in R. This is a contradiction as y R pxq.

Only the first case is now possible. So p is in fact principal.
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group

Commutative rings in general do not admit unique factorization. Nonetheless, for many rings
(“integrally closed” rings), which includes the affine coordinate rings one obtains in algebraic
geometry when one studies smooth varieties, there is an invariant called the “class group” that
measures the failure of unique factorization. This “class group” is a certain quotient of codimen-
sion one primes (geometrically, codimension one subvarieties) modulo rational equivalence.

Many even nicer rings have the convenient property that their localizations at prime ideals
factorial, a key example being the coordinate ring of an affine nonsingular variety. For these
even nicer rings, an alternative method of defining the class group can be given: the class group
corresponds to the group of isomorphism classes of invertible modules. Geometrically, such
invertible modules are line bundles on the associated variety (or scheme).

5.1. Unique factorization

Definition

We begin with the nicest of all possible cases, when the ring itself admits unique factorization.

Let R be a domain.

5.1.1 Definition A nonzero element x P R is prime if pxq is a prime ideal.

In other words, x is not a unit, and if x | ab, then either x | a or x | b.

We restate the earlier definition 2.7.7 slightly.

5.1.2 Definition A domain R is factorial (or a unique factorization domain, or a UFD) if
every nonzero noninvertible element x P R factors as a product x1 . . . xn where each xi is prime.

Recall that a principal ideal domain is a UFD (theorem 2.7.9), as is a euclidean domain (theo-
rem 2.7.11); actually, a euclidean domain is a PID. Previously, we imposed something seemingly
slightly stronger: that the factorization be unique. We next show that we get that for free.

5.1.3 Proposition (The fundamental theorem of arithmetic) This factorization is essen-
tially unique, that is, up to multiplication by units.
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Proof. Let x P R be a nonunit. Say x “ x1 . . . xn “ y1 . . . ym were two different prime factoriza-
tions. Then m,n ą 0.

We have that x1 | y1 . . . ym, so x1 | yi for some i. But yi is prime. So x1 and yi differ by a unit.
By removing each of these, we can get a smaller set of nonunique factorizations. Namely, we find
that

x2 . . . xn “ y1 . . . ŷi . . . ym

and then we can induct on the number of factors.

The motivating example is of course:

5.1.4 Example Z is factorial. This is the fundamental theorem of arithmetic, and follows
because Z is a euclidean domain. The same observation applies to a polynomial ring over a field
by proposition 2.7.12.

Gauß’s lemma

We now show that factorial rings are closed under the operation of forming polynomial rings.

5.1.5 Theorem (Gauß’s lemma) If R is factorial, so is the polynomial ring RrXs.

In general, if R is a PID, RrXs will not be a PID. For instance, ZrXs is not a PID: the prime
ideal p2, Xq is not principal.

Proof. In the course of this proof, we shall identify the prime elements in RrXs. We start with
a lemma that allows us to compare factorizations in KrXs (for K the quotient field) and RrXs;
the advantage is that we already know the polynomial ring over a field to be a UFD.

5.1.6 Lemma Suppose R is a unique factorization domain with quotient field K. Suppose f P
RrXs is irreducible in RrXs and there is no nontrivial common divisor of the coefficients of f .
Then f is irreducible in KrXs.

With this in mind, we say that a polynomial in RrXs is primitive if the coefficients have no
common divisor in R.

Proof. Indeed, suppose we had a factorization

f “ gh, g, h P KrXs,

where g, h have degree ě 1. Then we can clear denominators to find a factorization

rf “ g1h1

where r P R ´ t0u and g1, h1 P RrXs. By clearing denominators as little as possible, we may
assume that g1, h1 are primitive. To be precise, we divide g1, h1 by their contents. Let us define:
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5.1.7 Definition The content Contpfq of a polynomial f P RrXs is the greatest common
divisor of its coefficients. The content of an element f in KrXs is defined by considering r P R
such that rf P RrXs, and taking Contprfq{r. This is well-defined, modulo elements of R˚, and
we have Contpsfq “ sCont f if s P K.

To say that the content lies in R is to say that the polynomial is in RrXs; to say that the content
is a unit is to say that the polynomial is primitive. Note that a monic polynomial in RrXs is
primitive.

So we have:

5.1.8 Lemma Any element of KrXs is a product of Contpfq and something primitive in RrXs.

Proof. Indeed, f{Contpfq has content a unit. It therefore cannot have anything in the denomi-
nator. Indeed, if it had a term r{piXn where r, p P R and p - r is prime, then the content would
divide r{pi. It thus could not be in R.

5.1.9 Lemma Contpfgq “ ContpfqContpgq if f, g P KrXs.

Proof. By dividing f, g by their contents, it suffices to show that the product of two primitive
polynomials in RrXs (i.e. those with no common divisor of all their coefficients) is itself primitive.
Indeed, suppose f, g are primitive and p P R is a prime. Then f, g P R{ppqrXs are nonzero. Their
product fg is also not zero because R{ppqrXs is a domain, p being prime. In particular, p is not
a common factor of the coefficients of fg. Since p was arbitrary, this completes the proof.

So return to the main proof. We know that f “ gh. We divided g, h by their contents to get
g1, h1 P RrXs. We had then

rf “ g1h1, r P K˚.

Taking the contents, and using the fact that f, g1, h1 are primitive, we have then:

r “ Contpg1qContph1q “ 1 pmodulo R˚q.

But then f “ r´1g1h1 shows that f is not irreducible in RrXs, contradiction.

Let R be a ring. Recall that an element is irreducible if it admits no nontrivial factorization.
The product of an irreducible element and a unit is irreducible. Call a ring finitely irreducible
if every element in the ring admits a factorization into finitely many irreducible elements.

5.1.10 Lemma A ring R is finitely irreducible if every ascending sequence of principal ideals
in R stabilizes.

A ring such that every ascending sequence of ideals (not necessarily principal) stabilizes is said
to be noetherian; this is a highly useful finiteness condition on a ring.

336



III.5. Unique factorization and the class group 5.1. Unique factorization

Proof. Suppose R satisfies the ascending chain condition on principal ideals. Then let x P R.
We would like to show it can be factored as a product of irreducibles. So suppose x is not the
product of finitely many irreducibles. In particular, it is reducible: x “ x1x

1
1, where neither

factor is a unit. One of this cannot be written as a finite product of irreducibles. Say it is x1.
Similarly, we can write x1 “ x2x

2
2 where one of the factors, wlog x2, is not the product of finitely

many irreducibles. Repeating inductively gives the ascending sequence

pxq Ă px1q Ă px2q Ă . . . ,

and since each factorization is nontrivial, the inclusions are each nontrivial. This is a contradic-
tion.

5.1.11 Lemma Suppose R is a UFD. Then every ascending sequence of principal ideals in RrXs
stabilizes. In particular, RrXs is finitely irreducible.

Proof. Suppose pf1q Ă pf2q Ă ¨ ¨ ¨ P RrXs. Then each fi`1 | fi. In particular, the degrees of fi
are nonincreasing, and consequently stabilize. Thus for i " 0, we have deg fi`1 “ deg fi. We can
thus assume that all the degrees are the same. In this case, if i " 0 and k ą 0, fi{fi`k P RrXs
must actually lie in R as R is a domain. In particular, throwing out the first few elements in the
sequence if necessary, it follows that our sequence looks like

f, f{r1, f{pr1r2q, . . .

where the ri P R. However, we can only continue this a finite amount of time before the ri’s will
have to become units since R is a UFD. (Or f “ 0.) So the sequence of ideals stabilizes.

5.1.12 Lemma Every element in RrXs can be factored into a product of irreducibles.

Proof. Now evident from the preceding lemmata.

Suppose P is an irreducible element in RrXs. I claim that P is prime. There are two cases:

1. P P R is a prime in R. Then we know that P | f if and only if the coefficients of f are
divisible by P . In particular, P | f iff P | Contpfq. It is now clear that P | fg if and only
if P divides one of Contpfq,Contpgq (since Contpfgq “ ContpfqContpgq).

2. P does not belong to R. Then P must have content a unit or it would be divisible by its
content. So P is irreducible in KrXs by the above reasoning.

Say we have an expression
P | fg, f, g P RrXs.

Since P is irreducible, hence prime, in the UFD (even PID) KrXs, we have that P divides
one of f, g in KrXs. Say we can write

f “ qP, q P KrXs.

Then taking the content shows that Contpqq “ Contpfq P R, so q P RrXs. It follows that
P | f in RrXs.

We have shown that every element in RrXs factors into a product of prime elements. From this,
it is clear that RrXs is a UFD.

5.1.13 Corollary The polynomial ring krX1, . . . , Xns for k a field is factorial.

Proof. Induction on n.
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Factoriality and height one primes

We now want to give a fancier criterion for a ring to be a UFD, in terms of the lattice structure
on SpecR. This will require a notion from dimension theory (to be developed more fully later).

5.1.14 Definition Let R be a domain. A prime ideal p Ă R is said to be of height one if p is
minimal among ideals containing x for some nonzero x P R.

So a prime of height one is not the zero prime, but it is as close to zero as possible, in some
sense. When we later talk about dimension theory, we will talk about primes of any height. In
a sense, p is “almost” generated by one element.

5.1.15 Theorem Let R be a noetherian domain. The following are equivalent:

1. R is factorial.

2. Every height one prime is principal.

Proof. Let’s first show 1) implies 2). AssumeR is factorial and p is height one, minimal containing
pxq for some x ‰ 0 P R. Then x is a nonunit, and it is nonzero, so it has a prime factorization

x “ x1 . . . xn, each xi prime.

Some xi P p because p is prime. In particular,

p Ą pxiq Ą pxq.

But pxiq is prime itself, and it contains pxq. The minimality of p says that p “ pxiq.

Conversely, suppose every height one prime is principal. Let x P R be nonzero and a nonunit.
We want to factor x as a product of primes. Consider the ideal pxq Ĺ R. As a result, pxq is
contained in a prime ideal. Since R is noetherian, there is a minimal prime ideal p containing
pxq. Then p, being a height one prime, is principal—say p “ px1q. It follows that x1 | x and x1

is prime. Say
x “ x1x

1
1.

If x11 is a nonunit, repeat this process to get x11 “ x2x
1
2 with x2 a prime element. Keep going;

inductively we have
xk “ xk`1x

1
k`1.

If this process stops, with one of the x1k a unit, we get a prime factorization of x. Suppose the
process continues forever. Then we would have

pxq Ĺ px11q Ĺ px
1
2q Ĺ px

1
3q Ĺ . . . ,

which is impossible by noetherianness.

We have seen that unique factorization can be formulated in terms of prime ideals.
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Factoriality and normality

We next state a generalization of the “rational root theorem” as in high school algebra.

5.1.16 Proposition A factorial domain is integrally closed.

Proof. To be added: proof – may be in the queue already

5.2. Weil divisors

Definition

We start by discussing Weil divisors.

5.2.1 Definition A Weil divisor for R is a formal linear combination
ř

nirpis where the pi
range over height one primes of R. So the group of Weil divisors is the free abelian group on the
height one primes of R. We denote this group by WeilpRq.

The geometric picture behind Weil divisors is that a Weil divisor is like a hypersurface: a
subvariety of codimension one.

Valuations

Nagata’s lemma

We finish with a fun application of the exact sequence of Weil divisors to a purely algebraic
statement about factoriality.

5.2.2 Lemma Let A be a normal noetherian domain.

5.2.3 Theorem Let A be a noetherian domain, x P A ´ t0u. Suppose pxq is prime and Ax is
factorial. Then A is factorial.

Proof. We first show that A is normal (hence regular in codimension one). Indeed, Ax is normal.
So if t P KpAq is integral over A, it lies in Ax. So we need to check that if a{xn P Ax is integral
over A and x - x, then n “ 0. Suppose we had an equation

pa{xnqN ` b1pa{x
nqN´1 ` ¨ ¨ ¨ ` bN “ 0.

Multiplying both sides by xnN gives that

aN P xR,

so x | a by primality.

Now we use the exact sequence

pxq Ñ ClpAq Ñ ClpAxq Ñ 0.

The end is zero, and the image of the first map is zero. So ClpAq “ 0. Thus A is a UFD.
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5.3. Locally factorial domains

Definition

5.3.1 Definition A noetherian domain R is said to be locally factorial if Rp is factorial for
each p prime.

5.3.2 Example The coordinate ring Crx1, . . . , xn{I of an algebraic variety is locally factorial if
the variety is smooth. We may talk about this later.

5.3.3 Example (Nonexample) Let R be CrA,B,C,Ds{pAD ´BCq. The spectrum of R has
maximal ideals consisting of 2-by-2 matrices of determinant zero. This variety is very singular
at the origin. It is not even locally factorial at the origin.

The failure of unique factorization comes from the fact that

AD “ BC

in this ring R. This is a prototypical example of a ring without unique factorization. The reason
has to do with the fact that the variety has a singularity at the origin.

The Picard group

5.3.4 Definition Let R be a commutative ring. An R-module I is invertible if there exists J
such that

I bR J » R.

Invertibility is with respect to the tensor product.

5.3.5 Remark In topology, one is often interested in classifying vector bundles on spaces. In
algebraic geometry, a module M over a ring R gives (as in ??) a sheaf of abelian groups over the
topological space SpecR; this is supposed to be an analogy with the theory of vector bundles.
(It is not so implausible since the Serre-Swan theorem (??) gives an equivalence of categories
between the vector bundles over a compact space X and the projective modules over the ring
CpXq of continuous functions.) In this analogy, the invertible modules are the line bundles. The
definition has a counterpart in the topological setting: for instance, a vector bundle E Ñ X over
a space X is a line bundle (that is, of rank one) if and only if there is a vector bundle E 1 Ñ X
such that E b E 1 is the trivial bundle X ˆ R.

There are many equivalent characterizations.

5.3.6 Proposition Let R be a ring, I an R-module. TFAE:

1. I is invertible.

2. I is finitely generated and Ip » Rp for all primes p Ă R.
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3. I is finitely generated and there exist a1, . . . , an P R which generate p1q in R such that

Ira´1
i s » Rra´1

i s.

Proof. First, we show that if I is invertible, then I is finitely generated. Suppose I bR J » R.
This means that 1 P R corresponds to an element

ÿ

ik b jk P I bR J.

Thus, there exists a finitely generated submodule I0 Ă I such that the map I0 b J Ñ I b J is
surjective. Tensor this with I, so we get a surjection

I0 » I0 b J b I Ñ I b J b I » I

which leads to a surjection I0 � I. This implies that I is finitely generated

Step 1: 1 implies 2. We now show 1 implies 2. Note that if I is invertible, then I bR R1 is an
invertible R1 module for any R-algebra R1; to get an inverse of I bR R1, tensor the inverse of I
with R1. In particular, Ip is an invertible Rp-module for each p. As a result,

Ip{pIp

is invertible over the field Rp{pRp. This means that Ip{pIp is a one-dimensional vector space over
the residue field. (The invertible modules over a vector space are the one-dimensional spaces.)
Choose an element x P Ip which generates Ip{pIp. Since Ip is finitely generated, Nakayama’s
lemma shows that x generates Ip.

We get a surjection α : Rp � Ip carrying 1 Ñ x. We claim that this map is injective. This will
imply that Ip is free of rank 1. So, let J be an inverse of I among R-modules, so that IbRJ “ R;
the same argument as above provides a surjection β : Rp Ñ Jp. Then β1 “ β b 1Ip : Ip Ñ Rp is
also a surjection. Composing, we get a surjective map

Rp
α
� Ip

β1

� Rp

whose composite must be multiplication by a unit, since the ring is local. Thus the composite is
injective and α is injective. It follows that α is an isomorphism, so that Ip is free of rank one.

Step 2: 2 implies 3. Now we show 2 implies 3. Suppose I is finitely generated with generators
tx1, . . . , xnu Ă I and Ip » Rp for all p. Then for each p, we can choose an element x of Ip
generating Ip as Rp-module. By multiplying by the denominator, we can assume that x P I. By
assumption, we can then find ai, si P R with

sixi “ aix P R

for some si R p as x generates Ip. This means that x generates I after inverting the si. It follows
that Ir1{as “ Rr1{as where a “

ś

si R p. In particular, we find that there is an open covering
tSpecRr1{apsu of SpecR (where ap R p) on which I is isomorphic to R. To say that these cover
SpecR is to say that the ap generate 1.
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Finally, let’s do the implication 3 implies 1. Assume that we have the situation of Ir1{ais »
Rr1{ais. We want to show that I is invertible. We start by showing that I is finitely presented.
This means that there is an exact sequence

Rm Ñ Rn Ñ I Ñ 0,

i.e. I is the cokernel of a map between free modules of finite rank. To see this, first, we’ve
assumed that I is finitely generated. So there is a surjection

Rn � I

with a kernel K � Rn. We must show that K is finitely generated. Localization is an exact
functor, so Kr1{ais is the kernel of Rr1{aisn Ñ Ir1{ais. However, we have an exact sequence

Kr1{ais� Rr1{ais
n � Rr1{ais

by the assumed isomorphism Ir1{ais » Rr1{ais. But since a free module is projective, this
sequence splits and we find that Kr1{ais is finitely generated. If it’s finitely generated, it’s
generated by finitely many elements in K. As a result, we find that there is a map

RN Ñ K

such that the localization to SpecRr1{ais is surjective. This implies by the homework that
RN Ñ K is surjective.1 Thus K is finitely generated.

In any case, we have shown that the module I is finitely presented. Define J “ homRpI,Rq as
the candidate for its dual. This construction is compatible with localization. We can choose a
finite presentation Rm Ñ Rn Ñ I Ñ 0, which leads to a sequence

0 Ñ J Ñ hompRn, Rq Ñ hompRm, Rq.

It follows that the formation of J commutes with localization. In particular, this argument shows
that

Jr1{as “ homRr1{aspIr1{as, Rr1{asq.

One can check this by using the description of J . By construction, there is a canonical map
I b J Ñ R. I claim that this map is invertible.

For the proof, we use the fact that one can check for an isomorphism locally. It suffices to show
that

Ir1{as b Jr1{as Ñ Rr1{as

is an isomorphism for some collection of a’s that generate the unit ideal. However, we have
a1, . . . , an that generate the unit ideal such that Ir1{ais is free of rank 1, hence so is Jr1{ais. It
thus follows that Ir1{ais b Jr1{ais is an isomorphism.

5.3.7 Definition Let R be a commutative ring. We define the Picard group PicpRq to be the
set of isomorphism classes of invertible R-modules. This is an abelian group; the addition law is
defined so that the sum of the classes represented by M,N is M bR N . The identity element is
given by R.

1To check that a map is surjective, just check at the localizations at any maximal ideal.
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The Picard group is thus analogous (cf. ??) to the set of isomorphism classes of line bundles on a
topological space (which is also an abelian group). While the latter can often be easily computed
(for a nice space X, the line bundles are classified by elements of H2pX,Zq), the interpretation
in the algebraic setting is more difficult.

Cartier divisors

Assume furthermore that R is a domain. We now introduce:

5.3.8 Definition ACartier divisor for R is a submoduleM Ă KpRq such thatM is invertible.

In other words, a Cartier divisor is an invertible fractional ideal. Alternatively, it is an invert-
ible R-module M with a nonzero map M Ñ KpRq. Once this map is nonzero, it is
automatically injective, since injectivity can be checked at the localizations, and any module-
homomorphism from a domain into its quotient field is either zero or injective (because it is
multiplication by some element).

We now make this into a group.

5.3.9 Definition Given pM,a : M ãÑ KpRqq and pN, b : N ãÑ KpRqq, we define the sum to be

pM bN, ab b : M bN ãÑ KpRqq.

The map abb is nonzero, so by what was said above, it is an injection. Thus the Cartier divisors
from an abelian group CartpRq.

By assumption, there is a homomorphism

CartpRq Ñ PicpRq

mapping pM,M ãÑ KpRqq ÑM .

5.3.10 Proposition The map CartpRq Ñ PicpRq is surjective. In other words, any invertible
R-module can be embedded in KpRq.

Proof. Let M be an invertible R-module. Indeed, we know that Mp0q “ M bR KpRq is an
invertible KpRq-module, so a one-dimensional vector space over KpRq. In particular, Mp0q »

KpRq. There is a nonzero homomorphic map

M ÑMp0q » KpRq,

which is automatically injective by the discussion above.

What is the kernel of CartpRq Ñ PicpRq? This is the set of Cartier divisors which are isomorphic
to R itself. In other words, it is the set of pR,R ãÑ KpRqq. This data is the same thing as the
data of a nonzero element of KpRq. So the kernel of

CartpRq Ñ PicpRq

has kernel isomorphic to KpRq˚. We have a short exact sequence

KpRq˚ Ñ CartpRq Ñ PicpRq Ñ 0.
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Weil divisors and Cartier divisors

Now, we want to assume CartpRq if R is “good.” The “goodness” in question is to assume that
R is locally factorial, i.e. that Rp is factorial for each p. This is true, for instance, if R is the
coordinate ring of a smooth algebraic variety.

5.3.11 Proposition If R is locally factorial and noetherian, then the group CartpRq is a free
abelian group. The generators are in bijection with the height one primes of R.

Now assume that R is a locally factorial, noetherian domain. We shall produce an isomorphism

WeilpRq » CartpRq

that sends rpis to that height one prime pi together with the imbedding pi ãÑ RÑ KpRq.

We first check that this is well-defined. Since WeilpRq is free, all we have to do is check that
each pi is a legitimate Cartier divisor. In other words, we need to show that:

5.3.12 Proposition If p Ă R is a height one prime and R locally factorial, then p is invertible.

Proof. In the last lecture, we gave a criterion for invertibility: namely, being locally trivial. We
have to show that for any prime q, we have that pq is isomorphic to Rq. If p Ć q, then pq is the
entire ring Rq, so this is obvious. Conversely, suppose p Ă q. Then pq is a height one prime of
Rq: it is minimal over some element in Rq.

Thus pq is principal, in particular free of rank one, since Rq is factorial. We saw last time that
being factorial is equivalent to the principalness of height one primes.

We need to define the inverse map

CartpRq Ñ WeilpRq.

In order to do this, start with a Cartier divisor pM,M ãÑ KpRqq. We then have to describe
which coefficient to assign a height one prime. To do this, we use a local criterion.

Let’s first digress a bit. Consider a locally factorial domain R and a prime p of height one. Then
Rp is factorial. In particular, its maximal ideal pRp is height one, so principal. It is the principal
ideal generated by some t P Rp. Now we show:

5.3.13 Proposition Every nonzero ideal in Rp is of the form ptnq for some unique n ě 0.

Proof. Let I0 Ă Rp be nonzero. If I0 “ Rp, then we’re done—it’s generated by t0. Otherwise,
I0 Ĺ Rp, so contained in pRp “ ptq. So let I1 “ tx P Rp : tx P I0u. Thus

I1 “ t´1I0.

I claim now that I1 ‰ I0, i.e. that there exists x P Rp such that x R I0 but tx P I0. The proof
comes from the theory of associated primes. Look at Rp{I0; it has at least one associated prime
as it is nonzero.
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Since it is a torsion module, this associated prime must be pRp since the only primes in Rp are
p0q and ptq, which we have not yet shown. So there exists an element in the quotient R{I0

whose annihilator is precisely ptq. Lifting this gives an element in R which when multiplied by
ptq is in I0 but which is not in I0. So I0 Ĺ I1.

Proceed as before now. Define I2 “ tx P Rp : tx P I1u. This process must halt since we have
assumed noetherianness. We must have Im “ Im`1 for some m, which would imply that some
Im “ Rp by the above argument. It then follows that I0 “ pt

mq since each Ii is just tIi`1.

We thus have a good structure theory for ideals in R localized at a height one prime. Let us
make a more general claim.

5.3.14 Proposition Every nonzero finitely generated Rp-submodule of the fraction field KpRq
is of the form ptnq for some n P Z.

Proof. Say thatM Ă KpRq is such a submodule. Let I “ tx P Rp, xM Ă Rpu. Then I ‰ 0 asM
is finitely generated M is generated over Rp by a finite number of fractions ai{bi, bi P R. Then
the product b “

ś

bi brings M into Rp.

We know that I “ ptmq for some m. In particular, tmM is an ideal in R. In particular,

tmM “ tpR

for some p, in particular M “ tp´mR.

Now let’s go back to the main discussion. R is a noetherian locally factorial domain; we want to
construct a map

CartpRq Ñ WeilpRq.

Given pM,M ãÑ KpRqq with M invertible, we want to define a formal sum
ř

nirpis. For every
height one prime p, let us look at the local ring Rp with maximal ideal generated by some tp P Rp.
Now Mp Ă KpRq is a finitely generated Rp-submodule, so generated by some tnp

p . So we map
pM,M ãÑ KpRqq to

ÿ

p

nprps.

First, we have to check that this is well-defined. In particular, we have to show:

5.3.15 Proposition For almost all height one p, we have Mp “ Rp. In other words, the integers
np are almost all zero.

Proof. We can always assume that M is actually an ideal. Indeed, choose a P R with aM “ I Ă
R. As Cartier divisors, we have M “ I ´ paq. If we prove the result for I and paq, then we will
have proved it for M (note that the np’s are additive invariants2). So because of this additivity,
it is sufficient to prove the proposition for actual (i.e. nonfractional) ideals.

2To see this, localize at p—then if M is generated by ta, N generated by tb, then M bN is generated by ta`b.
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Assume thus thatM Ă R. All of these np associated toM are at least zero becauseM is actually
an ideal. What we want is that np ď 0 for almost all p. In other words, we must show that

Mp Ą Rp almost all p.

To do this, just choose any x P M ´ 0. There are finitely many minimal primes containing pxq
(by primary decomposition applied to R{pxq). Every other height one prime q does not contain
pxq.3 This states that Mq Ą x{x “ 1, so Mq Ą Rq.

The key claim we’ve used in this proof is the following. If q is a height one prime in a domain R
containing some nonzero element pxq, then q is minimal among primes containing pxq. In other
words, we can test the height one condition at any nonzero element in that prime. Alternatively:

5.3.16 Lemma There are no nontrivial containments among height one primes.

Anyway, we have constructed maps between CartpRq and WeilpRq. The map CartpRq Ñ WeilpRq
takes M Ñ

ř

nprps. The other map WeilpRq Ñ CartpRq takes rps Ñ p Ă KpRq. The com-
position WeilpRq Ñ WeilpRq is the identity. Why is that? Start with a prime p; that goes to
the Cartier divisor p. Then we need to finitely generatedre the multiplicities at other height one
primes. But if p is height one and q is a height one prime, then if p ‰ q the lack of nontrivial
containment relations implies that the multiplicity of p at q is zero. We have shown that

WeilpRq Ñ CartpRq Ñ WeilpRq

is the identity.

Now we have to show that CartpRq Ñ WeilpRq is injective. Say we have a Cartier divisor
pM,M ãÑ KpRqq that maps to zero in WeilpRq, i.e. all its multiplicities np are zero at height
one primes. We show that M “ R.

First, assume M Ă R. It is sufficient to show that at any maximal ideal m Ă R, we have

Mm “ Rm.

What can we say? Well, Mm is principal as M is invertible, being a Cartier divisor. Let it be
generated by x P Rm; suppose x is a nonunit (or we’re already done). But Rm is factorial, so
x “ x1 . . . xn for each xi prime. If n ą 0, then however M has nonzero multiplicity at the prime
ideal pxiq Ă Rm. This is a contradiction.

The general case of M not really a subset of R can be handled similarly: then the generating
element x might lie in the fraction field. So x, if it is not a unit in R, is a product of some primes
in the numerator and some primes in the denominator. The nonzero primes that occur lead to
nonzero multiplicities.

3Again, we’re using something about height one primes not proved yet.
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Recap and a loose end

Last time, it was claimed that if R is a locally factorial domain, and p Ă R is of height one, then
every prime ideal of Rp is either maximal or zero. This follows from general dimension theory.
This is equivalent to the following general claim about height one primes:

There are no nontrivial inclusions among height one primes for R a locally factorial
domain.

Proof. Suppose q Ĺ p is an inclusion of height one primes.

Replace R by Rp. Then R is local with some maximal ideal m, which is principal with some
generator x. Then we have an inclusion

0 Ă q Ă m.

This inclusion is proper. However, q is principal since it is height one in the factorial ring Rp.
This cannot be since every element is a power of x times a unit. (Alright, this wasn’t live TEXed
well.)

Last time, we were talking about WeilpRq and CartpRq for R a locally factorial noetherian
domain.

1. WeilpRq is free on the height one primes.

2. CartpRq is the group of invertible submodules of KpRq.

We produced an isomorphism
WeilpRq » CartpRq.

5.3.17 Remark Geometrically, what is this? Suppose R “ CrX1, . . . , Xns{I for some ideal I.
Then the maximal ideals, or closed points in SpecR, are certain points in Cn; they form an
irreducible variety if R is a domain. The locally factorial condition is satisfied, for instance, if
the variety is smooth. In this case, the Weil divisors correspond to sums of irreducible varieties
of codimension one—which correspond to the primes of height one. The Weil divisors are free
on the set of irreducible varieties of codimension one.

The Cartier divisors can be thought of as “linear combinations” of subvarieties which are locally
defined by one equation. It is natural to assume that the condition of being defined by one
equation corresponds to being codimension one. This is true by the condition of R locally
factorial.

In general, we can always construct a map

CartpRq Ñ WeilpRq,

but it is not necessarily an isomorphism.
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Further remarks on WeilpRq and CartpRq

Recall that the Cartier group fits in an exact sequence:

KpRq˚ Ñ CartpRq Ñ PicpRq Ñ 0,

because every element of CartpRq determines its isomorphism class, and every element of KpRq˚

determines a free module of rank one. Contrary to what was stated last time, it is not true
that exactness holds on the right. In fact, the kernel is the group R˚ of units of R. So the exact
sequence runs

0 Ñ R˚ Ñ KpRq˚ Ñ CartpRq Ñ PicpRq Ñ 0.

This is true for any domain R. For R locally factorial and noetherian, we know that CartpRq »
WeilpRq, though.

We can think of this as a generalization of unique factorization.

5.3.18 Proposition R is factorial if and only if R is locally factorial and PicpRq “ 0.

Proof. Assume R is locally factorial and PicpRq “ 0. Then every prime ideal of height one
(an element of WeilpRq, hence of CartpRq) is principal, which implies that R is factorial. And
conversely.

In general, we can think of the exact sequence above as a form of unique factorization for a
locally factorial domain: any invertible fractional ideal is a product of height one prime ideals.

Let us now give an example. To be added: ?
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The notion of a Dedekind domain allows one to generalize the usual unique factorization in
principal ideal domains as in Z to settings such as the ring of integers in an algebraic number
field. In general, a Dedekind domain does not have unique factorization, but the ideals in a
Dedekind domain do factor uniquely into a product of prime ideals. We shall see that Dedekind
domains have a short characterization in terms of the characteristics we have developed.

After this, we shall study the case of an extension of Dedekind domains A Ă B. It will be of
interest to determine how a prime ideal of A factors in B. This should provide background for
the study of basic algebraic number theory, e.g. a rough equivalent of the first chapter of ? or
?.

6.1. Discrete valuation rings

Definition

We start with the simplest case of a discrete valuation ring, which is the local version of a
Dedekind domain. Among the one-dimensional local noetherian rings, these will be the nicest.

6.1.1 Theorem Let R be a noetherian local domain whose only prime ideals are p0q and the
maximal ideal m ‰ 0. Then, the following are equivalent:

1. R is factorial.

2. m is principal.

3. R is integrally closed.

4. R is a valuation ring with value group Z.

6.1.2 Definition A ring satisfying these conditions is called a discrete valuation ring (DVR).
A discrete valuation ring necessarily has only two prime ideals, namely m and p0q.

Alternatively, we can say that a noetherian local domain is a DVR if and only if it is of dimension
one and integrally closed.

Proof. Assume 1: that is, suppose R is factorial. Then every prime ideal of height one is principal
by theorem 5.1.15. But m is the only prime that can be height one: it is minimal over any nonzero
nonunit of R, so m is principal. Thus 1 implies 2, and similarly 2 implies 1 by theorem 5.1.15.

1 implies 3 is true for any R: a factorial ring is always integrally closed, by proposition 5.1.16.
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4 implies 2 is easy as well. Indeed, suppose R is a valuation ring with value group Z. Then, one
chooses an element x P R such that the valuation of x is one. It is easy to see that x generates
m: if y P m is a non-unit, then the valuation of y is at least one, so y{x P R and y P pxq.

The proof that 2 implies 4 is also straightforward. Suppose m is principal, generated by t. In
this case, we claim that any x P R is associate (i.e. differs by a unit from) a power of t. Indeed,
since

Ş

mn “ 0 by the Krull intersection theorem (??), it follows that there exists n such that x
is divisible by tn but not by tn`1. In particular, if we write x “ utn, then u R ptq is a unit. This
proves the claim.

With this in mind, we need to show that R is a valuation ring with value group Z. If x P R, we
define the valuation of x to be the nonnegative integer n such that pxq “ ptnq. One can easily
check that this is a valuation on R, which extends to the quotient field by additivity.

The interesting part of the argument is the claim that 3 implies 2. Suppose R is integrally closed,
noetherian, and of dimension one; we claim that m is principal. Choose x P m´t0u. If pxq “ m,
we are done.

Otherwise, we can look atm{pxq ‰ 0. The modulem{pxq is finitely generated module a noetherian
ring which is nonzero, so it has an associated prime. That associated prime is either zero or m
because R has dimension one. But 0 is not an associated prime because every element in the
module is killed by x. So m is an associated prime of m{pxq.

There is y P m{pxq whose annihilator is m. Thus, there is y P m such that y R pxq and my Ă pxq.
In particular, y{x P KpRq ´R, but

py{xqm Ă R.

There are two cases:

1. Suppose py{xqm “ R. Then we can write m “ Rpx{yq. So m is principal. (This argument
shows that x{y P R.)

2. The other possibility is that y{xm Ĺ R. In this case, py{xqm is an ideal, so

py{xqm Ă m.

In particular, multiplication by y{x carries m to itself, and stabilizes the finitely generated
faithful module m. By proposition 4.1.7, we see that y{x is integral over R. In particular,
we find that y{x P R, as R was integrally closed, a contradiction as y R pxq.

Let us give several examples of DVRs.

6.1.3 Example The localization Zppq at any prime ideal ppq ‰ 0 is a DVR. The associated
valuation is the p-adic valuation.

6.1.4 Example Although we shall not prove (or define) this, the local ring of an algebraic curve
at a smooth point is a DVR. The associated valuation measures the extent to which a function
(or germ thereof) has a zero (or pole) at that point.

6.1.5 Example The formal power series ring CrrT ss is a discrete valuation ring, with maximal
ideal pT q.
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Another approach

In the proof of theorem 6.1.1, we freely used the notion of associated primes, and thus some of the
results of chapter III.2. However, we can avoid all that and give a more “elementary approach,”
as in ?.

Let us suppose that R is an integrally closed, local noetherian domain of dimension one. We
shall prove that the maximal ideal m Ă R is principal. This was the hard part of theorem 6.1.1,
and the only part where we used associated primes earlier.

Proof. We will show that m is principal, by showing it is invertible (as will be seen below). We
divide the proof into steps:

Step one For a nonzero ideal I Ă R, let I´1 :“ tx P KpRq : xI Ă Ru, where KpRq is the
quotient field of R. Then clearly I´1 Ą R and I´1 is an R-module, but in general we cannot say
that I´1 ‰ R even if I is proper. Nevertheless, we claim that in the present situation, we have

m´1 ‰ R.

This is the conclusion of Step one.

The proof runs across a familiar line: we show that any maximal element in the set of ideals
I Ă R with I´1 ‰ R is prime. The set of such ideals is nonempty: it contains any paq for a P m
(in which case paq´1 “ Ra´1 ‰ R). There must be a maximal element in this set of ideals by
noetherianness, which as we will see is prime; thus, that maximal element must be m, which
proves our claim.

So to fill in the missing link, we must prove:

6.1.6 Lemma If S is a noetherian domain, any maximal element in the set of ideals I Ă S with
I´1 ‰ S is prime.

Proof. Let J be a maximal element, and suppose we have ab P J , with a, b R J . I claim that if
z P J´1 ´ S, then za, zb P J´1 ´ S. The J´1 part follows since J´1 is a S-module.

By symmetry it is enough to prove the other half for a, namely that za R S; but then if za P S,
we would have zppaq`Jq Ă S, which implies ppaq`Jq´1 ‰ S, contradiction, for J was maximal.

Then it follows that zpabq “ pzaqb P J´1´S, by applying the claim just made twice. But ab P J ,
so zpabq P S, contradiction.

Step two In the previous step, we have established that m´1 ‰ R.

We now claim that mm´1 “ R. First, we know of course that mm´1 Ă R by definition of
inverses, and equally m Ă mm´1 too. So mm´1 is an ideal sandwiched between m and R. Thus
we only need to prove that mm´1 “ m is impossible. If this were the case, we could choose some
a P m´1 ´ R which must satisfy am Ă m. Then a would integral over R. As R is integrally
closed, this is impossible.
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Step three Finally, we claim that m is principal, which is the final step of the proof. In fact,
let us prove a more general claim.

6.1.7 Proposition Let pR,mq be a local noetherian domain such that mm´1 “ R. Then m is
principal.

Proof. Indeed, since mm´1 “ R, write

1 “
ÿ

mini, mi P m, ni P m
´1.

At least one mjnj is invertible, since R is local. It follows that there are x P m and y P m´1

whose product xy is a unit in R. We may even assume xy “ 1.

Then we claim m “ pxq. Indeed, we need only prove m Ă pxq. For this, if q P m, then qy P R by
definition of m´1, so

q “ xpqyq P pxq.

So we are done in this case too. Taking stock, we have an effective way to say whether a ring
is a DVR. These three conditions are much easier to check in practice (noetherianness is usually
easy, integral closure is usually automatic, and the last one is not too hard either for reasons
that will follow) than the existence of an absolute value.

6.2. Dedekind rings

Definition

We now introduce a closely related notion.

6.2.1 Definition A Dedekind ring is a noetherian domain R such that

1. R is integrally closed.

2. Every nonzero prime ideal of R is maximal.

6.2.2 Remark If R is Dedekind, then any nonzero element is height one. This is evident since
every nonzero prime is maximal.

If R is Dedekind, then R is locally factorial. In fact, the localization of R at a nonzero prime p
is a DVR.

Proof. Rp has precisely two prime ideals: p0q and pRp. As a localization of an integrally closed
domain, it is integrally closed. So Rp is a DVR by the above result (hence factorial).

Assume R is Dedekind now. We have an exact sequence

0 Ñ R˚ Ñ KpRq˚ Ñ CartpRq Ñ PicpRq Ñ 0.

Here CartpRq » WeilpRq. But WeilpRq is free on the nonzero primes, or equivalently maximal
ideals, R being Dedekind. In fact, however, CartpRq has a simpler description.
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6.2.3 Proposition Suppose R is Dedekind. Then CartpRq consists of all nonzero finitely gen-
erated submodules of KpRq (i.e. fractional ideals).

This is the same thing as saying as every nonzero finitely generated submodule of KpRq is
invertible.

Proof. Suppose M Ă KpRq is nonzero and finitely generated It suffices to check that M is
invertible after localizing at every prime, i.e. that Mp is an invertible—or equivalently, trivial,
Rp-module. At the zero prime, there is nothing to check. We might as well assume that p is
maximal. Then Rp is a DVR and Mp is a finitely generated submodule of KpRpq “ KpRq.

Let S be the set of integers n such that there exists x P Mp with vpxq “ n, for v the valuation
of Rp. By finite generation of M , S is bounded below. Thus S has a least element k. There is
an element of Mp, call it x, with valuation k.

It is easy to check that Mp is generated by x, and is in fact free with generator x. The reason is
simply that x has the smallest valuation of anything in Mp.

What’s the upshot of this?

6.2.4 Theorem If R is a Dedekind ring, then any nonzero ideal I Ă R is invertible, and there-
fore uniquely described as a product of powers of (nonzero) prime ideals, I “

ś

pnii .

Proof. This is simply because I is in CartpRq “ WeilpRq by the above result.

This is Dedekind’s generalization of unique factorization.

We now give the standard examples:

6.2.5 Example 1. Any PID (in particular, any DVR) is Dedekind.

2. If K is a finite extension of Q, and set R to be the integral closure of Z in K, then R is a
Dedekind ring. The ring of integers in any number field is a Dedekind ring.

3. If R is the coordinate ring of an algebraic variety which is smooth and irreducible of
dimension one, then R is Dedekind.

4. Let X be a compact Riemann surface, and let S Ă X be a nonempty finite subset. Then
the ring of meromorphic functions on X with poles only in S is Dedekind. The maximal
ideals in this ring are precisely those corresponding to points of X ´ S.

A more elementary approach

We would now like to give a more elementary approach to the unique factorization of ideals in
Dedekind domains, one which does not use the heavy machinery of Weil and Cartier divisors.

In particular, we can encapsulate what has already been proved as:
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6.2.6 Theorem Let A be a Dedekind domain with quotient field K. Then there is a bijection
between the discrete valuations of K that assign nonnegative orders to elements of A and the
nonzero prime ideals of A.

Proof. Indeed, every valuation gives a prime ideal of elements of positive order; every prime ideal
p gives a discrete valuation on Ap, hence on K.

This result, however trivial to prove, is the main reason we can work essentially interchangeably
with prime ideals in Dedekind domains and discrete valuations.

Now assume A is Dedekind. A finitely generated A-submodule of the quotient field F is called
a fractional ideal; by multiplying by some element of A, we can always pull a fractional ideal
into A, when it becomes an ordinary ideal. The sum and product of two fractional ideals are
fractional ideals.

6.2.7 Theorem (Invertibility) If I is a nonzero fractional ideal and I´1 :“ tx P F : xI Ă Au,
then I´1 is a fractional ideal and II´1 “ A.

Thus, the nonzero fractional ideals are an abelian group under multiplication.

Proof. To see this, note that invertibility is preserved under localization: for a multiplicative set
S, we have S´1pI´1q “ pS´1Iq´1, where the second ideal inverse is with respect to S´1A; this
follows from the fact that I is finitely generated. Note also that invertibility is true for discrete
valuation rings: this is because the only ideals are principal, and principal ideals (in any integral
domain) are obviously invertible.

So for all primes p, we have pII´1qp “ Ap, which means the inclusion of A-modules II´1 Ñ A is
an isomorphism at each localization. Therefore it is an isomorphism, by general algebra.

The next result says we have unique factorization of ideals:

6.2.8 Theorem (Factorization) Each ideal I Ă A can be written uniquely as a product of
powers of prime ideals.

Proof. Let’s use the pseudo-inductive argument to obtain existence of a prime factorization.
Let I be the maximal ideal which can’t be written in such a manner, which exists since A is
Noetherian. Then I isn’t prime (evidently), so it’s contained in some prime p. But I “ pIp´1qp,
and Ip´1 ‰ I can be written as a product of primes, by the inductive assumption. Whence so
can I, contradiction.

Uniqueness of factorization follows by localizing at each prime.

6.2.9 Definition Let P be the subgroup of nonzero principal ideals in the group I of nonzero
ideals. The quotient I{P is called the ideal class group.

The ideal class group of the integers, for instance (or any principal ideal domain) is clearly
trivial. In general, this is not the case, because Dedekind domains do not generally admit unique
factorization.
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6.2.10 Proposition Let A be a Dedekind domain. Then A is a UFD if and only if its ideal
class group is trivial.

Proof. If the ideal class group is trivial, then A is a principal ideal domain, hence a UFD by
elementary algebra. Conversely, suppose A admits unique factorization. Then, by the following
lemma, every prime ideal is principal. Hence every ideal is principal, in view of the unique
factorization of ideals.

6.2.11 Lemma Let R be a UFD, and let p be a prime ideal which contains no proper prime
sub-ideal except for 0. Then p is principal.

The converse holds as well; a domain is a UFD if and only if every prime ideal of height one is
principal, by Theorem 5.1.15.

Proof. First, p contains an element x ‰ 0, which we factor into irreducibles π1 . . . πk. One of
these, say πj , belongs to p, so p Ą pπjq. Since p is minimal among nonzero prime ideals, we have
p “ pπjq. (Note that pπjq is prime by unique factorization.)

6.2.12 Remark (exercise) This exercise is from ?. If A is the integral closure of Z in a number
field (so that A is a Dedekind domain), then it is known (cf. ? for a proof) that the ideal class
group of A is finite. From this, show that every open subset of SpecA is a principal open set
Dpfq. Scheme-theoretically, this means that every open subscheme of SpecA is affine (which is
not true for general rings).

Modules over Dedekind domains

Let us now consider some properties of Dedekind domains.

6.2.13 Proposition Let A be a Dedekind domain, and let M be a finitely generated A module.
Then M is projective (or equivalently flat, or locally free) if and only if it is torsion-free.

Proof. If M is projective, then it is a direct summand of a free module, so it is torsion-free.
So we need to show that if M is torsion-free, then it is projective. Recall that to show M is
projective, it suffices to show that Mp is projective for any prime p ĂM . But note that Ap is a
PID so a module over it is torsion free if and only if it is flat, by Lemma ??. However, it is also
a local Noetherian ring, so a module is flat if and only if it is projective. So Mp is projective if
and only if it is torsion-free, so it now suffices to show that it is torsion-free.

However for any multiplicative set S Ă A, if M is torsion-free then MS is also torsion-free. This
is because if

a

s1
¨
m

s
“ 0

then there is t such that tam “ 0, as desired.

6.2.14 Proposition Let A be a Dedekind domain. Then any finitely generated module M over
it has (not canonically) a decomposition M “M tors ‘M tors´free.
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Proof. Note that by Lemma ??, we have a short exact sequence

0 ÑM tors ÑM ÑM tors´free Ñ 0

but by proposition 6.2.13 the torsion free part is projective, so M can be split, not necessarily
canonically as M tors ‘M tors´free, as desired.

Note that we may give further information about the torsion free part of the module:

M tors “
à

p

M tors
p

First note that there is a map
M tors Ñ

à

p

M tors
p

because M is torsion, every element is supported at finitely many points, so the image of f in
M tors

p is only nonzero for finitely many p. It is an isomorphism, because it is an isomorphism
after every localization.

So we have pretty much specified what the torsion part is. We can in fact also classify the torsion
free part; in particular, we have

M tors´free » ‘L

where L are locally free modules of rank 1. This is because we know from above that the torsion
free module is projective, we may apply Problem Set 10, Problem 12, and then since L is a line
bundle, and I´D is also, Lb I´D is a line bundle, and then M{Lb I´D is flat, so it is projective,
so we may split it off.

6.2.15 Lemma For A a Dedekind Domain, and I Ă A an ideal, then I is a locally free module
of rank 1.

Proof. First note that I is torsion-free and therefore projective by 6.2.13, and it is also finitely
generated, because A is Noetherian. But for a finitely generated module over a Noetherian ring,
we know that it is projective if and only if it is locally free, so we have shown that it is locally
free.

Also recall that for a module which is locally free, the rank is well defined, i.e, any localization
which makes it free makes it free of the same rank. So to test the rank, it suffices to show that
if we tensor with the field of fractions K, it is free of rank 1. But note that since K, being a
localization of A is flat over A so we have short exact sequence

0 Ñ I bA K Ñ AbA K Ñ pA{Iq bA K Ñ 0

However, note that supppA{Iq “ V pAnnpA{Iqq “ V pIq, and the prime p0q is not in V pIq, so
A{I bA K, which is the localization of A{I at p0q vanishes, so we have

I bA K » AbA K

but this is one-dimensional as a free K module, so the rank is 1, as desired.
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We close by listing a collection of useful facts about Dedekind domains. A dozen things every Good Algebraist should know about Dedekind domains.
R is a Dedekind domain.

1. R is local ðñ R is a field or a DVR.

2. R semi-local ùñ it is a PID.

3. R is a PID ðñ it is a UFD ðñ CpRq “ t1u

4. R is the full ring of integers of a number field K ùñ |CpRq| ă 8, and this number is the
class number of K.

5. CpRq can be any abelian group. This is Clayborn’s Theorem.

6. For any non-zero prime p P SpecR, pn{pn`1 – R{p as an R-module.

7. “To contain is to divide”, i.e. if A,B Ă R, then A Ă B ðñ A “ BC for some C Ă R.

8. (Generation of ideals) Every non-zero ideal B Ă R is generated by two elements. Moreover,
one of the generators can be taken to be any non-zero element of B.

9. (Factor rings) If A Ă R is non-zero, then R{A is a PIR (principal ideal ring).

10. (Steinitz Isomorphism Theorem) If A,B Ă R are non-zero ideals, then A‘B – RR‘AB
as R-modules.

11. If M is a finitely generated torsion-free R-module of rank n,1 then it is of the form M –

Rn´1 ‘A, where A is a non-zero ideal, determined up to isomorphism.

12. If M is a finitely generated torsion R-module, then M is uniquely of the form M –

R{A1 ‘ ¨ ¨ ¨ ‘R{An with A1 Ĺ A2 Ĺ ¨ ¨ ¨ Ĺ An Ĺ R.

To be added: eventually, proofs of these should be added

6.3. Extensions

In this section, we will essentially consider the following question: if A is a Dedekind domain,
and L a finite extension of the quotient field of A, is the integral closure of A in L a Dedekind
domain? The general answer turns out to be yes, but the result is somewhat simpler for the case
of a separable extension, with which we begin.

1The rank is defined as rkpMq “ dimKpRqM bR KpRq where KpRq is the quotient field.
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Integral closure in a finite separable extension

One of the reasons Dedekind domains are so important is

6.3.1 Theorem Let A be a Dedekind domain with quotient field K, L a finite separable extension
of K, and B the integral closure of A in L. Then B is Dedekind.

This can be generalized to the Krull-Akizuki theorem below (??).

First let us give an alternate definition of “separable”. For a finite field extension k1 of k, we may
consider the bilinear pairing k1 bk k1 Ñ k given by x, y ÞÑ trk1{kpxyq. Which is to say xy P k1

can be seen as a k-linear map of finite dimensional vector spaces k1 Ñ k1, and we are considering
the trace of this map. Then we claim that k1 is separable if and only if the bilinear pairing
k1 ˆ k1 Ñ k is non-degenerate.

To show the above claim, first note that the pairing is non-degenerate if and only if it is non-
degenerate after tensoring with the algebraic closure. This is because if trpxyq “ 0 for all y P k1,
then trppxb 1kqyq “ 0 for all y P k1bk k, which we may see to be true by decomposing into pure
tensors. The other direction is obtained by selecting a basis of k over k, and then noting that
for yi basis elements, if trp

ř

xyiq “ 0 then trpxyiq “ 0 for each i.

So now we just need to show that X “ k1bkk is reduced if and only if the map XbkX Ñ k given
by abb ÞÑ trpabq is non-degenerate. To do this, we show that elements of the kernel of the bilinear
map are exactly the nilpotents. But note that X is a finite dimensional algebra over k, and we
may elements as matrices. Then if trpABq “ 0 for all B if and only if trpPAP´1PBP´1q “ 0 for
all B, so we may assume A is in Upper Triangular Form. From this, the claim becomes clear.

Proof. We need to check that B is Noetherian, integrally, closed, and of dimension 1.

• Noetherian. Indeed, B is a finitely generated A-module, which obviously implies Noethe-
rianness. To see this, note that the K-linear map p., .q : L ˆ L Ñ K, a, b Ñ Trpabq is
nondegenerate since L is separable over K (??). Let F Ă B be a free module spanned by
a K-basis for L. Then since traces preserve integrality and A is integrally closed, we have
B Ă F ˚, where F ˚ :“ tx P K : px, F q Ă Au. Now F ˚ is A-free on the dual basis of F
though, so B is a submodule of a finitely generated A module, hence a finitely generated
A-module.

• Integrally closed. B is the integral closure of A in L, so it is integrally closed (integrality
being transitive).

• Dimension 1. Indeed, if A Ă B is an integral extension of domains, then dimA “ dimB.
This follows essentially from the theorems of “lying over” and “going up.” Cf. ?.

So, consequently the ring of algebraic integers (integral over Z) in a number field (finite extension
of Q) is Dedekind.

Note that the above proof actually implied (by the argument about traces) the following useful
fact:
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6.3.2 Proposition Let A be a noetherian integrally closed domain with quotient field K. Let
L be a finite separable extension and B the ring of integers. Then B is a finitely generated
A-module.

We shall give another, more explicit proof of Proposition 6.3.2 whose technique will be useful
in the sequel. Let α P B be a generator of L{K. Let n “ rL : Ks and σ1, . . . , σn the distinct
embeddings of L into the algebraic closure of K. Define the discriminant of α to be

Dpαq “

¨

˚

˝

det

»

—

–

1 σ1α pσ1αq
2 . . .

1 σ2α pσ2αq
2 . . .

...
...

...
. . .

fi

ffi

fl

˛

‹

‚

2

.

This maps to the same element under each σi, so is in K˚ (and even A˚ by integrality); it is
nonzero by basic facts about vanderMonde determinants since each σi maps α to a different
element. The next lemma clearly implies that B is contained in a finitely generated A-module,
hence is finitely generated (since A is noetherian).

6.3.3 Lemma We have B Ă Dpαq´1Arαs.

Proof. Indeed, suppose x P B. We can write x “ c0p1q ` c1pαq ` . . . cn´1pα
n´1q where each

ci P K. We will show that in fact, each ci P Dpαq´1A, which will prove the lemma. Applying
each σi, we have for each i, σix “ c0p1q`c1pσiαq`¨ ¨ ¨`cn´1pσiα

n´1q. Now by Cramer’s lemma,
each ci can be written as a quotient of determinants of matrices involving σjx and the αj . The
denominator determinant is in fact Dpαq. The numerator is in K and must be integral, hence is
in A. This proves the claim and the lemma.

The above technique may be illustrated with an example.

6.3.4 Example Let pi be a power of a prime p and consider the extension Qpζpiq{Q for ζpi
a primitive pi-th root of unity. This is a special case of a cyclotomic extension, an important
example in the subject. We claim that the ring of integers (that is, the integral closure of Z) in
Qpζpiq is precisely Zrζpis. This is true in fact for all cyclotomic extensions, but we will not be
able to prove it here.

First of all, ζpi satisfies the equation Xpi´1pp´1q ` Xpi´1pp´2q ` ¨ ¨ ¨ ` 1 “ 0. This is because if
ζp is a p-th root of unity, pζp ´ 1qp1 ` ζp ` ¨ ¨ ¨ ` ζp´1

p q “ ζpp ´ 1 “ 0. In particular, X ´ ζpi |

Xpi´1pp´1q `Xpi´1pp´2q ` ¨ ¨ ¨ ` 1, and consequently (taking X “ 1), we find that 1´ ζpi divides
p in the ring of integers in Qpζpiq{Q. This is true for any primitive pi-th root of unity for any
pi. Thus the norm to Q of 1´ ζj

pi
for any j is a power of p.

I claim that this implies that the discriminant Dpζpiq is a power of p, up to sign. But by the
vanderMonde formula, this discriminant is a product of terms of the form

ś

p1´ ζj
pi
q up to roots

of unity. The norm to Q of each factor is thus a power of p, and the discriminant itself plus or
minus a power of p.

By the lemma, it follows that the ring of integers is contained in Zrp´1, ζpis. To get down further
to Zrζpis requires a bit more work. To be added: this proof
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The Krull-Akizuki theorem

We are now going to prove a general theorem that will allow us to remove the separability
hypothesis in ??. Let us say that a noetherian domain has dimension at most one if every
nonzero prime ideal is maximal; we shall later generalize this notion of “dimension.”

6.3.5 Theorem (Krull-Akizuki) Suppose A is a noetherian domain of dimension at most one.
Let L be a finite extension of the quotient field KpAq, and suppose B Ă L is a domain containing
A. Then B is noetherian of dimension at most one.

From this, it is clear:

6.3.6 Theorem The integral closure of a Dedekind domain in any finite extension of the quotient
field is a Dedekind domain.

Proof. Indeed, by Krull-Akizuki, this integral closure is noetherian and of dimension ď 1; it is
obviously integrally closed as well, hence a Dedekind domain.

Now let us prove Krull-Akizuki. To be added: we need to introduce material about
length

Proof. We are going to show that for any a P A ´ t0u, the A-module B{aB has finite length.
(This is quite nontrivial, since B need not even be finitely generated as an A-module.) From this
it will be relatively easy to deduce the result.

Indeed, if I Ă B is any nonzero ideal, then I contains a nonzero element of A; to see this, we
need only choose an element b P I and consider an irreducible polynomial

a0X
n ` ¨ ¨ ¨ ` an P KrXs

that it satisfies. We can assume that all the ai P A by clearing denominators. It then follows
that an P A X I. So choose some a P pA X Iq ´ t0u. We then know by the previous paragraph
(though we have not proved it yet) that B{aB has finite length as an A-module (and a fortiori
as a B-module); in particular, the submodule I{aB is finitely generated as a B-module. The
exact sequence

0 Ñ aB Ñ I Ñ I{aB Ñ 0

shows that I must be finitely generated as a B-module, since the two outer terms are. Thus any
ideal of B is finitely generated, so B is noetherian.

To be added: B has dimension at most one

To prove the Krull-Akizuki theorem, we are going to prove:

6.3.7 Lemma (Finite length lemma) If A is a noetherian domain of dimension at most one,
then for any torsion-free A-module M such that KpAqbAM is finite-dimensional (alternatively:
M has finite rank) and a ‰ 0, M{aM has finite length.
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Proof. We are going to prove something stronger. If M has rank n and is torsion-free, then will
show

`pM{aMq ď n`pA{aAq. (6.3.1)

Note that A{aA has finite length. This follows because there is a filtration of A{aA whose
quotients are of the form A{p for p prime; but these p cannot be zero as A{aA is torsion. So these
primes are maximal, and A{aA has a filtration whose quotients are simple. Thus `pA{aAq ă 8.
In fact, we see thus that any torsion, finitely-generated module has finite length; this will be used
in the sequel.

There are two cases:

1. M is finitely generated. We can choose generators m1, . . . ,mn in M of KpAq bA M ; we
then from these generators get a map

An ÑM

which becomes an isomorphism after localizing at A ´ t0u. In particular, the kernel and
cokernel are torsion modules. The kernel must be trivial (A being a domain), and An ÑM
is thus injective. Thus we have found a finite free submodule F ĂM such that M{F is a
torsion module T , which is also finitely generated.

We have an exact sequence

0 Ñ F {paM X F q ÑM{aM Ñ T {aT Ñ 0.

Here the former has length at most `pF {aF q “ n`pA{aAq, and we get the bound `pM{aMq ď
n`pA{aAq ` `pT {aT q. However, we have the annoying last term to contend with, which
makes things somewhat inconvenient. Thus, we use a trick: for each t ą 0, we consider the
exact sequence

0 Ñ F {patM X F q ÑM{atM Ñ T {atT Ñ 0.

This gives
`pM{atMq ď tn`pA{aAq ` `pT {atT q ď tn`pA{aAq ` `pT q.

However, `pT q ă 8 as T is torsion (cf. the first paragraph). If we divide by t, we get the
inequality

1

t
`pM{atMq ď n`pA{aAq `

`pT q

t
. (6.3.2)

However, the filtration atM Ă at´1M Ă ¨ ¨ ¨ Ă aM ĂM whose quotients are all isomorphic
toM{aM (M being torsion-free) shows that `pM{atMq “ t`pM{aMq In particular, letting
tÑ8 in (6.3.2) gives (6.3.1) in the case where M is finitely generated.

2. M is not finitely generated. Now we can use a rather cheeky argument. M is the inductive
limit of its finitely generated submodules MF ĂM , each of which is itself torsion free and
of rank at most n. ThusM{aM is the inductive limit of its submodulesMF {paMXMF q as
MF ranges over We know that `pMF {paM XMF qq ď n`pA{aAq for each finitely generated
MF Ă M by the first case above (and the fact that MF {paM X MF q is a quotient of
MF {aMF ).
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But ifM{aM is the inductive limit of submodules of length at most n`pA{aAq, then it itself
can have length at most n`pA{aAq. For M{aM must be in fact equal to the submodule
MF {paM XMF q that has the largest length (no other submodule MF 1{paM XMF 1q can
properly contain this).

With this lemma proved, it is now clear that Krull-Akizuki is proved as well.

Extensions of discrete valuations

As a result, we find:

6.3.8 Theorem Let K be a field, L a finite separable extension. Then a discrete valuation on
K can be extended to one on L.

To be added: This should be clarified — what is a discrete valuation?

Proof. Indeed, let R Ă K be the ring of integers of the valuation, that is the subset of elements
of nonnegative valuation. Then R is a DVR, hence Dedekind, so the integral closure S Ă L is
Dedekind too (though in general it is not a DVR—it may have several non-zero prime ideals) by
Theorem 6.3.1. Now as above, S is a finitely generated R-module, so if m Ă R is the maximal
ideal, then

mS ‰ S

by Nakayama’s lemma (cf. for instance ?). So mS is contained in a maximal ideal M of S with,
therefore, MXR “ m. (This is indeed the basic argument behind lying over, which I could have
just invoked.) Now SM Ą Rm is a DVR as it is the localization of a Dedekind domain at a prime
ideal, and one can appeal to ??. So there is a discrete valuation on SM. Restricted to R, it will
be a power of the given R-valuation, because its value on a uniformizer π is ă 1. However, a
power of a discrete valuation is a discrete valuation too. So we can adjust the discrete valuation
on SM if necessary to make it an extension.

This completes the proof.

Note that there is a one-to-one correspondence between extensions of the valuation on K and
primes of S lying above m. Indeed, the above proof indicated a way of getting valuations on L
from primes of S. For an extension of the valuation on K to L, let M :“ tx P S : |x| ă 1u.

6.4. Action of the Galois group

Suppose we have an integral domain (we don’t even have to assume it Dedekind) A with quotient
field K, a finite Galois extension L{K, with B the integral closure in L. Then the Galois group
G “ GpL{Kq acts on B; it preserves B because it preserves equations in ArXs. In particular, if
P Ă B is a prime ideal, so is σP, and the set SpecB of prime ideals in B becomes a G-set.
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The orbits of the Galois group

It is of interest to determine the orbits; this question has a very clean answer.

6.4.1 Proposition The orbits of G on the prime ideals of B are in bijection with the primes of
A, where a prime ideal p Ă A corresponds to the set of primes of B lying over A.2 Alternatively,
any two primes P,Q Ă B lying over A are conjugate by some element of G.

In other words, under the natural map SpecB Ñ SpecA “ SpecBG, the latter space is the
quotient under the action of G, while A “ BG is the ring of invariants in B.3

Proof. We need only prove the second statement. Let S be the multiplicative set A ´ p. Then
S´1B is the integral closure of S´1A, and in S´1A “ Ap, the ideal p is maximal. Let Q,P
lie over p; then S´1Q, S´1P lie over S´1p and are maximal (to be added). If we prove that
S´1Q, S´1P are conjugate under the Galois group, then Q,P must also be conjugate by the
properties of localization. In particular, we can reduce to the case of p,Q,P all maximal.

The rest of the proof is now an application of the Chinese remainder theorem. Suppose that,
for all σ P G, we have σP ‰ Q. Then the ideals σP,Q are distinct maximal ideals, so by the
remainder theorem, we can find x ” 1 mod σP for all σ P G and x ” 0 mod Q. Now, consider
the norm NL

Kpxq; the first condition implies that it is congruent to 1 modulo p. But the second
implies that the norm is in QXK “ p, contradiction.

The decomposition and inertia groups

Now, let’s zoom in on a given prime p Ă A. We know that G acts transitively on the set
P1, . . . ,Pg of primes lying above p; in particular, there are at most rL : Ks of them.

6.4.2 Definition If P is any one of the Pi, then the stabilizer in G of this prime ideal is called
the decomposition group GP.

We have, clearly, pG : GPq “ g.

Now if σ P GP, then σ acts on the residue field B{P while fixing the subfield A{p. In this way,
we get a homomorphism σ Ñ σ from G into the automorphism group of B{P over A{pq (we
don’t call it a Galois group because we don’t yet know whether the extension is Galois).

The following result will be crucial in constructing the so-called “Frobenius elements” of crucial
use in class field theory.

6.4.3 Proposition Suppose A{p is perfect. Then B{P is Galois over A{p, and the homomor-
phism σ Ñ σ is surjective from GP Ñ GpB{P{A{pq.

2It is useful to note here that the lying over theorem works for arbitrary integral extensions.
3The reader who does not know about the Spec of a ring can disregard these remarks.
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Proof. In this case, the extension B{P{A{p is separable, and we can choose x P B{P generating
it by the primitive element theorem. We will show that x satisfies a polynomial equation P pXq P
A{prXs all of whose roots lie in B{P, which will prove that the residue field extension is Galois.
Moreover, we will show that all the nonzero roots of P in B{P are conjugates of x under elements
of GP. This latter will imply surjectivity of the homomorphism σ Ñ σ, because it shows that
any conjugate of x under GpB{P{A{pq is a conjugate under GP.

We now construct the aforementioned polynomial. Let x P B lift x. Choose y P B such that
y ” x mod P but y ” 0 mod Q for the other primes Q lying over p. We take P pXq “
ś

σPGpX ´ σpyqq P ArXs. Then the reduction P satisfies P pxq “ P pyq “ 0, and P factors
completely (via

ś

σpX ´ σptqq) in B{PrXs. This implies that the residue field extension is
Galois, as already stated. But it is also clear that the polynomial P pXq has roots of zero
and σpyq “ σpxq for σ P GP. This completes the proof of the other assertion, and hence the
proposition.

6.4.4 Definition The kernel of the map σ Ñ σ is called the inertia group TP. Its fixed field
is called the inertia field.

These groups will resurface significantly in the future.

6.4.5 Remark Although we shall never need this in the future, it is of interest to see what
happens when the extension L{K is purely inseparable.4 Suppose A is integrally closed in K,
and B is the integral closure in L. Let the characteristic be p, and the degree rL : Ks “ pi. In
this case, x P B if and only if xpi P A. Indeed, it is clear that the condition mentioned implies
integrality. Conversely, if x is integral, then so is xpi , which belongs to K (by basic facts about
purely inseparable extensions). Since A is integrally closed, it follows that xpi P A.

Let now p Ă A be a prime ideal. I claim that there is precisely one prime ideal P of B lying above
A, and Ppi “ p. Namely, this ideal consists of x P B with xpi P p! The proof is straightforward;
if P is any prime ideal lying over p, then x P P iff xp

i
P L X P “ p. In a terminology to be

explained later, p is totally ramified.

4Cf. ?, for instance.
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Dimension theory assigns to each commutative ring—say, noetherian—an invariant called the
dimension. The most standard definition, that of Krull dimension (which we shall not adopt at
first), defines the dimension in terms of the maximal lengths of ascending chains of prime ideals.
In general, however, the geometric intuition behind dimension is that it should assign to an affine
ring—say, one of the form Crx1, . . . , Xns{I—something like the “topological dimension” of the
affine variety in Cn cut out by the ideal I.

In this chapter, we shall obtain three different expressions for the dimension of a noetherian local
ring pR,mq, each of which will be useful at different times in proving results.

7.1. The Hilbert function and the dimension of a local ring

Integer-valued polynomials

It is now necessary to do a small amount of general algebra.

Let P P Qrts. We consider the question of when P maps the integers Z, or more generally the
sufficiently large integers, into Z. Of course, any polynomial in Zrts will do this, but there are
others: consider 1

2pt
2 ´ tq, for instance.

7.1.1 Proposition Let P P Qrts. Then P pmq is an integer for m " 0 integral if and only if P
can be written in the form

P ptq “
ÿ

n

cn

ˆ

t

n

˙

, cn P Z.

In particular, P pZq Ă Z.

So P is a Z-linear function of binomial coefficients.

Proof. Note that the set
 `

t
n

˘(

nPZě0
forms a basis for the set of polynomials Qrts. It is thus clear

that P ptq can be written as a rational combination
ř

cn
`

t
n

˘

for the cn P Q. We need to argue
that the cn P Z in fact.

Consider the operator ∆ defined on functions ZÑ C as follows:

p∆fqpmq “ fpmq ´ fpm´ 1q.

It is obvious that if f takes integer values for m " 0, then so does ∆f . It is also easy to check
that ∆

`

t
n

˘

“
`

t
n´1

˘

.
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By looking at the function ∆P “
ř

cn
`

t
n´1

˘

(which takes values in Z), it is easy to see that the
cn P Z by induction on the degree. It is also easy to see directly that the binomial coefficients
take values in Z at all arguments.

Definition and examples

Let R be a ring.

7.1.2 Remark (Question) What is a good definition for dimpRq? Actually, more generally,
what is the dimension of R at a given “point” (i.e. prime ideal)?

Geometrically, think of SpecR, for any ring; pick some point corresponding to a maximal ideal
m Ă R. We want to define the dimension of R at m. This is to be thought of kind of like
“dimension over the complex numbers,” for algebraic varieties defined over C. But it should be
purely algebraic. What might you do?

Here is an idea. For a topological space X to be n-dimensional at x P X, there should be n
coordinates at the point x. In other words, the point x should be uniquely defined by the zero
locus of n points on the space. Motivated by this, we could try defining dimmR to be the number
of generators of m. However, this is a bad definition, as m may not have the same number of
generators as mRm. In other words, it is not a truly local definition.

7.1.3 Example Let R be a noetherian integrally closed domain which is not a UFD. Let p Ă R
be a prime ideal which is minimal over a principal ideal but which is not itself principal. Then
pRp is generated by one element, as we will eventually see, but p is not.

We want our definition of dimension to be local. So this leads us to:

7.1.4 Definition If R is a (noetherian) local ring with maximal ideal m, then the embedding
dimension of R, denoted EmdimR is the minimal number of generators for m. If R is a
noetherian ring and p Ă R a prime ideal, then the embedding dimension at p is that of the
local ring Rp.

In the above definition, it is clearly sufficient to study what happens for local rings, and we impose
that restriction for now. By Nakayama’s lemma, the embedding dimension is the minimal number
of generators of m{m2, or the R{m-dimension of that vector space:

EmdimR “ dimR{mm{m2.

In general, however, the embedding dimension is not going to coincide with the intuitive “geo-
metric” dimension of an algebraic variety.

7.1.5 Example Let R “ Crt2, t3s Ă Crts, which is the coordinate ring of a cubic curve y2 “ x3

as R » Crx, ys{px2´ y3q via x “ t3, y “ t2. Let us localize at the prime ideal p “ pt2, t3q: we get
Rp.

Now SpecR is singular at the origin. In fact, as a result, pRp Ă Rp needs two generators, but
the variety it corresponds to is one-dimensional.
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So the embedding dimension is the smallest dimension into which you can embed R into a smooth
space. But for singular varieties this is not the dimension we want.

So instead of considering simply m{m2, let us consider the sequence of finite-dimensional vector
spaces

mk{mk`1.

Computing these dimensions as a function of k gives some invariant that describes the local
geometry of SpecR.

We shall eventually prove:

7.1.6 Theorem Let pR,mq be a local noetherian ring. Then there exists a polynomial f P Qrts
such that

fpnq “ `pR{mnq “

n´1
ÿ

i“0

dimmi{mi`1 @n " 0.

Moreover, deg f ď dimm{m2.

Note that this polynomial is well-defined, as any two polynomials agreeing for large n coincide.
Note also that R{mn is artinian so of finite length, and that we have used the fact that the length
is additive for short exact sequences. We would have liked to write dimR{mn, but we can’t, in
general, so we use the substitute of the length.

Based on this, we define:

7.1.7 Definition The dimension of the local ring R is the degree of the polynomial f above.
For an arbitrary noetherian ring R, we define dimR “ suppPSpecR dimpRpq.

Let us now do a few example computations.

7.1.8 Example (The affine line) Consider the local ring pR,mq “ Crtsptq. Then m “ ptq and
mk{mk`1 is one-dimensional, generated by tk. In particular, the ring has dimension one.

7.1.9 Example (A singular curve) Consider R “ Crt2, t3spt2,t3q, the local ring of y2 “ x3 at
zero. Then mn is generated by t2n, t2n`1, . . . . mn`1 is generated by t2n`2, t2n`3, . . . . So the
quotients all have dimension two. The dimension of these quotients is a little larger than in
Example 7.1.8, but they do not grow. The ring still has dimension one.

7.1.10 Example (The affine plane) Consider R “ Crx, yspx,yq. Then mk is generated by
polynomials in x, y that are homogeneous in degree k. So mk{mk`1 has dimensions that grow
linearly in k. This is a genuinely two-dimensional example.

It is this difference between constant linear and quadratic growth in R{mn as n Ñ 8, and not
the size of the initial terms, that we want for our definition of dimension.

Let us now generalize Example 7.1.8 and Example 7.1.10 above to affine spaces of arbitrary
dimension.
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7.1.11 Example (Affine space) Consider R “ Crx1, . . . , xnspx1,...,xnq. This represents the va-
riety Cn “ AnC near the origin geometrically, so it should intuitively have dimension n. Let us
check that it does.

Namely, we need to compute the polynomial f above. Here R{mk looks like the set of polynomials
of degree ă k over C. The dimension as a vector space of this is given by some binomial coefficient
`

n`k´1
n

˘

. This is a polynomial in k of degree n. In particular, `pR{mkq grows like kn. So R is
n-dimensional.

Finally, we offer one more example, showing that DVRs have dimension one. In fact, among
noetherian integrally closed local domains, DVRs are characterized by this property (?? of ??).

7.1.12 Example (The dimension of a DVR) Let R be a DVR. Then mk{mk`1 is of length
one for each k. So R{mk has length k. Thus we can take fptq “ t, so R has dimension one.

The Hilbert function is a polynomial

While we have given a definition of dimension and computed various examples, we have yet to
check that our definition is well-defined. Namely, we have to prove Theorem 7.1.6.

Proof of Theorem 7.1.6. Fix a noetherian local ring pR,mq. We are to show that `pR{mnq is
a polynomial for n " 0. We also have to bound this degree by dimR{mm{m2, the embedding
dimension. We will do this by reducing to a general fact about graded modules over a polynomial
ring.

Let S “
À

nm
n{mn`1. Then S has a natural grading, and in fact it is a graded ring in a natural

way from the multiplication map

mn1 ˆmn2 Ñ mn1`n2 .

In fact, S is the associated graded ring of the m-adic filtration. Note that S0 “ R{m is a field,
which we will denote by k. So S is a graded k-algebra.

7.1.13 Lemma S is a finitely generated k-algebra. In fact, S can be generated by at most
EmdimpRq elements.

Proof. Let x1, . . . , xr be generators for m with r “ EmdimpRq. They (or rather, their images)
are thus a k-basis for m{m2. Then their images in m{m2 Ă S generate S. This follows because
S1 generates S as an S0-algebra: the products of the elements in m generate the higher powers
of m.

So S is a graded quotient of the polynomial ring krt1, . . . , trs, with ti mapping to xi. In particular,
S is a finitely generated, graded krt1, . . . , trs-module. Note that also `pR{mnq “ dimkpS0q`¨ ¨ ¨`

dimkpSn´1q for any n, thanks to the filtration. This is the invariant we are interested in.

It will now suffice to prove the following more general proposition.
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7.1.14 Proposition Let M be any finitely generated graded module over the polynomial ring
krx1, . . . , xrs. Then there exists a polynomial f`M P Qrts of degree ď r, such that

f`M ptq “
ÿ

sďt

dimMs t " 0.

Applying this to M “ S will give the desired result. We can forget about everything else, and
look at this problem over graded polynomial rings.

This function is called the Hilbert function.

Proof of Proposition 7.1.14. Note that if we have an exact sequence of graded modules over the
polynomial ring,

0 ÑM 1 ÑM ÑM2 Ñ 0,

and polynomials fM 1 , fM2 as in the proposition, then fM exists and

fM “ fM 1 ` fM2 .

This is obvious from the definitions. Next, we observe that if M is a finitely generated graded
module, over two different polynomial rings, but with the same grading, then the existence (and
value) of fM is independent of which polynomial ring one considers. Finally, we observe that it
is sufficient to prove that fM ptq “ dimMt is a polynomial in t for t " 0.

We will use these three observations and induct on n.

If n “ 0, then M is a finite-dimensional graded vector space over k, and the grading must be
concentrated in finitely many degrees. Thus the result is evident as fM ptq will just equal dimM
(which will be the appropriate dimension for t " 0).

Suppose n ą 0. Then consider the filtration of M

0 Ă kerpx1 : M ÑMq Ă kerpx2
1 : M ÑMq Ă ¨ ¨ ¨ ĂM.

This must stabilize by noetherianness at someM 1 ĂM . Each of the quotients kerpxi1q{ kerpxi`1
1 q

is a finitely generated module over krx1, . . . , xns{px1q, which is a smaller polynomial ring. So each
of these quotients kerpxi`1

1 q{ kerpxi1q has a Hilbert function of degree ď n ´ 1 by the inductive
hypothesis.

Climbing up the filtration, we see that M 1 has a Hilbert function which is the sum of the Hilbert
functions of these quotients kerpxi`1

1 q{ kerpxi1q. In particular, fM 1 exists. If we show that fM{M 1

exists, then fM necessarily exists. So we might as well show that the Hilbert function fM exists
when x1 is a non-zero-divisor on M .

So, we have reduced to the case where M x1
ÑM is injective. Now M has a filtration

M Ą x1M Ą x2
1M Ą . . .

which is an exhaustive filtration of M in that nothing can be divisible by powers of x1 over and
over, or the degree would not be finite. So it follows that

Ş

xm1 M “ 0.
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Let N “ M{x1M , which is isomorphic to xm1 M{x
m`1
1 M since M x1

Ñ M is injective. Here N is
a finitely generated graded module over krx2, . . . , xns, and by the inductive hypothesis on n, we
see that there is a polynomial f`N of degree ď n´ 1 such that

f`N ptq “
ÿ

t1ďt

dimNt1 , t " 0.

Fix t " 0 and consider the k-vector space Mt, which has a finite filtration

Mt Ą px1Mqt Ą px
2
1Mqt Ą . . .

which has successive quotients that are the graded pieces of N » M{x1M » x1M{x
2
1M » . . .

in dimensions t, t´ 1, . . . . We find that

px2
1Mqt{px

3
1Mqt » Nt´2,

for instance. Summing this, we find that

dimMt “ dimNt ` dimNt´1 ` . . . .

The sum above is actually finite. In fact, by finite generation, there isK " 0 such that dimNq “ 0
for q ă ´K. From this, we find that

dimMt “

t
ÿ

t1“´K

dimNt1 ,

which implies that dimMt is a polynomial for t " 0. This completes the proof.

Let pR,mq a noetherian local ring and M a finitely generated R-module.

7.1.15 Proposition `pM{mmMq is a polynomial for m " 0.

Proof. This follows from Proposition 7.1.14, and in fact we have essentially seen the argument
above. Indeed, we consider the associated graded module

N “
à

mkM{mk`1M,

which is finitely generated over the associated graded ring
à

mk{mk`1.

Consequently, the graded pieces of N have dimensions growing polynomially for large degrees.
This implies the result.

7.1.16 Definition We define the Hilbert function HM pmq to be the unique polynomial such
that

HM pmq “ `pM{mmMq, m " 0.

It is clear, incidentally, that HM is integer-valued, so we see by Proposition 7.1.1 that HM is a
Z-linear combination of binomial coefficients.
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The dimension of a module

Let R be a local noetherian ring with maximal ideal m. We have seen (Proposition 7.1.15) that
there is a polynomial Hptq with

Hptq “ `pR{mtq, t " 0.

Earlier, we defined the dimension of R is the degree of f`M . Since the degree of the Hilbert
function is at most the number of generators of the polynomial ring, we saw that

dimR ď EmdimR.

Armed with the machinery of the Hilbert function, we can extend this definition to modules.

7.1.17 Definition If R is local noetherian, and N a finite R-module, then N has a Hilbert
polynomial HN ptq which when evaluated at t " 0 gives the length `pN{mtNq. We say that the
dimension of N is the degree of this Hilbert polynomial.

Clearly, the dimension of the ring R is the same thing as that of the module R.

We next show that the dimension behaves well with respect to short exact sequences. This is
actually slightly subtle since, in general, tensoring with R{mt is not exact; it turns out to be
close to being exact by the Artin-Rees lemma. On the other hand, the corresponding fact for
modules over a polynomial ring is very easy, as no tensoring was involved in the definition.

7.1.18 Proposition Suppose we have an exact sequence

0 ÑM 1 ÑM ÑM2 Ñ 0

of graded modules over a polynomial ring krx1, . . . , xns. Then

fM ptq “ fM 1ptq ` fM2ptq, f`M ptq “ f`M 1ptq ` f
`
M2ptq.

As a result, deg fM “ max deg fM 1 ,deg fM2 .

Proof. The first part is obvious as the dimension is additive on vector spaces. The second part
follows because Hilbert functions have nonnegative leading coefficients.

7.1.19 Proposition Fix an exact sequence

0 Ñ N 1 Ñ N Ñ N2 Ñ 0

of finite R-modules. Then dimN “ maxpdimN 1,dimN2q.

Proof. We have an exact sequence

0 Ñ K Ñ N{mtN Ñ N2{mtN2 Ñ 0

where K is the kernel. Here K “ pN 1`mtNq{mtN “ N 1{pN 1XmtNq. This is not quite N 1{mtN 1,
but it’s pretty close. We have a surjection

N 1{mtN � N 1{pN 1 XmtNq “ K.
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In particular,
`pKq ď `pN 1{mtN 1q.

On the other hand, we have the Artin-Rees lemma, which gives an inequality in the opposite
direction. We have a containment

mtN 1 Ă N 1 XmtN Ă mt´cN 1

for some c. This implies that `pKq ě `pN 1{mt´cN 1q.

DefineM “
À

mtN{mt`1N , and defineM 1,M2 similarly in terms of N 1, N2. Then we have seen
that

f`M pt´ cq ď `pKq ď f`M ptq.

We also know that the length of K plus the length of N2{mtN2 is f`M ptq, i.e.

`pKq ` f`M2ptq “ f`M ptq.

Now the length of K is a polynomial in t which is pretty similar to f`M 1 , in that the leading
coefficient is the same. So we have an approximate equality f`M 1ptq ` f`M2ptq » f`M ptq. This
implies the result since the degree of f`M is dimN (and similarly for the others).

7.1.20 Proposition dimR is the same as dimR{RadR.

I.e., the dimension doesn’t change when you kill off nilpotent elements, which is what you would
expect, as nilpotents don’t affect SpecpRq.

Proof. For this, we need a little more information about Hilbert functions. We thus digress
substantially.

Finally, let us return to the claim about dimension and nilpotents. Let R be a local noetherian
ring and I “ RadpRq. Then I is a finite R-module. In particular, I is nilpotent, so In “ 0 for
n " 0. We will show that

dimR{I “ dimR{I2 “ . . .

which will imply the result, as eventually the powers become zero.

In particular, we have to show for each k,

dimR{Ik “ dimR{Ik`1.

There is an exact sequence

0 Ñ Ik{Ik`1 Ñ R{Ik`1 Ñ R{Ik Ñ 0.

The dimension of these rings is the same thing as the dimensions as R-modules. So we can use
this short exact sequence of modules. By the previous result, we are reduced to showing that

dim Ik{Ik`1 ď dimR{Ik.

Well, note that I kills Ik{Ik`1. In particular, Ik{Ik`1 is a finitely generated R{Ik-module. There
is an exact sequence

à

N

R{Ik Ñ Ik{Ik`1 Ñ 0

which implies that dim Ik{Ik`1 ď dim
À

N R{I
k “ dimR{Ik.
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7.1.21 Example Let p Ă Crx1, . . . , xns and let R “ pCrx1, . . . , xns{pqm for some maximal ideal
m. What is dimR? What does dimension mean for coordinate rings over C?

Recall by the Noether normalization theorem that there exists a polynomial ring Cry1, . . . , yms
contained in S “ Crx1, . . . , xns{p and S is a finite integral extension over this polynomial ring.
We claim that

dimR “ m.

There is not sufficient time for that today.

Dimension depends only on the support

Let pR,mq be a local noetherian ring. Let M be a finitely generated R-module. We defined the
Hilbert polynomial of M to be the polynomial which evaluates at t " 0 to `pM{mtMq. We
proved last time that such a polynomial always exists, and called its degree the dimension of
M . However, we shall now see that dimM really depends only on the support1 suppM . In
this sense, the dimension is really a statement about the topological space suppM Ă SpecR, not
about M itself.

In other words, we will prove:

7.1.22 Proposition dimM depends only on suppM .

In fact, we shall show:

7.1.23 Proposition dimM “ maxpPsuppM dimR{p.

Proof. By Proposition 2.2.12 in Chapter III.2, there is a finite filtration

0 “M0 ĂM1 Ă ¨ ¨ ¨ ĂMm “M,

such that each of the successive quotients is isomorphic to R{pi Ă R for some prime ideal pi.
Given a short exact sequence of modules, we know that the dimension in the middle is the
maximum of the dimensions at the two ends (Proposition 7.1.19). Iterating this, we see that the
dimension of M is the maximum of the dimension of the successive quotients Mi{Mi´1.

But the pi’s that occur are all in suppM , so we find

dimM “ max
pi

R{pi ď max
pPsuppM

dimR{p.

We must show the reverse inequality. But fix any prime p P suppM . Then Mp ‰ 0, so one of
the R{pi localized at p must be nonzero, as localization is an exact functor. Thus p must contain
some pi. So R{p is a quotient of R{pi. In particular,

dimR{p ď dimR{pi.

Having proved this, we throw out the notation dimM , and henceforth write instead dim suppM .

1Recall that suppM “ tp :Mp ‰ 0u.
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7.1.24 Remark (comment) The dimension of an affine ring

Last time, we made a claim. If R is a domain and a finite module over a polynomial ring
krx1, . . . , xns, then Rm for any maximal m Ă R has dimension n. This connects the dimension
with the transcendence degree.

First, let us talk about finite extensions of rings. Let R be a commutative ring and let R Ñ R1

be a morphism that makes R1 a finitely generated R-module (in particular, integral over R). Let
m1 Ă R1 be maximal. Let m be the pull-back to R, which is also maximal (as RÑ R1 is integral).
Let M be a finitely generated R1-module, hence also a finitely generated R-module.

We can look at Mm as an Rm-module or Mm1 as an R1m1-module. Either of these will be finitely
generated.

7.1.25 Proposition dim suppMm ě dim suppMm1 .

Here Mm is an Rm-module, Mm1 is an R1m1-module.

Proof. Consider R{mÑ R1{mR1 Ñ R1{m1. Then we see that R1{mR1 is a finite R{m-module, so a
finite-dimensional R{m-vector space. In particular, R1{mR1 is of finite length as an R{m-module,
in particular an artinian ring. It is thus a product of local artinian rings. These artinian rings
are the localizations of R1{mR1 at ideals of R1 lying over m. One of these ideals is m1. So in
particular

R1{mR » R1{m1 ˆ other factors.

The nilradical of an artinian ring being nilpotent, we see that m1cR1m1 Ă mR1m for some c.

OK, I’m not following this—too tired. Will pick this up someday.

7.1.26 Proposition dim suppMm “ maxm1|m dim suppMm1 .

This means m1 lies over m.

Proof. Done similarly, using artinian techniques. I’m kind of tired.

7.1.27 Example Let R1 “ Crx1, . . . , xns{p. Noether normalization says that there exists a
finite injective map Cry1, . . . , yas Ñ R1. The claim is that

dimR1m “ a

for any maximal ideal m Ă R1. We are set up to prove a slightly weaker definition. In particular
(see below for the definition of the dimension of a non-local ring), by the proposition, we find
the weaker claim

dimR1 “ a,

as the dimension of a polynomial ring Cry1, . . . , yas is a. (I don’t think we have proved this
yet.)
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7.2. Other definitions and characterizations of dimension

The topological characterization of dimension

We now want a topological characterization of dimension. So, first, we want to study how
dimension changes as we do things to a module. Let M be a finitely generated R-module over a
local noetherian ring R. Let x P m for m as the maximal ideal. You might ask

What is the relation between dim suppM and dim suppM{xM?

Well, M surjects onto M{xM , so we have the inequality ě. But we think of dimension as
describing the number of parameters you need to describe something. The number of parameters
shouldn’t change too much with going from M to M{xM . Indeed, as one can check,

suppM{xM “ suppM X V pxq

and intersecting suppM with the “hypersurface” V pxq should shrink the dimension by one.

We thus make:
7.2.1 Remark (Prediction)

dim suppM{xM “ dim suppM ´ 1.

Obviously this is not always true, e.g. if x acts by zero on M . But we want to rule that out.
Under reasonable cases, in fact, the prediction is correct:

7.2.2 Proposition Suppose x P m is a non-zero-divisor on M . Then

dim suppM{xM “ dim suppM ´ 1.

Proof. To see this, we look at Hilbert polynomials. Let us consider the exact sequence

0 Ñ xM ÑM ÑM{xM Ñ 0

which leads to an exact sequence for each t,

0 Ñ xM{pxM XmtMq ÑM{mtM ÑM{pxM `mtMq Ñ 0.

For t large, the lengths of these things are given by Hilbert polynomials, as the thing on the
right is M{xM bR R{m

t. We have

f`M ptq “ f`M{xM ptq ` `pxM{pxM XmtMq, t " 0.

In particular, `pxM{pxM X mtMqq is a polynomial in t. What can we say about it? Well,
xM »M as x is a non-zero-divisor. In particular

xM{pxM XmtMq »M{Nt

where
Nt “

 

a PM : xa P mtM
(

.
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In particular, Nt Ą mt´1M . This tells us that `pM{Ntq ď `pM{mt´1Mq “ f`M pt´ 1q for t " 0.
Combining this with the above information, we learn that

f`M ptq ď f`M{xM ptq ` f
`
M pt´ 1q,

which implies that f`M{xM ptq is at least the successive difference f`M ptq ´ f`M pt ´ 1q. This last
polynomial has degree dim suppM´1. In particular, f`M{xM ptq has degree at least dim suppM´

1. This gives us one direction, actually the hard one. We showed that intersecting something
with codimension one doesn’t drive the dimension down too much.

Let us now do the other direction. We essentially did this last time via the Artin-Rees lemma.
We know that Nt “

 

a PM : xa P mt
(

. The Artin-Rees lemma tells us that there is a constant
c such that Nt`c Ă mtM for all t. Therefore, `pM{Nt`cq ě `pM{mtMq “ f`M ptq, t " 0. Now
remember the exact sequence 0 ÑM{Nt ÑM{mtM ÑM{pxM `mtMq Ñ 0. We see from this
that

`pM{mtMq “ `pM{Ntq ` f
`

M{xM ptq ě f`M pt´ cq ` f
`

M{xM ptq, t " 0,

which implies that
f`M{xM ptq ď f`M ptq ´ f

`
M pt´ cq,

so the degree must go down. And we find that deg f`M{xM ă deg f`M .

This gives us an algorithm of computing the dimension of an R-module M . First, it reduces to
computing dimR{p for p Ă R a prime ideal. We may assume that R is a domain and that we
are looking for dimR. Geometrically, this corresponds to taking an irreducible component of
SpecR.

Now choose any x P R such that x is nonzero but noninvertible. If there is no such element, then
R is a field and has dimension zero. Then compute dimR{x (recursively) and add one.

Notice that this algorithm said nothing about Hilbert polynomials, and only talked about the
structure of prime ideals.

Recap

Last time, we were talking about dimension theory. Recall that R is a local noetherian ring with
maximal ideal m, M a finitely generated R-module. We can look at the lengths `pM{mtMq for
varying t; for t " 0 this is a polynomial function. The degree of this polynomial is called the
dimension of suppM .

7.2.3 Remark If M “ 0, then we define dim suppM “ ´1 by convention.

Last time, we showed that if M ‰ 0 and x P m such that x is a non-zero-divisor on M (i.e.
M

x
ÑM injective), then

dim suppM{xM “ dim suppM ´ 1.

Using this, we could give a recursion for calculating the dimension. To compute dimR “

dim SpecR, we note three properties:

376



III.7. Dimension theory 7.2. Other definitions and characterizations of dimension

1. dimR “ supp a minimal primeR{p. Intuitively, this says that a variety which is the union of
irreducible components has dimension equal to the maximum of these irreducibles.

2. dimR “ 0 for R a field. This is obvious from the definitions.

3. If R is a domain, and x P m´ t0u, then dimR{pxq ` 1 “ dimR. This is obvious from the
boxed formula as x is a non-zero-divisor.

These three properties uniquely characterize the dimension invariant.

More precisely, if d : tlocal noetherian ringsu Ñ Zě0 satisfies the above three properties,
then d “ dim.

Proof. Induction on dimR. It is clearly sufficient to prove this for R a domain. If R is a field,
then it’s clear; if dimR ą 0, the third condition lets us reduce to a case covered by the inductive
hypothesis (i.e. go down).

Let us rephrase 3 above:

3’: If R is a domain and not a field, then

dimR “ sup
xPm´0

dimR{pxq ` 1.

Obviously 3’ implies 3, and it is clear by the same argument that 1,2, 3’ characterize the notion
of dimension.

Krull dimension

We shall now define another notion of dimension, and show that it is equivalent to the older one
by showing that it satisfies these axioms.

7.2.4 Definition Let R be a commutative ring. A chain of prime ideals in R is a finite
sequence

p0 Ĺ p1 Ĺ ¨ ¨ ¨ Ĺ pn.

This chain is said to have length n.

7.2.5 Definition The Krull dimension of R is equal to the maximum length of any chain
of prime ideals. This might be 8, but we will soon see this cannot happen for R local and
noetherian.

7.2.6 Remark For any maximal chain tpi, 0 ď i ď nu of primes (i.e. which can’t be expanded),
we must have that p0 is minimal prime and pn a maximal ideal.

7.2.7 Theorem For a noetherian local ring R, the Krull dimension of R exists and is equal to
the usual dimR.

Proof. We will show that the Krull dimension satisfies the above axioms. For now, write Krdim
for Krull dimension.
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1. First, note that KrdimpRq “ maxpPR minimal KrdimpR{pq. This is because any chain of
prime ideals in R contains a minimal prime. So any chain of prime ideals in R can be
viewed as a chain in some R{p, and conversely.

2. Second, we need to check that KrdimpRq “ 0 for R a field. This is obvious, as there is
precisely one prime ideal.

3. The third condition is interesting. We must check that for pR,mq a local domain,

KrdimpRq “ max
xPm´t0u

KrdimpR{pxqq ` 1.

If we prove this, we will have shown that condition 3’ is satisfied by the Krull dimension.
It will follow by the inductive argument above that KrdimpRq “ dimpRq for any R. There
are two inequalities to prove. First, we must show

KrdimpRq ě KrdimpR{xq ` 1, @x P m´ 0.

So suppose k “ KrdimpR{xq. We want to show that there is a chain of prime ideals of
length k ` 1 in R. So say p0 Ĺ ¨ ¨ ¨ Ĺ pk is a chain of length k in R{pxq. The inverse
images in R give a proper chain of primes in R of length k, all of which contain pxq and
thus properly contain 0. Thus adding zero will give a chain of primes in R of length k` 1.

Conversely, we want to show that if there is a chain of primes in R of length k ` 1, then
there is a chain of length k in R{pxq for some x P m´t0u. Let us write the chain of length
k ` 1:

q´1 Ă q0 Ĺ ¨ ¨ ¨ Ĺ qk Ă R.

Now evidently q0 contains some x P m´ 0. Then the chain q0 Ĺ ¨ ¨ ¨ Ĺ qk can be identified
with a chain in R{pxq for this x. So for this x, we have that KrdimR ď sup KrdimR{pxq`1.

There is thus a combinatorial definition of definition.

Geometrically, let X “ SpecR for R an affine ring over C (a polynomial ring mod some ideal).
Then R has Krull dimension ě k iff there is a chain of irreducible subvarieties of X,

X0 Ą X1 Ą ¨ ¨ ¨ Ą Xk.

You will meet justification for this in Section 7.3 below.

7.2.8 Remark (Warning!) Let R be a local noetherian ring of dimension k. This means that
there is a chain of prime ideals of length k, and no longer chains. Thus there is a maximal chain
whose length is k. However, not all maximal chains in SpecR have length k.

7.2.9 Example Let R “ pCrX,Y, Zs{pXY,XZqqpX,Y,Zq. It is left as an exercise to the reader
to see that there are maximal chains of length not two.

There are more complicated local noetherian domains which have maximal chains of prime ideals
not of the same length. These examples are not what you would encounter in daily experience,
and are necessarily complicated. This cannot happen for finitely generated domains over a field.

7.2.10 Example An easier way all maximal chains could fail to be of the same length is if
SpecR has two components (in which case R “ R0 ˆR1 for rings R0, R1).

378



III.7. Dimension theory 7.2. Other definitions and characterizations of dimension

Yet another definition

Let’s start by thinking about the definition of a module. Recall that if pR,mq is a local noetherian
ring and M a finitely generated R-module, and x P m is a non-zero-divisor on M , then

dim suppM{xM “ dim suppM ´ 1.

7.2.11 Remark (Question) What if x is a zero divisor?

This is not necessarily true (e.g. if x P AnnpMq). Nonetheless, we claim that even in this case:

7.2.12 Proposition For any x P m,

dim suppM ě dim suppM{xM ě dim suppM ´ 1.

The upper bound on dimM{xM is obvious as M{xM is a quotient of M . The lower bound is
trickier.

Proof. Let N “ ta PM : xna “ 0 for some nu. We can construct an exact sequence

0 Ñ N ÑM ÑM{N Ñ 0.

Let M2 “M{N . Now x is a non-zero-divisor on M{N by construction. We claim that

0 Ñ N{xN ÑM{xM ÑM2{xM2 Ñ 0

is exact as well. For this we only need to see exactness at the beginning, i.e. injectivity of
N{xN ÑM{xM . So we need to show that if a P N and a P xM , then a P xN .

To see this, suppose a “ xb where b PM . Then if φ : M ÑM2, then φpbq PM2 is killed by x as
xφpbq “ φpbxq “ φpaq. This means that φpbq “ 0 as M2 x

Ñ M2 is injective. Thus b P N in fact.
So a P xN in fact.

From the exactness, we see that (as x is a non-zero-divisor on M2)

dimM{xM “ maxpdimM2{xM2,dimN{xNq ě maxpdimM2 ´ 1,dimNq

ě maxpdimM2,dimNq ´ 1.

The reason for the last claim is that suppN{xN “ suppN as N is x-torsion, and the dimension
depends only on the support. But the thing on the right is just dimM ´ 1.

As a result, we find:

7.2.13 Proposition dim suppM is the minimal integer n such that there exist elements x1, . . . , xn P
m with M{px1, . . . , xnqM has finite length.

Note that n always exists, since we can look at a bunch of generators of the maximal ideal, and
M{mM is a finite-dimensional vector space and is thus of finite length.
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Proof. Induction on dim suppM . Note that dim supppMq “ 0 if and only if the Hilbert polyno-
mial has degree zero, i.e. M has finite length or that n “ 0 (n being defined as in the statement).

Suppose dim suppM ą 0.

1. We first show that there are x1, . . . , xdimM with M{px1, . . . , xdimM qM have finite length.
Let M 1 ĂM be the maximal submodule having finite length. There is an exact sequence

0 ÑM 1 ÑM ÑM2 Ñ 0

where M2 “M{M 1 has no finite length submodules. In this case, we can basically ignore
M 1, and replace M by M2. The reason is that modding out by M 1 doesn’t affect either n
or the dimension.

So let us replace M with M2 and thereby assume that M has no finite length submodules.
In particular, M does not contain a copy of R{m, i.e. m R AsspMq. By prime avoidance,
this means that there is x1 P m that acts as a non-zero-divisor on M . Thus

dimM{x1M “ dimM ´ 1.

The inductive hypothesis says that there are x2, . . . , xdimM with

pM{x1Mq{px2, . . . , xdimM qpM{xMq »M{px1, . . . , xdimM qM

of finite length. This shows the claim.

2. Conversely, suppose that there M{px1, . . . , xnqM has finite length. Then we claim that
n ě dimM . This follows because we had the previous result that modding out by a single
element can chop off the dimension by at most 1. Recursively applying this, and using the
fact that dim of a finite length module is zero, we find

0 “ dimM{px1, . . . , xnqM ě dimM ´ n.

7.2.14 Corollary Let pR,mq be a local noetherian ring. Then dimR is equal to the minimal n
such that there exist x1, . . . , xn P R with R{px1, . . . , xnqR is artinian. Or, equivalently, such that
px1, . . . , xnq contains a power of m.

7.2.15 Remark We manifestly have here that the dimension of R is at most the embedding
dimension. Here, we’re not worried about generating the maximal ideal, but simply something
containing a power of it.

We have been talking about dimension. Let R be a local noetherian ring with maximal ideal m.
Then, as we have said in previous lectures, dimR can be characterized by:

1. The minimal n such that there is an n-primary ideal generated by n elements x1, . . . , xn P m.
That is, the closed point m of SpecR is cut out set-theoretically by the intersection

Ş

V pxiq.
This is one way of saying that the closed point can be defined by n parameters.

2. The maximal n such that there exists a chain of prime ideals

p0 Ă p1 Ă ¨ ¨ ¨ Ă pn.

3. The degree of the Hilbert polynomial f`ptq, which equals `pR{mtq for t " 0.
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Krull’s Hauptidealsatz

Let R be a local noetherian ring. The following is now clear from what we have shown:

7.2.16 Theorem R has dimension 1 if and only if there is a non-zero-divisor x P m such that
R{pxq is artinian.

7.2.17 Remark Let R be a domain. We said that a nonzero prime p Ă R is height one if p is
minimal among the prime ideals containing some nonzero x P R.

According to Krull’s Hauptidealsatz, p has height one if and only if dimRp “ 1.

We can generalize the notion of p as follows.

7.2.18 Definition Let R be a noetherian ring (not necessarily local), and p P SpecR. Then
we define the height of p, denoted heightppq, as dimRp. We know that this is the length of a
maximal chain of primes in Rp. This is thus the maximal length of prime ideals of R,

p0 Ă ¨ ¨ ¨ Ă pn “ p

that ends in p. This is the origin of the term “height.”

7.2.19 Remark Sometimes, the height is called the codimension. This corresponds to the
codimension in SpecR of the corresponding irreducible closed subset of SpecR.

7.2.20 Theorem (Krull’s Hauptidealsatz) Let R be a noetherian ring, and x P R a non-
zero-divisor. If p P SpecR is minimal over x, then p has height one.

Proof. Immediate from theorem 7.2.16.

7.2.21 Theorem (Artin-Tate) Let A be a noetherian domain. Then the following are equiv-
alent:

1. There is f P A´ t0u such that Af is a field.

2. A has finitely many maximal ideals and has dimension at most 1.

Proof. We follow ?.

Suppose first that there is f with Af a field. Then all nonzero prime ideals of A contain f . We
need to deduce that A has dimension ď 1. Without loss of generality, we may assume that A is
not a field.

There are finitely many primes p1, . . . , pk which are minimal over f ; these are all height one.
The claim is that any maximal ideal of A is of this form. Suppose m were maximal and not one
of the pi. Then by prime avoidance, there is g P m which lies in no pi. A minimal prime P of
g has height one, so by our assumptions contains f . However, it is then one of the pi; this is a
contradiction as g P P.
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Further remarks

We can recast earlier notions in terms of dimension.

7.2.22 Remark A noetherian ring has dimension zero if and only if R is artinian. Indeed, R
has dimension zero iff all primes are maximal.

7.2.23 Remark A noetherian domain has dimension zero iff it is a field. Indeed, in this case
p0q is maximal.

7.2.24 Remark R has dimension ď 1 if and only if every non-minimal prime of R is maximal.
That is, there are no chains of length ě 2.

7.2.25 Remark A (noetherian) domain R has dimension ď 1 iff every nonzero prime ideal is
maximal.

In particular,

7.2.26 Proposition R is Dedekind iff it is a noetherian, integrally closed domain of dimension
1.

7.3. Further topics

Change of rings

Let f : RÑ R1 be a map of noetherian rings.

7.3.1 Remark (Question) What is the relationship between dimR and dimR1?

A map f gives a map SpecR1 Ñ SpecR, where SpecR1 is the union of various fibers over the
points of SpecR. You might imagine that the dimension is the dimension of R plus the fiber
dimension. This is sometimes true.

Now assume that R,R1 are local with maximal ideals m,m1. Assume furthermore that f is local,
i.e. fpmq Ă m1.

7.3.2 Theorem dimR1 ď dimR` dimR1{mR1. Equality holds if f : RÑ R1 is flat.

Here R1{mR1 is to be interpreted as the “fiber” of SpecR1 above m P SpecR. The fibers can
behave weirdly as the basepoint varies in SpecR, so we can’t expect equality in general.

7.3.3 Remark Let us review flatness as it has been a while. An R-module M is flat iff the
operation of tensoring with M is an exact functor. The map f : R Ñ R1 is flat iff R1 is a flat
R-module. Since the construction of taking fibers is a tensor product (i.e. R1{mR1 “ R1bRR{m),
perhaps the condition of flatness here is not as surprising as it might be.
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Proof. Let us first prove the inequality. Say

dimR “ a, dimR1{mR1 “ b.

We’d like to see that
dimR1 ď a` b.

To do this, we need to find a ` b elements in the maximal ideal m1 that generate a m1-primary
ideal of R1.

There are elements x1, . . . , xa P m that generate an m-primary ideal I “ px1, . . . , xaq in R. There
is a surjection R1{IR1 � R1{mR1. The kernel mR1{IR1 is nilpotent since I contains a power of
m. We’ve seen that nilpotents don’t affect the dimension. In particular,

dimR1{IR1 “ dimR1{mR1 “ b.

There are thus elements y1, . . . , yb P m1{IR1 such that the ideal J “ py1, . . . , ybq Ă R1{IR1 is
m1{IR1-primary. The inverse image of J in R1, call it J Ă R1, is m1-primary. However, J is
generated by the a` b elements

fpx1q, . . . , fpxaq, y1, . . . , yb

if the yi lift yi.

But we don’t always have equality. Nonetheless, if all the fibers are similar, then we should
expect that the dimension of the “total space” SpecR1 is the dimension of the “base” SpecR
plus the “fiber” dimension SpecR1{mR1. The precise condition of f flat articulates the condition
that the fibers “behave well.” Why this is so is something of a mystery, for now. But for some
evidence, take the present result about fiber dimension.

Anyway, let us now prove equality for flat R-algebras. As before, write a “ dimR, b “
dimR1{mR1. We’d like to show that

dimR1 ě a` b.

By what has been shown, this will be enough. This is going to be tricky since we now need
to give lower bounds on the dimension; finding a sequence x1, . . . , xa`b such that the quotient
R{px1, . . . , xa`bq is artinian would bound above the dimension.

So our strategy will be to find a chain of primes of length a` b. Well, first we know that there
are primes

q0 Ă q1 Ă ¨ ¨ ¨ Ă qb Ă R1{mR1.

Let qi be the inverse images in R1. Then the qi are a strictly ascending chain of primes in R1

where q0 contains mR1. So we have a chain of length b; we need to extend this by additional
terms.

Now f´1pq0q contains m, hence is m. Since dimR “ a, there is a chain tpiu of prime ideals of
length a going down from f´1pq0q “ m. We are now going to find primes p1i Ă R1 forming a
chain such that f´1pp1iq “ pi. In other words, we are going to lift the chain pi to SpecR1. We
can do this at the first stage for i “ a, where pa “ m and we can set p1a “ q0. If we can indeed do
this lifting, and catenate the chains qj , p1i, then we will have a chain of the appropriate length.
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We will proceed by descending induction. Assume that we have p1i`1 Ă R1 and f´1pp1i`1q “

pi`1 Ă R. We want to find p1i Ă p1i`1 such that f´1pp1iq “ pi. The existence of that prime is a
consequence of the following general fact.

7.3.4 Theorem (Going down) Let f : RÑ R1 be a flat map of noetherian commutative rings.
Suppose q P SpecR1, and let p “ f´1pqq. Suppose p0 Ă p is a prime of R. Then there is a prime
q0 Ă q with

f´1pq0q “ p0.

Proof. We may replace R1 with R1q. There is still a map

RÑ R1q

which is flat as localization is flat. The maximal ideal in R1q has inverse image p. So the problem
now reduces to finding some p0 in the localization that pulls back appropriately.

Anyhow, throwing out the old R and replacing with the localization, we may assume that R1 is
local and q the maximal ideal. (The condition q0 Ă q is now automatic.)

The claim now is that we can replace R with R{p0 and R1 with R1{p0R
1 “ R1bR{p0. We can do

this because base change preserves flatness (see below), and in this case we can reduce to the case
of p0 “ p0q—in particular, R is a domain. Taking these quotients just replaces SpecR,SpecR1

with closed subsets where all the action happens anyhow.

Under these replacements, we now have:

1. R1 is local with maximal ideal q

2. R is a domain and p0 “ p0q.

We want a prime of R1 that pulls back to p0q in R. I claim that any minimal prime of R1 will
work. Suppose otherwise. Let q0 Ă R1 be a minimal prime, and suppose x P RX f´1pq0q ´ t0u.
But q0 P AsspR1q. So fpxq is a zero divisor on R1. Thus multiplication by x on R1 is not injective.

But, R is a domain, so R x
Ñ R is injective. Tensoring with R1 must preserve this, implying that

R1
x
Ñ R1 is injective because R1 is flat. This is a contradiction.

We used:

7.3.5 Lemma Let R Ñ R1 be a flat map, and S an R-algebra. Then S Ñ S bR R
1 is a flat

map.

Proof. The construction of taking an S-module with SbRR1 is an exact functor, because that’s
the same thing as taking an S-module, restricting to R, and tensoring with R1.

The proof of the fiber dimension theorem is now complete.
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The dimension of a polynomial ring

Adding an indeterminate variable corresponds geometrically to taking the product with the affine
line, and so should increase the dimension by one. We show that this is indeed the case.

7.3.6 Theorem Let R be a noetherian ring. Then dimRrXs “ dimR` 1.

Interestingly, this is false if R is non-noetherian, cf. . Let R be a ring of dimension n.

7.3.7 Lemma dimRrxs ě dimR` 1.

Proof. Let p0 Ă ¨ ¨ ¨ Ă pn be a chain of primes of length n “ dimR. Then p0Rrxs Ă ¨ ¨ ¨ Ă

pnRrxs Ă px, pnqRrxs is a chain of primes in Rrxs of length n ` 1 because of the following
fact: if q Ă R is prime, then so is qRrxs Ă Rrxs.2 Note also that as pn Ĺ R, we have that
pnRrxs Ĺ px, pnq. So this is indeed a legitimate chain.

Now we need only show:

7.3.8 Lemma Let R be noetherian of dimension n. Then dimRrxs ď dimR` 1.

Proof. Let q0 Ă ¨ ¨ ¨ Ă qm Ă Rrxs be a chain of primes in Rrxs. Let m “ qm X R. Then if we
localize and replace R with Rm, we get a chain of primes of length m in Rmrxs. In fact, we get
more. We get a chain of primes of length m in pRrxsqqm , and a local inclusion of noetherian
local rings

Rm ãÑ pRrxsqqm .

To this we can apply the fiber dimension theorem. In particular, this implies that

m ď dimpRrxsqqm ď dimRm ` dimpRrxsqqm{mpRrxsqqm .

Here dimRm ď dimR “ n. So if we show that dimpRrxsqqm{mpRrxsqqm ď 1, we will have seen
that m ď n` 1, and will be done. But this last ring is a localization of pRm{mRmqrxs, which is
a PID by the euclidean algorithm for polynomial rings over a field, and thus of dimension ď 1.

A refined fiber dimension theorem

Let R be a local noetherian domain, and let R Ñ S be an injection of rings making S into an
R-algebra. Suppose S is also a local domain, such that the morphism R Ñ S is local. This is
essentially the setup of section 7.3, but in this section, we make the refining assumption that S
is essentially of finite type over R; in other words, S is the localization of a finitely generated
R-algebra.

Let k be the residue field of R, and k1 that of S; because R Ñ S is local, there is induced a
morphism of fields k Ñ k1. We shall prove, following ?:

7.3.9 Theorem (Dimension formula)

dimS ` tr.deg.S{R ď dimR` tr.deg.k1{k. (7.3.1)
2This is because Rrxs{qRrxs “ pR{qqrxs is a domain.
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Here tr.deg.B{A is more properly the transcendence degree of the quotient field of B over that
of A. Geometrically, it corresponds to the dimension of the “generic” fiber.

Proof. Let m Ă R be the maximal ideal. We know that S is a localization of an algebra of the
form pRrx1, . . . , xksq{p where p Ă Rrx1, . . . , xns is a prime ideal q. We induct on k.

Since we can “dévissage” the extension RÑ S as the composite

RÑ pRrx1, . . . , xk´1s{ppXRrx1, . . . , xk´1sqq1 Ñ S,

(where q1 P SpecRrx1, . . . , xk´1s{ppXRrx1, . . . , xk´1s is the pull-back of q), we see that it suffices
to prove (7.3.1) when k “ 1, that is S is the localization of a quotient of Rrxs.

So suppose k “ 1. Then we have S “ pRrxsqq{p where q Ă Rrxs is another prime ideal lying
over m. Let us start by considering the case where q “ 0.

7.3.10 Lemma Let pR,mq be a local noetherian domain as above. Let S “ Rrxsq where q P
SpecRrxs is a prime lying over m. Then (7.3.1) holds with equality.

Proof. In this case, tr.deg.S{R “ 1. Now q could be mRrxs or a prime ideal containing that,
which is then automatically maximal, as we know from the proof of section 7.3. Indeed, primes
containing mRrxs are in bijection with primes of R{mrxs, and these come in two forms: zero,
and those generated by one element. (Note that in the former case, the residue field is the field
of rational functions kpxq and in the second, the residue field is finite over k.)

1. In the first case, dimS “ dimRrxsmRrxs “ dimR and but the residue field extension is
pRrxsmRrxsq{mRrxsmRrxs “ kpxq, so tr.deg.k1{k “ 1 and the formula is satisfied.

2. In the second case, q properly contains mRrxs. Then dimRrxsq “ dimR ` 1, but the
residue field extension is finite. So in this case too, the formula is satisfied.

Now, finally, we have to consider the case where p Ă Rrxs is not zero, and we have S “ pRrxs{pqq
for q P SpecRrxs{p lying over m. In this case, tr.deg.S{R “ 0. So we need to prove

dimS ď dimR` tr.deg.k1{k.

Let us, by abuse of notation, identify q with its preimage in Rrxs. (Recall that SpecRrxs{p is
canonically identified as a closed subset of SpecRrxs.) Then we know that dimpRrxs{pqq is the
largest chain of primes in Rrxs between p, q. In particular, it is at most dimRrxsq ´ heightp ď
dimR` 1´ 1 “ dimR. So the result is clear.

In ?, this is used to prove the geometric result that if φ : X Ñ Y is a morphism of varieties
over an algebraically closed field (or a morphism of finite type between nice schemes), then the
local dimension (that is, the dimension at x) of the fiber φ´1pφpxqq is an upper semi-continuous
function of x P X.
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An infinite-dimensional noetherian ring

We shall now present an example, due to Nagata, of an infinite-dimensional noetherian ring.
Note that such a ring cannot be local.

Consider the ring R “ Crtxi,ju0ďiďjs of polynomials in infinitely many variables xi,j . This is
clearly an infinite-dimensional ring, but it is also not noetherian. We will localize it suitably to
make it noetherian.

Let pn Ă R be the ideal px1,n, x2,n, . . . , xn,nq for all i ď n. Let S “ R ´
Ť

pn; this is a
multiplicatively closed set.

7.3.11 Theorem (Nagata) The ring S´1R is noetherian and has infinite dimension.

We start with

7.3.12 Proposition The ring in the statement of the problem is noetherian.

The proof is slightly messy, so we first prove a few lemmas.

Let R1 “ S´1R as in the problem statement. We start by proving that every ideal in R1 is
contained in one of the pn (which, by abuse of notation, we identify with their localizations in
R1 “ S´1R). In particular, the pn are the maximal ideals in R1.

7.3.13 Lemma The pn are the maximal ideals in R1.

Proof. We start with an observation:

If f ‰ 0, then f belongs to only finitely many pn.

To see this, let us use the following notation. If M is a monomial, we let SpMq denote the set
of subscripts xa,b that occur and S2pMq the set of second subscripts (i.e. the b’s). For f P R,
we define Spfq to be the intersection of the SpMq for M a monomial occurring nontrivially in
f . Similarly we define S2pfq.

Let us prove:

7.3.14 Lemma f P pn iff n P S2pfq. Moreover, Spfq and S2pfq are finite for any f ‰ 0.

Proof. Indeed, f P pn iff every monomial in f is divisible by some xi,n, i ď n, as pn “ pxi,nqiďn.
From this the first assertion is clear. The second too, because f will contain a nonzero monomial,
and that can be divisible by only finitely many xa,b.

From this, it is clear how to define S2pfq for any element in R1, not necessarily a polynomial in
R. Namely, it is the set of n such that f P pn. It is now clear, from the second statement of
the lemma, that any f ‰ 0 lies in only finitely many pn. In particular, the observation has been
proved.

Let T “ tS2pfq, f P I ´ 0u. I claim that H P T iff I “ p1q. For H P T iff there is a polynomial
lying in no pn. Since the union

Ť

pn is the set of non-units (by construction), we find that the
assertion is clear.
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7.3.15 Lemma T is closed under finite intersections.

Proof. Suppose T1, T2 P T . Without loss of generality, there are polynomials F1, F2 P R such that
S2pF1q “ T1, S2pF2q “ T2. A generic linear combination aF1 ` bF2 will involve no cancellation
for a, b P C, and the monomials in this linear combination will be the union of those in F1 and
those in F2 (scaled appropriately). So S2paF1 ` bF2q “ S2pF1q X S2pF2q.

Finally, we can prove the result that the pn are the only maximal ideals. Suppose I was contained
in no pn, and form the set T as above. This is a collection of finite sets. Since I Ć pn for each
n, we find that n R

Ş

TPT T . This intersection is thus empty. It follows that there is a finite
intersection of sets in T which is empty as T consists of finite sets. But T is closed under
intersections. There is thus an element in I whose S2 is empty, and is thus a unit. Thus
I “ p1q.

We have proved that the pn are the only maximal ideals. This is not enough, though. We need:

7.3.16 Lemma R1pn is noetherian for each n.

Proof. Indeed, any polynomial involving the variables xa,b for b ‰ n is invertible in this ring. We
see that this ring contains the field

Cptxa,b, b ‰ nuq,

and over it is contained in the field Cptxa,b,@a, buq. It is a localization of the algebra Cptxa,b, b ‰
nuqrx1,n, . . . , xn,ns and is consequently noetherian by Hilbert’s basis theorem.

The proof will be completed with:

7.3.17 Lemma Let R be a ring. Suppose every element x ‰ 0 in the ring belongs to only finitely
many maximal ideals, and suppose that Rm is noetherian for each m Ă R maximal. Then R is
noetherian.

Proof. Let I Ă R be a nonzero ideal. We must show that it is finitely generated. We know
that I is contained in only finitely many maximal ideals m1, . . . ,mk. At each of these maximal
ideals, we know that Imi is finitely generated. Clearing denominators, we can choose a finite set
of generators in R. So we can collect them together and get a finite set a1, . . . , aN Ă I which
generate Imi Ă Rmi for each i. It is not necessarily true that J “ pa1, . . . , aN q “ I, though we do
have Ă. However, Im “ Jm except at finitely many maximal ideals n1, . . . , nM because a nonzero
element is a.e. a unit. However, these nj are not among the mi. In particular, for each j, there
is bj P I ´ nj as I Ć nj . Then we find that the ideal

pa1, . . . , aN , b1, . . . , bM q Ă I

becomes equal to I in all the localizations. So it is I, and I is finitely generated

We need only see that the ring R1 has infinite dimension. But for each n, there is a chain of
primes px1,nq Ă px1,n, x2,nq Ă ¨ ¨ ¨ Ă px1,n, . . . , xn,nq of length n´1. The supremum of the lengths
is thus infinite.

388



III.7. Dimension theory 7.3. Further topics

Catenary rings

7.3.18 Definition A ring R is catenary if given any two primes p Ĺ p1, any two maximal prime
chains from p to p1 have the same length.

Nagata showed that there are noetherian domains which are not catenary. We shall see that
affine rings, or rings finitely generated over a field, are always catenary.

7.3.19 Definition If p P SpecR, then dim p :“ dimR{p.

7.3.20 Lemma Let S be a k-affine domain with tr.d.kS “ n, and let p P SpecS be height one.
Then tr.d.kpS{pq “ n´ 1.

Proof. Case 1: assume S “ krx1, . . . , xns is a polynomial algebra. In this case, height 1 primes
are principal, so p “ pfq for some f . Say f has positive degree with respect to x1, so f “
grpx2, . . . , xnqx

r
1 ` ¨ ¨ ¨ . We have that krx2, . . . , xns X pfq “ p0q (just look at degree with respect

to x1). It follows that krx2, . . . , xns ãÑ S{pfq, so x̄2, . . . , x̄n are algebraically independent in S{p.
By x̄1 is algebraic over Qpkrx̄2, . . . , x̄nsq as witnessed by f . This, tr.d.kS{p “ n´ 1.

Case 2: reduction to case 1. Let R “ krx1, . . . , xns be a Noether normalization for S, and let
p0 “ p X R. Observe that Going Down applies (because S is a domain and R is normal). It
follows that htRpp0q “ htSppq “ 1. By case 1, we get that tr.d.pR{p0q “ n ´ 1. By p˚q, we get
that tr.d.R{p0 “ tr.d.pS{pq.

7.3.21 Theorem Any k-affine algebra S is catenary (even if S is not a domain). In fact, any
saturated prime chain from p to p1 has length dim p´ dim p1. If S is a domain, then all maximal
ideals have the same height.

Proof. Consider any chain p Ĺ p1 Ĺ ¨ ¨ ¨ Ĺ pr “ p1. Then we get the chain

S{p � S{p1 � ¨ ¨ ¨� S{pr “ S{p1

Here pi{pi´1 is height 1 in S{pi´1, so each arrow decreases the transcendence degree by exactly
1. Therefore, tr.d.kS{p1 “ tr.d.kS{p´ r.

r “ tr.d.kS{p´ tr.d.kS{p
1 “ dimS{p´ dimS{p1 “ dim p´ dim p1.

To get the last statement, take p “ 0 and p1 “ m. Then we get that htpmq “ dimS.

Note that the last statement fails in general.

7.3.22 Example Take S “ k ˆ krx1, . . . , xns. Then htp0 ˆ krx1, . . . , xnsq “ 0, but ht
`

k ˆ
px1, . . . , xnq

˘

“ n.

But that example is not connected.

7.3.23 Example S “ krx, y, zs{pxy, xzq.
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But this example is not a domain. In general, for any prime p in any ring S, we have

htppq ` dim p ď dimS.

7.3.24 Theorem Let S be an affine algebra, with minimal primes tp1, . . . , pru. Then the fol-
lowing are equivalent.

1. dim pi are all equal.

2. htppq ` dim p “ dimS for all primes p P SpecS. In particular, if S is a domain, we get
this condition.

Proof. p1 ñ 2q htppq is the length of some saturated prime chain from p to some minimal prime
pi. This length is dim pi ´ dim p “ dimS ´ dim p (by condition 1). Thus, we get p2q.

p2 ñ 1q Apply (2) to the minimal prime pi to get dim pi “ dimS for all i.

We finish with a (non-affine) noetherian domain S with maximal ideals of different heights. We
need the following fact.
Fact: If R is a ring with a P R, then there is a canonical R-algebra isomorphism Rrxs{pax´1q –
Rra´1s, xØ a´1.

7.3.25 Example Let
`

R, ppiq
˘

be a DVR with quotient field K. Let S “ Rrxs, and assume for
now that we know that dimS “ 2. Look at m2 “ ppi, xq and m1 “ ppix ´ 1q. Note that m1 is
maximal because S{m1 “ K. It is easy to show that htpm1q “ 1. However, m2 Ľ pxq Ľ p0q, so
htpm2q “ 2.

Dimension theory for topological spaces

The present subsec (which consists mostly of exercises) is a digression that may illuminate the
notion of Krull dimension.

7.3.26 Definition Let X be a topological space.3 Recall that X is irreducible if cannot be
written as the union of two proper closed subsets F1, F2 Ĺ X.

We say that a subset of X is irreducible if it is irreducible with respect to the induced topology.

In general, this notion is not valid from the topological spaces familiar from analysis. For
instance:

7.3.27 Remark (exercise) Points are the only irreducible subsets of R.

Nonetheless, irreducible sets behave very nicely with respect to certain operations. As you will
now prove, if U Ă X is an open subset, then the irreducible closed subsets of U are in bijection
with the irreducible closed subsets of X that intersect U .

3We do not include the empty space.
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7.3.28 Remark (exercise) A space is irreducible if and only if every open set is dense, or
alternatively if every open set is connected.

7.3.29 Remark (exercise) Let X be a space, Y Ă X an irreducible subset. Then Y Ă X is
irreducible.

7.3.30 Remark (exercise) Let X be a space, U Ă X an open subset. Then the map Z Ñ

ZXU gives a bijection between the irreducible closed subsets of X meeting U and the irreducible
closed subsets of U . The inverse is given by Z 1 Ñ Z 1.

As stated above, the notion of irreducibility is useless for spaces like manifolds. In fact, by Re-
mark 7.3.28, a Hausdorff space cannot be irreducible unless it consists of one point. However, for
the highly non-Hausdorff spaces encountered in algebraic geometry, this notion is very useful.

Let R be a commutative ring, and X “ SpecR.

7.3.31 Remark (exercise) A closed subset F Ă SpecR is irreducible if and only if it can be
written in the form F “ V ppq for p Ă R prime. In particular, SpecR is irreducible if and only if
R has one minimal prime.

In fact, spectra of rings are particularly nice: they are sober spaces.

7.3.32 Definition A space X is called sober if to every irreducible closed F Ă X, there is a
unique point ξ P F such that F “ tξu. This point is called the generic point.

7.3.33 Remark (exercise) Check that if X is any topological space and ξ P X, then the
closure tξu of the point ξ is irreducible.

7.3.34 Remark (exercise) Show that SpecR for R a ring is sober.

7.3.35 Remark (exercise) Let X be a space with a cover tXαu by open subsets, each of which
is a sober space. Then X is a sober space. (Hint: any irreducible closed subset must intersect
one of the Xα, so is the closure of its intersection with that one.)

We now come to the main motivation of this subsec, and the reason for its inclusion here.

7.3.36 Definition Let X be a topological space. Then the dimension (or combinatorial
dimension) of X is the maximal k such that a chain

F0 Ĺ F1 Ĺ ¨ ¨ ¨ Ĺ Fk Ă X

with the Fi irreducible, exists. This number is denoted dimX and may be infinite.

7.3.37 Remark (exercise) What is the Krull dimension of R?

7.3.38 Remark (exercise) Let X “
Ť

Xi be the finite union of subsets Xi Ă X.

7.3.39 Remark (exercise) Let R be a ring. Then dim SpecR is equal to the Krull dimension
of R.
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Most of the spaces one wishes to work with in standard algebraic geometry have a strong form of
compactness. Actually, compactness is the wrong word, since the spaces of algebraic geometry
are not Hausdorff.

7.3.40 Definition A space is noetherian if every descending sequence of closed subsets F0 Ą

F1 Ą . . . stabilizes.

7.3.41 Remark (exercise) If R is noetherian, SpecR is noetherian as a topological space.

The dimension of a tensor product of fields

The following very clear result gives us the dimension of the tensor product of fields.

7.3.42 Theorem (Grothendieck-Sharp) Let K,L be field extensions of a field k. Then

dimK bk L “ minptr.deg.K, tr.deg.Lq.

This result is stated in the errata of ?, vol IV (4.2.1.5), but that did not make it well-known;
apparently it was independently discovered and published again by R. Y. Sharp, ten years later.4

Note that in general, this tensor product is not noetherian.

Proof. We start by assuming K is a finitely generated, purely transcendental extension of k.
Then K is the quotient field of a polynomial ring krx1, . . . , xns. It follows that K bk L is a
localization of Lrx1, . . . , xns, and consequently of dimension at most n “ tr.deg.K.

Now the claim is that if tr.deg.L ą n, then we have equality

dimK bk L “ n.

To see this, we have to show thatKbkL admits an L-homomorphism to L. For then there will be
a maximal ideal m ofKbkL which comes from a maximal idealM of Lrx1, . . . , xns (corresponding
to this homomorphism). Consequently, we will have pK bk Lqm “ pLrx1, . . . , xnsqM, which has
dimension n.

So we need to produce this homomorphism K bk L Ñ L. Since K “ kpx1, . . . , xnq and L has
transcendence degree more than n, we just choose n algebraically independent elements of L,
and use that to define a map of k-algebras K Ñ L. By the universal property of the tensor
product, we get a section K bk LÑ L. This proves the result in the case where K is a finitely
generated, purely transcendental extension.

Now we assume that K has finite transcendence degree over k, but is not necessarily purely
transcendental. Then K contains a subfield E which is purely transcendental over k and such
that E{K is algebraic. Then K bk L is integral over its subring E bk L. The previous analysis
applies to E bk L, and by integrality the dimensions of the two objects are the same.

Finally, we need to consider the case when K is allowed to have infinite transcendence degree
over k. Again, we may assume that K is the quotient field of the polynomial ring krtxαus (by the

4Thanks to Georges Elencwajg for a helpful discussion at http://math.stackexchange.com/questions/56669/
a-tensor-product-of-a-power-series/56794.
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integrality argument above). We need to show that if L has larger transcendence degree than
K, then dimKbkL “ 8. As before, there is a section KbkLÑ L, and KbkL is a localization
of the polynomial ring Lrtxαus. If we take the maximal ideal in Lrtxαus corresponding to this
section K bk L Ñ L, it is of the form pxα ´ tαqα for the tα P L. It is easy to check that the
localization of Lrtxαus at this maximal ideal, which is a localization of K bk L, has infinite
dimension.
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The algebraic version of completion is essentially analogous to the familiar process of completing
a metric space as in analysis, i.e. the process whereby R is constructed from Q. Here, however,
the emphasis will be on how the algebraic properties and structure pass to the completion.
For instance, we will see that the dimension is invariant under completion for noetherian local
rings.

Completions are used in geometry and number theory in order to give a finer picture of local
structure; for example, taking completions of rings allows for the recovery of a topology that looks
more like the Euclidean topology as it has more open sets than the Zariski topology. Completions
are also used in algebraic number theory to allow for the study of fields around a prime number
(or prime ideal).

8.1. Introduction

Motivation

Let R be a commutative ring. Consider a maximal ideal m P SpecR. If one thinks of SpecR
as a space, and R as a collection of functions on that space, then Rm is to be interpreted as the
collection of “germs” of functions defined near the point m. (In the language of schemes, Rm is
the stalk of the structure sheaf.)

However, the Zariski topology is coarse, making it difficult small neighborhoods of m. Thus the
word “near” is to be taken with a grain of salt.

8.1.1 Example Let X be a compact Riemann surface, and let x P X. Let R be the ring of
holomorphic functions on X ´ txu which are meromorphic at x. In this case, SpecR has the
ideal p0q and maximal ideals corresponding to functions vanishing at some point in X ´ txu. So
SpecR is X ´ txu together with a “generic” point.

Let us just look at the closed points. If we pick y P X ´ txu, then we can consider the local ring
Ry “

 

s´1r, spyq ‰ 0
(

. This ring is a direct limit of the rings OpUq of holomorphic functions
on open sets U that extend meromorphically to X. Here, however, U ranges only over open
subsets of X containing y that are the nonzero loci of elements R. Thus U really ranges over
complements of finite subsets. It does not range over open sets in the complex topology.

Near y, X looks like C in the complex topology. In the Zariski topology, this is not the case.
Each localization Ry actually remembers the whole Riemann surface. Indeed, the quotient field
of Ry is the rational function field of X, which determines X. Thus Ry remembers too much,
and it fails to give a truly local picture near y.
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We would like a variant of localization that would remember much less about the global topol-
ogy.

Definition

8.1.2 Definition Let R be a commutative ring and I Ă R an ideal. Then we define the
completion of R at I as

R̂I “ lim
ÐÝ

R{In.

By definition, this is the inverse limit of the quotients R{In, via the tower of commutative rings

¨ ¨ ¨ Ñ R{I3 Ñ R{I2 Ñ R{I

where each map is the natural reduction map. Note that R̂I is naturally an R-algebra. If the
map RÑ R̂I is an isomorphism, then R is said to be I-adically complete.

In general, though, we can be more general. Suppose R is a commutative ring with a linear
topology. Consider a neighborhood basis at the origin consisting of ideals tIαu.

8.1.3 Definition The completion R̂ of the topological ring R is the inverse limit R-algebra

lim
ÐÝ

R{Iα,

where the maps R{Iα Ñ R{Iβ for Iα Ă Iβ are the obvious ones. R̂ is given a structure of a
topological ring via the inverse limit topology.

If the map RÑ R̂ is an isomorphism, then R is said to be complete.

The collection of ideals tIαu is a directed set, so we can talk about inverse limits over it. When
we endow R with the I-adic topology, we see that the above definition is a generalization of
Definition 8.1.2.

8.1.4 Remark (exercise) Let R be a linearly topologized ring. Then the map R Ñ R̂ is
injective if and only if

Ş

Iα “ 0 for the Iα open ideals; that is, if and only if R is Hausdorff.

8.1.5 Remark (exercise) If R{Iα is finite for each open ideal Iα Ă R, then R̂ is compact as a
topological ring. (Hint: Tychonoff’s theorem.)

To be added: Notation needs to be worked out for the completion

The case of a local ring is particularly important. Let R be a local ring and m its maximal ideal.
Then the completion of R with respect to m, denoted R̂, is the inverse limit R̂ “ limÐpR{m

nRq.
We then topologize R̂ by setting powers of m to be basic open sets around 0. The topology
formed by these basic open sets is called the “Krull” or “m-adic topology.”

In fact, the case of local rings is the most important one. Usually, we will complete R at maximal
ideals. If we wanted to study R near a prime p P SpecR, we might first replace R by Rp, which
is a local ring; we might make another approximation to R by completing Rp. Then we get a
complete local ring.
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8.1.6 Definition Let R be a ring, M an R-module, I Ă R an ideal. We define the completion
of M at I as

M̂I “ lim
ÐÝ

M{InM.

This is an inverse limit of R-modules, so it is an R-module. Furthermore, it is even an R̂I -module,
as one easily checks. It is also functorial.

In fact, we get a functor
R´modules Ñ R̂I ´modules.

Classical examples

Let us give some examples.

8.1.7 Example Recall that in algebraic number theory, a number field is a finite dimensional
algebraic extension of Q. Sitting inside of Q is the ring of integers, Z. For any prime number
p P Z, we can localize Z to the prime ideal ppq giving us a local ring Zppq. If we take the
completion of this local ring we get the p-adic numbers Qp. Notice that since Zppq{pn – Z{p,
this is really the same as taking the inverse limit limÐ Z{pn.

8.1.8 Example Let X be a Riemann surface. Let x P X be as before, and let R be as before:
the ring of meromorphic functions on X with poles only at x. We can complete R at the ideal
my Ă R corresponding to y P X ´ txu. This is always isomorphic to a power series ring

Crrtss

where t is a holomorphic coordinate at y.

The reason is that if one considers R{mn
y , one always gets Crts{ptnq, where t corresponds to

a local coordinate at y. Thus these rings don’t remember much about the Riemann surface.
They’re all isomorphic, for instance.

8.1.9 Remark There is always a map RÑ R̂I by taking the limit of the maps R{Ii.

Noetherianness and completions

A priori, one might think this operation of completion gives a big mess. The amazing thing is
that for noetherian rings, completion is surprisingly well-behaved.

8.1.10 Proposition Let R be noetherian, I Ă R an ideal. Then R̂I is noetherian.

Proof. Choose generators x1, . . . , xn P I. This can be done as I is finitely generated Consider a
power series ring

Rrrt1, . . . , tnss;

the claim is that there is a map Rrrt1 . . . tnss Ñ R̂I sending each ti to xi P R̂I . This is not trivial,
since we aren’t talking about a polynomial ring, but a power series ring.
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To build this map, we want a compatible family of maps

Rrrt1, . . . , tnss Ñ Rrt1, . . . , tns{pt1, . . . , tnq
k Ñ R{Ik.

where the second ring is the polynomial ring where homogeneous polynomials of degree ě k are
killed. There is a map from Rrrt1, . . . , tnss to the second ring that kills monomials of degree ě k.
The second map Rrt1, . . . , tns{pt1, . . . , tnqk Ñ R{Ik sends ti Ñ xi and is obviously well-defined.

So we get the map
φ : Rrrt1, . . . , tnss Ñ R̂I ,

which I claim is surjective. Let us prove this. Suppose a P R̂I . Then a can be thought of as a
collection of elements pakq P R{Ik which are compatible with one another. We can lift each ak
to some ak P R in a compatible manner, such that

ak`1 “ ak ` bk, bk P I
k.

Since bk P Ik, we can write it as
bk “ fkpx1, . . . , xnq

for fk a polynomial in R of degree k, by definition of the generators in Ik.

I claim now that
a “ φ

´

ÿ

fkpt1, . . . , tnq
¯

.

The proof is just to check modulo Ik for each k. This we do by induction. When one reduces
modulo Ik, one gets ak (as one easily checks).

As we have seen, R̂I is the quotient of a power series ring. In the homework, it was seen that
Rrrt1, . . . , tnss is noetherian; this is a variant of the Hilbert basis theorem proved in class. So R̂I
is noetherian.

In fact, following ?, we shall sometimes find it convenient to note a generalization of the above
argument.

8.1.11 Lemma Suppose A is a filtered ring, M,N filtered A-modules and φ : M Ñ N a mor-
phism of filtered modules. Suppose grpφq surjective and M,N complete; then φ is surjective.

Proof. This will be a straightforward “successive approximation” argument. Indeed, let tMnu , tNnu

be the filtrations on M,N . Suppose n P N . We know that there is m0 PM such that

n´ φpm0q P N1

since M{M1 Ñ N{N1 is surjective. Similarly, we can choose m1 PM1 such that

n´ φpm0q ´ φpm1q PM2

because n ´ φpm0q P N1 and M1{M2 Ñ N1{N2 is surjective. We inductively continue the
sequence m2,m3, . . . such that it tends to zero rapidly; we then have that n´ φ p

ř

miq P
Ş

Ni,
so n “ φ p

ř

miq as N is complete.
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8.1.12 Theorem Suppose A is a filtered ring. Let M be a filtered A-module, separated with
respect to its topology. If grpMq is noetherian over grpAq, then M is a noetherian A-module.

Proof. If N ĂM , then we can obtain an induced filtration on N such that grpNq is a submodule
of grpMq. Since noetherianness equates to the finite generation of each submodule, it suffices to
show that if grpMq is finitely generated, so is M .

Suppose grpMq is generated by homogeneous elements e1, . . . , en of degrees d1, . . . , dn, repre-
sented by elements e1, . . . , en PM . From this we can define a map

An ÑM

sending the ith basis vector to ei. This will induce a surjection grpAnq Ñ grpMq. We will have
to be careful, though, exactly how we define the filtration on An, because the di may have large
degrees, and if we are not careful, the map on gr’s will be zero.

We choose the filtration such that at the mth level, we get the subgroup of An such that the ith
coordinate is in In´di (for tInu the filtration of A). It is then clear that the associated map

grpAnq Ñ grpMq

has image containing each ei. Since An is complete with respect to this topology, we find that
An Ñ M is surjective by lemma 8.1.11. This shows that M is finitely generated and completes
the proof.

8.1.13 Corollary Suppose A is a ring, complete with respect to the I-adic topology. If A{I is
noetherian and I{I2 a finitely generated A-module, then A is noetherian.

Proof. Indeed, we need to show that grpAq is a noetherian ring (by theorem 8.1.12). But this is
the ring

A{I ‘ I{I2 ‘ I2{I3 ‘ . . . .

It is easy to see that this is generated by I{I2 as an A{I-algebra. By Hilbert’s basis theorem,
this is noetherian under the conditions of the result.

corollary 8.1.13 gives another means of showing that if a ring A is noetherian, then its completion
Â with respect to an ideal I Ă A is noetherian. For the algebra grpAq (where A is given the I-adic
topology) is noetherian because it is finitely generated over A{I. Moreover, grpÂq “ grpAq, so Â
is noetherian.

8.2. Exactness properties

The principal result of this section is:

8.2.1 Theorem If R is noetherian and I Ă R an ideal, then the construction M Ñ M̂I is exact
when restricted to finitely generated modules.
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Let’s be more precise. If M is finitely generated, and 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 is an exact
sequence,1 then

0 Ñ M̂ 1
I Ñ M̂I Ñ M̂2

I Ñ 0

is also exact.

We shall prove this theorem in several pieces.

Generalities on inverse limits

For a moment, let us step back and think about exact sequences of inverse limits of abelian
groups. Say we have a tower of exact sequences of abelian groups

0 // ...

��

// ...

��

// ...

��

// 0

0 // A2

��

// B2

��

// C2

��

// 0

0 // A1

��

// B1

��

// C1

��

// 0

0 // A0
// B0

// C0
// 0

.

Then we get a sequence
0 Ñ lim

ÐÝ
An Ñ lim

ÐÝ
Bn Ñ lim

ÐÝ
Cn Ñ 0.

In general, it is not exact. But it is left-exact.

8.2.2 Proposition Hypotheses as above, 0 Ñ lim
ÐÝ

An Ñ lim
ÐÝ

Bn Ñ lim
ÐÝ

Cn is exact.

Proof. It is obvious that φ ˝ ψ “ 0.

Let us first show that φ : lim
ÐÝ

An Ñ lim
ÐÝ

Bn is injective. So suppose a is in the projective limit,
represented by a compatible sequence of elements pakq P Ak. If φ maps to zero, all the ak go to
zero in Bk. Injectivity of Ak Ñ Bk implies that each ak is zero. This implies φ is injective.

Now let us show exactness at the next step. Let ψ : lim
ÐÝ

Bn Ñ lim
ÐÝ

Cn and let b “ pbkq be in
kerψ. This means that each bk gets killed when it maps to Ck. This means that each bk comes
from something in ak. These ak are unique by injectivity of Ak Ñ Bk. It follows that the ak
have no choice but to be compatible. Thus pakq maps into pbkq. So b is in the image of φ.

So far, so good. We get some level of exactness. But the map on the end is not necessarily
surjective. Nonetheless:

8.2.3 Proposition ψ : lim
ÐÝ

Bn Ñ lim
ÐÝ

Cn is surjective if each An`1 Ñ An is surjective.

1The ends are finitely generated by noetherianness.
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Proof. Say c P lim
ÐÝ

Cn, represented by a compatible family pckq. We have to show that there is a
compatible family pbkq P lim

ÐÝ
Bn which maps into c. It is easy to choose the bk individually since

Bk Ñ Ck is surjective. The problem is that a priori we may not get something compatible.

We construct bk by induction on then, therefore. Assume that bk which lifts ck has been con-
structed. We know that ck receives a map from ck`1.

ck`1

��
bk // ck

.

Choose any x P Bk`1 which maps to ck`1. However, x might not map down to bk, which would
screw up the compatibility conditions. Next, we try to adjust x. Consider x1 P Bk to be the
image of x under Bk`1 Ñ Bk. We know that x1 ´ bk maps to zero in Ck, because ck`1 maps to
ck. So x1 ´ bk comes from something in Ak, call it a.

x // ck`1

��
bk // ck

.

But a comes from some a P Ak`1. Then we define

bk`1 “ x´ a,

which adjustment doesn’t change the fact that bk`1 maps to ck`1. However, this adjustment
makes bk`1 compatible with bk. Then we construct the family bk by induction. We have seen
surjectivity.

Now, let us study the exactness of completions.

Proof of Theorem 8.2.1. Let us try to apply the general remarks above to studying the sequence

0 Ñ M̂ 1
I Ñ M̂I Ñ M̂2

I Ñ 0.

Now M̂I “ lim
ÐÝ

M{In. We can construct surjective maps

M{In �M2{In

whose inverse limits lead to M̂I Ñ M̂2
I . The image is M{pM 1 ` InMq. What is the kernel?

Well, it is M 1 ` InM{InM . This is equivalently

M 1{M 1 X InM.

So we get an exact sequence

0 ÑM 1{M 1 X InM ÑM{InM ÑM2{InM2 Ñ 0.

By the above analysis of exactness of inverse limits, we get an exact sequence

0 Ñ lim
ÐÝ

M 1{pInM XM 1q Ñ M̂I Ñ M̂2
I Ñ 0.
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We of course have surjective maps M 1{InM 1 ÑM 1{pInM XM 1q though these are generally not
isomorphisms. Something “divisible by In” in M but in M 1 is generally not divisible by In in
M 1. Anyway, we get a map

lim
ÐÝ

M 1{InM 1 Ñ lim
ÐÝ

M 1{InM XM 1

where the individual maps are not necessarily isomorphisms. Nonetheless, I claim that the map
on inverse limits is an isomorphism. This will imply that completion is indeed an exact functor.

But this follows because the filtrations tInM 1u , tInM XM 1u are equivalent in view of the Artin-
Rees lemma, theorem 3.3.1.

Last time, we were talking about completions. We showed that if R is noetherian and I Ă R an
ideal, an exact sequence

0 ÑM 1 ÑM ÑM Ñ 0

of finitely generated R-modules leads to a sequence

0 Ñ M̂ 1
I Ñ M̂I Ñ M̂ ;I Ñ 0

which is also exact. We showed this using the Artin-Rees lemma.

8.2.4 Remark In particular, for finitely generated modules over a noetherian ring, completion
is an exact functor: if A Ñ B Ñ C is exact, so is the sequence of completions. This can be
seen by drawing in kernels and cokernels, and using the fact that completions preserve short
exact sequences.

Completions and flatness

Suppose that M is a finitely generated R-module. Then there is a surjection Rn � M , whose
kernel is also finitely generated as R is noetherian. It follows that M is finitely presented. In
particular, there is a sequence

Rm Ñ Rn ÑM Ñ 0.

We get an exact sequence
R̂m Ñ R̂n Ñ M̂ Ñ 0

where the second map is just multiplication by the same m-by-n matrix as in the first case.

8.2.5 Corollary If M is finitely generated and R noetherian, there is a canonical isomorphism

M̂I »M bR R̂I .

Proof. We know that there is a map M Ñ M̂I , so the canonical morphism φM : M bR R̂I Ñ M̂I

exists (because this induces a map from M bR R̂I). We need to check that it is an isomorphism.

If there is an exact sequence M 1 ÑM ÑM2 Ñ 0, there is a commutative diagram

M 1 bR R̂I

φM 1
��

//M bR R̂I

φM
��

//M2 bR R̂I

��

// 0

M̂ 1
I

// M̂I
// M̂2

I
// 0

.
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Exactness of completion and right-exactness of b implies that this diagram is exact. It follows
that if φM , φM 1 are isomorphisms, so is φM2 .

But anyM2 appears at the end of such a sequence withM 1,M are free by the finite presentation
argument above. So it suffices to prove φ an isomorphism for finite frees, which reduces to the
case of φR an isomorphism. That is obvious.

8.2.6 Corollary If R is noetherian, then R̂I is a flat R-module.

Proof. Indeed, tensoring with R̂I is exact (because it is completion, and completion is exact) on
the category of finitely generated R-modules. Exactness on the category of all R-modules follows
by taking direct limits, since every module is a direct limit of finitely generated modules, and
direct limits preserve exactness.

8.2.7 Remark Warning: M̂I is, in general, notMbR R̂I whenM is not finitely generated. One
example to think about is M “ Zrts, R “ Z. The completion of M at I “ ppq is the completion
of Zrts at pZrts, which contains elements like

1` pt` p2t2 ` . . . ,

which belong to the completion but not to R̂I bM “ Zprts.

8.2.8 Remark By the Krull intersection theorem, if R is a local noetherian ring, then the map
from RÑ R̂ is an injection.

8.3. Hensel’s lemma

One thing that you might be interested in doing is solving Diophantine equations. Say R “ Z;
you want to find solutions to a polynomial fpXq P ZrXs. Generally, it is very hard to find
solutions. However, there are easy tests you can do that will tell you if there are no solutions.
For instance, reduce mod a prime. One way you can prove that there are no solutions is to show
that there are no solutions mod 2.

But there might be solutions mod 2 and yet you might not be sure about solutions in Z. So
you might try mod 4, mod 8, and so on—you get a whole tower of problems to consider. If you
manage to solve all these equations, you can solve the equations in the 2-adic integers Z2 “ Ẑp2q.
But the Krull intersection theorem implies that Z Ñ Z2 is injective. So if you expected that
there was a unique solution in Z, you might try looking at the solutions in Z2 to be the solutions
in Z.

The moral is that solving an equation over Z2 is intermediate in difficulty between Z{2 and Z.
Nonetheless, it turns out that solving an equation mod Z{2 is very close to solving it over Z2,
thanks to Hensel’s lemma.
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The result

8.3.1 Theorem (Hensel’s Lemma) Let R be a noetherian ring, I Ă R an ideal. Let fpXq P
RrXs be a polynomial such that the equation fpXq “ 0 has a solution a P R{I. Suppose,
moreover, that f 1paq is invertible in R{I.

Then a lifts uniquely to a solution of the equation fpXq “ 0 in R̂I .

8.3.2 Example Let R “ Z, I “ p5q. Consider the equation fpxq “ x2 ` 1 “ 0 in R. This has a
solution modulo five, namely 2. Then f 1p2q “ 4 is invertible in Z{5. So the equation x2 ` 1 “ 0
has a solution in Z5. In other words,

?
´1 P Z5.

Let’s prove Hensel’s lemma.

Proof. Now we have a P R{I such that fpaq “ 0 P R{I and f 1paq is invertible. The claim is going
to be that for each m ě 1, there is a unique element an P R{In such that

an Ñ a pIq, fpanq “ 0 P R{In.

Uniqueness implies that this sequence panq is compatible, and thus gives the required element of
the completion. It will be a solution of fpXq “ 0 since it is a solution at each element of the
tower.

Let us now prove the claim. For n “ 1, a1 “ a necessarily. The proof is induction on n. Assume
that an exists and is unique. We would like to show that an`1 exists and is unique. Well, if it is
going to exist, when we reduce an`1 modulo In, we must get an or uniqueness at the n-th step
would fail.

So let a be any lifting of an to R{In`1. Then an`1 is going to be that lifting plus some ε P In{In`1.
We want

fpa` εq “ 0 P R{In`1.

But this is
fpaq ` εf 1paq

because ε2 “ 0 P R{In`1. However, this lets us solve for ε, because then necessarily ε “ ´fpaq
f 1paq P

In. Note that f 1paq P R{In`1 is invertible. If you believe this for a moment, then we have seen
that ε exists and is unique; note that ε P In because fpaq P In.

8.3.3 Lemma f 1paq P R{In`1 is invertible.

Proof. If we reduce this modulo R{I, we get the invertible element f 1paq P R{I. Note also that
the I{In`1 is a nilpotent ideal in R{In`1. So we are reduced to showing, more generally:

8.3.4 Lemma Let A be a ring,2 J a nilpotent ideal.3 Then an element x P A is invertible if and
only if its reduction in A{J is invertible.

2E.g. R{In`1.
3E.g. J “ I{In`1.
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Proof. One direction is obvious. For the converse, say x P A has an invertible image. This
implies that there is y P A such that xy ” 1 mod J . Say

xy “ 1`m,

where m P J . But 1`m is invertible because

1

1`m
“ 1´m`m2 ˘ . . . .

The expression makes sense as the high powers of m are zero. So this means that yp1`mq´1 is
the inverse to x.

This was one of many versions of Hensel’s lemma. There are many ways you can improve on a
statement. The above version says something about “nondegenerate” cases, where the derivative
is invertible. There are better versions which handle degenerate cases.

8.3.5 Example Consider x2 ´ 1; let’s try to solve this in Z2. Well, Z2 is a domain, so the only
solutions can be ˘1. But these have the same reduction in Z{2. The lifting of the solution is
non-unique.

The reason why Hensel’s lemma fails is that f 1p˘1q “ ˘2 is not invertible in Z{2. But it is not
far off. If you go to Z{4, we do get two solutions, and the derivative is at least nonzero at those
places.

One possible extension of Hensel’s lemma is to allow the derivative to be noninvertible, but
at least to bound the degree to which it is noninvertible. From this you can get interesting
information. But then you may have to look at equations R{In instead of just R{I, where n
depends on the level of noninvertibility.

Let us describe the multivariable Hensel lemma.

8.3.6 Theorem Let f1, . . . , fn be polynomials in n variables over the ring R. Let J be the
Jacobian matrix p Bfi

Bxj
q. Suppose ∆ “ det J P Rrx1, . . . , xns.

If the system tfipxq “ 0u has a solution a P pR{Iqn in R{I for some ideal I satisfying the
condition that ∆paq is invertible, then there is a unique solution of tfipxq “ 0u in R̂nI which lifts
a.

The proof is the same idea: successive approximation, using the invertibility of ∆.

The classification of complete DVRs (characteristic zero)

Let R be a complete DVR with maximal ideal m and quotient field F . We let k :“ R{m; this is
the residue field and is, e.g., the integers mod p for the p-adic integers.

The main result that we shall prove is the following:
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8.3.7 Theorem Suppose k is of characteristic zero. Then R » krrXss, the power series ring in
one variable, with respect to the usual discrete valuation on krrXss.

The “usual discrete valuation” on the power series ring is the order at zero. Incidentally, this
applies to the (non-complete) subring of CrrXss consisting of power series that converge in some
neighborhood of zero, which is the ring of germs of holomorphic functions at zero; the valuation
again measures the zero at z “ 0.

To prove it (following ?), we need to introduce another concept. A system of representatives
is a set S Ă R such that the reduction map S Ñ k is bijective. A uniformizer is a generator of
the maximal ideal m. Then:

8.3.8 Proposition If S is a system of representatives and π a uniformizer, we can write each
x P R uniquely as

x “
8
ÿ

i“0

siπ
i, where si P S.

Proof. Given x, we can find by the definitions s0 P S with x´ s0 P πR. Repeating, we can write
x´ s0 π P R as x´ s0 π ´ s1 P πR, or x´ s0 ´ s1π P π

2R. Repeat the process inductively and
note that the differences x´

řn
i“0 siπ

i P πn`1R tend to zero.

In the p-adic numbers, we can take t0, . . . , p´ 1u as a system of representatives, so we find each
p-adic integer has a unique p-adic expansion x “

ř8
i“0 xip

i for xi P t0, . . . , p´ 1u.

We now prove the first theorem.

Proof. Note that Z ´ 0 Ă R gets sent to nonzero elements in the residue field k, which is of
characteristic zero. This means that Z´ 0 Ă R consists of units, so Q Ă R.

Let L Ă R be a subfield. Then L » L Ă k; if t P k ´ L, I claim that there is L1 Ą R containing
L with t P L1.

If t is transcendental, lift it to T P R; then T is transcendental over L and is invertible in R, so
we can take L1 :“ LpT q.

If the minimal polynomial of t over L is fpXq P krXs, we have fptq “ 0. Moreover, f 1ptq ‰ 0
because these fields are of characteristic zero and all extensions are separable. So lift fpXq to
fpXq P RrXs; by Hensel lift t to u P R with fpuq “ 0. Then f is irreducible in LrXs (otherwise
we could reduce a factoring to get one of f P LrXs), so Lrus “ LrXs{pfpXqq, which is a field L1.

So if K Ă R is the maximal subfield (use Zorn’s lemma), this is our system of representatives by
the above argument.

8.4. Henselian rings

There is a substitute for completeness that captures the essential properties: Henselianness.
A ring is Henselian if it satisfies Hensel’s lemma, more or less. We mostly follow ? in the
treatment.
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Semilocal rings

To start with, we shall need a few preliminaries on semi-local rings.

Fix a local ring A with maximal ideal m Ă A. Fix a finite A-algebra B; by definition, B is a
finitely generated A-module.

8.4.1 Proposition Hypotheses as above, the maximal ideals of B are in bijection with the prime
ideals of B containing mB, or equivalently the prime ideals of B “ B bA A{m.

Proof. We have to show that every maximal ideal of B contains mB. Suppose n Ă B was
maximal and was otherwise. Then by Nakayama’s lemma, n`mB ‰ B is a proper ideal strictly
containing n; this contradicts maximality.

It is now clear that the maximal ideals of B are in bijection naturally with those of B. However,
B is an artinian ring, as it is finite over the field A{m, so every prime ideal in it is maximal.

The next thing to observe is that B, as an artinian ring, decomposes as a product of local
artinian rings. In fact, this decomposition is unique. However, this does not mean that B itself
is a product of local rings (B is not necessarily artinian). Nonetheless, if such a splitting exists,
it is necessarily unique.

8.4.2 Proposition Suppose R “
ś

Ri is a finite product of local rings Ri. Then the Ri are
unique.

Proof. To give a decomposition R “
ś

Ri is equivalent to giving idempotents ei. If we had
another decomposition R “

ś

Sj , then we would have new idempotents fj . The image of each
fj in each Ri is either zero or one as a local ring has no nontrivial idempotents. From this, one
can easily deduce that the fj ’s are sums of the ei’s, and if the Sj are local, one sees that the Sj ’s
are just the Ri’s permuted.

In fact, there is a canonical way of determining the factors Ri. A finite product of local rings as
above is semi-local ; the maximal ideals mi are finite in number, and, furthermore, the canonical
map

RÑ
ź

Rmi

is an isomorphism.

In general, this splitting fails for semi-local rings, and in particular for rings finite over a local
ring. We have seen that this splitting nonetheless works for rings finite over a field.

To recapitulate, we can give a criterion for when a semi-local ring splits as above.

8.4.3 Proposition Let R be a semilocal ring with maximal ideals m1, . . . ,mk. Then R splits
into local factors if and only if, for each i, there is an idempotent ei P

Ş

j‰imj ´ mi. Then the
rings Rei are local and R “

ś

Rei.
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Proof. If R splits into local factors, then clearly we can find such idempotents. Conversely,
suppose given the ei. Then for each i ‰ j, eiej is an idempotent eij that belongs to all the
maximal idealsmk. So it is in the Jacobson radical. But then 1´eij is invertible, so eijp1´eijq “ 0
implies that eij “ 0.

It follows that the teiu are orthogonal idempotents. To see that R “
ś

Rei as rings, we now
need only to see that the teiu form a complete set; that is,

ř

ei “ 1. But the sum
ř

ei is an
idempotent itself since the ei are mutually orthogonal. Moreover, the sum

ř

ei belongs to no mi,
so it is invertible, thus equal to 1. The claim is now clear, since each Rei is local by assumption.

Note that if we can decompose a semilocal ring into a product of local rings, then we can go no
further in a sense—it is easy to check that a local ring has no nontrivial idempotents.

Henselian rings

8.4.4 Definition A local ring pR,mq is henselian if every finite R-algebra is a product of local
R-algebras.

It is clear from the remarks of the previous section that the decomposition as a product of local
algebras is unique. Furthermore, we have already seen:

8.4.5 Proposition A field is henselian.

Proof. Indeed, then any finite algebra over a field is artinian (as a finite-dimensional vector
space).

This result was essentially a corollary of basic facts about artinian rings. In general, though,
henselian rings are very far from artinian. For instance, we will see that every complete local
ring is henselian.

We continue with a couple of further easy claims.

8.4.6 Proposition A local ring that is finite over a henselian ring is henselian.

Proof. Indeed, if R is a henselian local ring and S a finite R-algebra, then every finite S-algebra
is a finite R-algebra, and thus splits into a product of local rings.

We have seen that henselianness of a local ring pR,mq with residue field k is equivalent to the
condition that every finite R-algebra S splits into a product of local rings. Since S bR k always
splits into a product of local rings, and this splitting is unique, we see that if a splitting of S
exists, it necessarily lifts the splitting of S bR k.

Since a “splitting” is the same thing (by proposition 8.4.3) as a complete collection of idempotents,
one for each maximal ideal, we are going to characterize henselian rings by the property that
one can lift idempotents from the residue ring.
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8.4.7 Definition A local ring pR,mq satisfies lifting idempotents if for every finite R-algebra
S, the canonical (reduction) map between idempotents of S and those of S{mS is surjective.

Recall that there is a functor Idem from rings to sets that sends each ring to its collection of
idempotents. So the claim is that the natural map IdempSq Ñ IdempS{mSq is a surjection.

In fact, in this case, we shall see that the map IdempSq Ñ IdempS{mSq is even injective.

8.4.8 Proposition The map from idempotents of S to those of S{mS is always injective.

We shall not even use the fact that S is a finite R-algebra here.

Proof. Suppose e, e1 P S are idempotents whose images in S{mS are the same. Then

pe´ e1q3 “ e3 ´ 3e2e1 ` 3e12e´ e13 “ e3 ´ e13 “ e´ e.

Thus if we let x “ e´ e1, we have x3 ´ x “ 0, and x belongs to mS. Thus

xp1´ x2q “ 0,

and 1´ x2 is invertible in S (because x2 belongs to the Jacobson radical of S). Thus x “ 0 and
e “ e1.

With this, we now want a characterization of henselian rings in terms of the lifting idempotents
property.

8.4.9 Proposition Suppose pR,mq satisfies lifting idempotents, and let S be a finite R-algebra.
Then given orthogonal idempotents e1, . . . , en of S{mS, there are mutually orthogonal lifts teiu P
S.

The point is that we can make the lifts mutually orthogonal. (Recall that idempotents are
orthogonal if their product is zero.)

Proof. Indeed, by assumption we can get lifts teiu which are idempotent; we need to show that
they are mutually orthogonal. But in any case eiej for i ‰ j is an idempotent, which lies in
mS Ă S and thus in the Jacobson radical. It follows that eiej “ 0, proving the orthogonality.

8.4.10 Proposition A local ring is henselian if and only if it satisfies lifting idempotents.

Proof. Suppose first pR,mq satisfies lifting idempotents. Let S be any finite R-algebra. Then
S{mS is artinian, so factors as a product of local artinian rings

ś

Si. This factorization cor-
responds to idempotents ei P S{mS. We can lift these to orthogonal idempotents ei P S by
proposition 8.4.9. These idempotents correspond to a decomposition

S “
ź

Si

which lifts the decomposition S “
ś

Si. Since the Si are local, so are the Si. Thus R is henselian.

Conversely, suppose R henselian. Let S be a finite R-algebra and let e P S “ S{mS be idempo-
tent. Since S is a product of local rings, e is a finite sum of the primitive idempotents in S. By
henselianness, each of these primitive idempotents lifts to S, so e does too.
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8.4.11 Proposition Let R be a local ring and I Ă R an ideal consisting of nilpotent elements.
Then R is henselian if and only if R{I is.

Proof. One direction is clear by proposition 8.4.6. For the other, suppose R{I is henselian. Let
m Ă R be the maximal ideal. Let S be any finite R-algebra; we have to show surjectivity of

IdempSq Ñ IdempS{mSq.

However, we are given that, by henselianness of S{I,

IdempS{ISq Ñ IdempS{mSq

is a surjection. Now we need only observe that IdempSq Ñ IdempS{ISq is a bijection. This
follows because idempotents in S (resp. S{IS) correspond to disconnections of SpecS (resp.
SpecS{IS) by ??. However, as I consists of nilpotents, SpecS and SpecS{IS are homeomorphic
naturally.

Hensel’s lemma

We now want to show that Hensel’s lemma is essentially what characterizes henselian rings,
which explains the name. Throughout, we use the symbol to denote reduction mod an ideal
(usually m or m times another ring).

8.4.12 Proposition Let pR,mq be a local ring with residue field k. Then R is henselian if and
only if, whenever a monic polynomial P P RrXs satisfies

P “ QR P krXs,

for some relatively prime polynomials Q,R P krXs, then the factorization lifts to a factorization

P “ QR P RrXs.

This notation should be improved.

Proof. Suppose R henselian and suppose P is a polynomial whose reduction admits such a
factorization. Consider the finite R-algebra S “ RrXs{pP q; since S “ S{mS can be represented
as krXs{pP q, it admits a splitting into components

S “ krXs{pQq ˆ krXs{pRq.

Since R is henselian, this splitting lifts to S, and we get a splitting

S “ S1 ˆ S2.

Here S1b k » krXs{pQq and S2b k » krXs{pRq. The image of X in S1b k is annihilated by Q,
and the image of X in S2 b k is annihilated by R.

8.4.13 Lemma Suppose R is a local ring, S a finite R-algebra generated by an element x P S.
Suppose the image x P S “ S bR k satisfies a monic polynomial equation upxq “ 0. Then there
is a monic polynomial U lifting u such that Upxq “ 0 (in S).
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Proof. Let x P S be the generating element that satisfies upxq “ 0, and let x P S be a lift of
it. Suppose u has rank n. Then 1, x, . . . , xn´1 spans S by Nakayama’s lemma. Thus there is a
monic polynomial U of degree n that annihilates x; the reduction must be a multiple of u, hence
u.

Returning to the proposition, we see that the image of the generator X in S1, S2 must satisfy
polynomial equations Q,R that lift Q,R. Thus X satisfies QR in SrXs{pP q; in other words, QR
is a multiple of P , hence equal to P . Thus we have lifted the factorization P “ QR. This proves
that factorizations can be lifted.

Now, let us suppose that factorizations can always be lifted for finite R-algebras. We are now
going to show that R satisfies lifting idempotents. Suppose S is a finite R-algebra, e a primitive
idempotent in S. We can lift e to some element e1 P S. Since e1 is contained in a finite R-algebra
that contains R, we know that e1 is integral over R, so that we can find a map RrXs{pP q Ñ S
sending the generator X ÞÑ e1, for some polynomial P . We are going to use the fact that
RrXs{pP q splits to lift the idempotent e.

Let m1, . . . ,mk be the maximal ideals of S. These equivalently correspond to the points of SpecS.
We know that e1 belongs precisely to one of the mi (because a primitive idempotent in S is one
on one maximal ideal and zero elsewhere). Call this m1, say.

We have a map SpecS Ñ SpecRrXs{pP q coming from the map φ : RrXs{pP q Ñ S. We claim
that the image of m1 is different from the images of the mj , j ą 1. Indeed, b P mj precisely for
j ą 1, so the image of m1 does not contain X. However, the image of mj , j ą 1 does contain X.

Consider a primitive idempotent for RrXs{pP q corresponding to φ´1pm1q, say f . Then f belongs
to every other maximal ideal of RrXs{pP q but not to φ´1pm1q. Thus φpfq, which is idempotent,
belongs to m1 but not to any other maximal ideal of S. It follows that φpfq must lift e, and we
have completed the proof.

8.4.14 Corollary If every monogenic,4 finitely presented and finite R-algebra is a product of
local rings, then R is henselian.

Proof. Indeed, the proof of the above result shows that if RrXs{pP q splits for every monic P ,
then R is henselian.

From the above result, we can get a quick example of a non-complete henselian ring:

8.4.15 Example The integral closure of the localization Zppq in the ring Zp of p-adic integers is
a henselian ring. Indeed, it is first of all a discrete valuation ring (as we can restrict the valuation
on Zp; note that an element of Qp which is algebraic over Q and has norm at most one is integral
over Zppq). This follows from the criterion of proposition 8.4.12. If a monic polynomial P factors
in the residue field, then it factors in Zp, and if P has coefficients integral over Zppq, so does any
factor.

4That is, generated by one element.
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III.8. Completions 8.4. Henselian rings

8.4.16 Example If k is a complete field with a nontrivial absolute value andX is any topological
space, we can consider for each open subset U Ă X the ring ApUq of continuous maps U Ñ k.
As U ranges over the open subsets containing an element x, the colimit lim

ÝÑ
ApUq (the “local

ring” at x) is a local henselian ring. See ?.

8.4.17 Proposition Let pRi,miq be an inductive system of local rings and local homomorphisms.
If each Ri is henselian, then the colimit lim

ÝÑ
Ri is henselian too.

Proof. We already know (??) that the colimit is a local ring, and that the maximal ideal of
lim
ÝÑ

Ri is the colimit lim
ÝÑ

mi. Finally, given any monic polynomial in lim
ÝÑ

Ri with a factoring in
the residue field, the polynomial and the factoring come from some finite Ri; the henselianness
of Ri allows us to lift the factoring.

Example: Puiseux’s theorem

Using the machinery developed here, we are going to prove:

8.4.18 Theorem Let K be an algebraically closed field of characteristic zero. Then any finite
extension of the field of meromorphic power series5 KppT qq is of the form KppT 1{nqq for some
n.

In particular, we see that any finite extension of KppT qq is abelian, even cyclic. The idea is going
to be to look at the integral closure of KrrT ss in the finite extension, argue that it itself is a
DVR, and then refine an “approximate” root in this DVR of the equation αn “ T to an exact
one.

Proof. Let R “ KrrT ss be the power series ring; it is a complete, and thus henselian, DVR. Let
L be a finite extension of KppT qq of degree n and S the integral closure of R in S, which we
know to be a DVR. This is a finite R-algebra (cf. ??), so S is a product of local domains. Since
S is a domain, it is itself local. It is easy to see that if n Ă S is the maximal ideal, then S is
n-adically complete (for instance because the maximal ideal of R is a power of n, and S is a free
R-module).

Let m Ă R be the maximal ideal. We have the formula ef “ n, because there is only one prime
of S lying above m. But f “ 1 as the residue field of R is algebraically closed. Hence e “ n, and
the extension is totally ramified.

Let α P S be a uniformizer; we know that α is congruent, modulo n2, to something in R as the
residue extension is trivial. Then αn is congruent to something in R, which must be a uniformizer
by looking at the valuation. By rescaling, we may assume

αn ” T mod n2.

Since the polynomial Xn ´ T is separable in the residue field, we can (using Hensel’s lemma)
refine α to a new α1 ” α mod n2 with

α1n “ T.

Then α1 is also a uniformizer at n (as α1 ” α mod n2). It follows that Rrα1s must in fact be
equal to S,6 and thus L is equal to KppT qqpα1q “ KppT 1{nqq.

5That is, the quotient field of KrrT ss.
6??; a citation here is needed.
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III.9. Regularity, differentials, and
smoothness

In this chapter, we shall introduce two notions. First, we shall discuss regular local rings. On
varieties over an algebraically closed field, regularity corresponds to nonsingularity of the variety
at that point. (Over non-algebraically closed fields, the connection is more subtle.) This will be a
continuation of the local algebra done earlier in the chapter chapter III.7 on dimension theory.

We shall next introduce the module of Kähler differentials of a morphism of rings AÑ B, which
itself can measure smoothness (though this connection will not be fully elucidated until a later
chapter). The module of Kähler differentials is the algebraic analog of the cotangent bundle to
a manifold, and we will show that for an affine ring, it can be computed very explicitly. For a
smooth variety, we will see that this module is projective, and hence a good candidate of a vector
bundle.

Despite the title, we shall actually wait a few chapters before introducing the general theory of
smooth morphisms.

9.1. Regular local rings

We shall start by introducing the concept of a regular local ring, which is one where the embedding
dimension and Krull dimension coincide.

Regular local rings

Let A be a local noetherian ring with maximal ideal m Ă A and residue field k “ A{m. Endow
A with the m-adic topology, so that there is a natural graded k-algebra grpAq “

À

mi{mi`1.
This is a finitely generated k-algebra; indeed, a system of generators for the ideal m (considered
as elements of mm2) generates grpAq over k. As a result, we have a natural surjective map of
graded k-algebras.

Skm{m
2 Ñ grpAq. (9.1.1)

Here S denotes the symmetric algebra.

9.1.1 Definition The local ring pA,mq is called regular if the above map is an isomorphism,
or equivalently if the embedding dimension of A is equal to the Krull dimension.
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III.9. Regularity, differentials, and smoothness 9.1. Regular local rings

We want to show the “equivalently” in the definition is justified. One direction is easy: if (9.1.1) is
an isomorphism, then grpAq is a polynomial ring with dimk m{m

2 generators. But the dimension
of A was defined in terms of the growth of dimk m

i{mi`1 “ pgrAqi. For a polynomial ring
on r generators, however, the ith graded piece has dimension a degree-r polynomial in i (easy
verification). As a result, we get the claim in one direction.

However, we still have to show that if the embedding dimension equals the Krull dimension, then
(9.1.1) is an isomorphism. This will follow from the next lemma.

9.1.2 Lemma If the inequality
dimpAq ď dimkpm{m

2q

is an equality, then (9.1.1) is an isomorphism.

Proof. Suppose (9.1.1) is not an isomorphism. Then there is an element f P Skm{m2 which is not
zero and which maps to zero in grpAq; we can assume f homogeneous, since the map of graded
rings is graded.

Now the claim is that if krx1, . . . , xns is a polynomial ring and f ‰ 0 a homogeneous element, then
the Hilbert polynomial of krx1, . . . , xns{pfq is of degree less than n. This will easily imply the
lemma, since (9.1.1) is always a surjection, and because Skm{m2’s Hilbert polynomial is of degree
dimk m{m

2. Now if deg f “ d, then the dimension of pkrx1, . . . , xns{fqi (where i is a degree) is
dimpkrx1, . . . , xnsqi “ dimpkrx1, . . . , xnsqi´d. It follows that if P is the Hilbert polynomial of the
polynomial ring, that of the quotient is P p¨q ´ P p¨ ´ dq, which has a strictly smaller degree.

We now would like to establish a few properties of regular local rings.

Let A be a local ring and Â its completion. Then dimpAq “ dimpÂq, because A{mn “ Â{m̂n, so
the Hilbert functions are the same. Similarly, grpAq “ grpÂq. However, by Â is also a local ring.
So applying the above lemma, we see:

9.1.3 Proposition A noetherian local ring A is regular if and only if its completion Â is regular.

Regular local rings are well-behaved. We are eventually going to show that any regular local ring
is in fact a unique factorization domain. Right now, we start with a much simpler claim:

9.1.4 Proposition A regular local ring is a domain.

This is a formal consequence of the fact that grpAq is a domain and the filtration on A is
Hausdorff.

Proof. Let a, b ‰ 0. Note that
Ş

mn “ 0 by the Krull intersection theorem (theorem 3.3.4), so
there are k1 and k2 such that a P mk1 ´mk1`1 and b P mk2 ´mk2`1. Let a, b be the images of a, b
in grpAq (in degrees k1, k2); neither is zero. But then āb̄ ‰ 0 P grpAq, because grpAq “ Spm{m2q

is a domain. So ab ‰ 0, as desired.

9.1.5 Remark (exercise) Prove more generally that if A is a filtered ring with a descending
filtration of ideals I1 Ą I2 Ą . . . such that

Ş

Ik “ 0, and such that the associated graded algebra
grpAq is a domain, then A is itself a domain.
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III.9. Regularity, differentials, and smoothness 9.1. Regular local rings

Later we will prove the aforementioned fact that a regular local ring is a factorial ring. One
consequence of that will be the following algebro-geometric fact. Let X “ SpecCrX1, . . . , Xns{I
for some ideal I; so X is basically a subset of Cn plus some nonclosed points. Then if X is
smooth, we find that CrX1, . . . , Xns{I is locally factorial. Indeed, smoothness implies regularity,
hence local factoriality. The whole apparatus of Weil and Cartier divisors now kicks in.

9.1.6 Remark (exercise) Nevertheless, it is possible to prove directly that a regular local ring
pA,mq is integrally closed. To do this, we shall use the fact that the associated graded grpAq is
integrally closed (as a polynomial ring). Here is the argument:

1. Let C be a noetherian domain with quotient field K. Then C is integrally closed if and
only if for every x P K such that there exists d P A with dxn P A for all n, we have x P A.
(In general, this fails for C non-noetherian; then this condition is called being completely
integrally closed.)

2. Let C be a noetherian domain. Suppose on C there is an exhaustive filtration tCvu (i.e.
such that

Ş

Cv “ 0) and such that grpCq is a completely integrally closed domain. Suppose
further that every principal ideal is closed in the topology on C (i.e., for each principal
ideal I, we have I “

Ş

I ` Cv.) Then C is integrally closed too. Indeed:

a) Suppose b{a, a, b P C is such that pb{aqn is contained in a finitely generated submodule
of K, say d´1A for some d P A. We need to show that b P Ca ` Cv for all v. Write
b “ xa` r for r P Cw ´ Cw`1. We will show that “w” can be improved to w ` 1 (by
changing x). To do this, it suffices to write r P Ca` Cw`1.

b) By hypothesis, dbn P Can for all n. Consequently drn P Can for all n.

c) Let r be the image of r in grpCq (in some possibly positive homogeneous degree;
choose the unique one such that the image of r is defined and not zero). Choosing
d, a similarly, we get drn lies in the ideal of an for all n. This implies r is a multiple
of a. Deduce that r P Ca` Cw`1.

3. The hypotheses of the previous part apply to a regular local ring, which is thus integrally
closed.

The essential part of this argument is explained in ?, ch. 5, §1.4. The application to regular
local rings is mentioned in ?, vol. IV, §16.

We now give a couple of easy examples. More interesting examples will come in the future. Let
R be a noetherian local ring with maximal ideal m and residue field k.

9.1.7 Example If dimpRq “ 0, i.e. R is artinian, then R is regular iff the maximal ideal is zero,
i.e. if R is a field. Indeed, the requirement for regularity is that dimk m{m

2 “ 0, or m “ 0 (by
Nakayama). This implies that R is a field.

Recall that dimk m{m
2 is the size of the minimal set of generators of the ideal m, by Nakayama’s

lemma. As a result, a local ring is regular if and only if the maximal ideal has a set of generators
of the appropriate size. This is a refinement of the above remarks.
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9.1.8 Example If dimpRq “ 1, then R is regular iff the maximal ideal m is principal (by the
preceding observation). The claim is that this happens if and only if R is a DVR. Certainly
a DVR is regular, so only the other direction is interesting. But it is easy to see that a local
domain whose maximal ideal is principal is a DVR (i.e. define the valuation of x in terms of the
minimal i such that x R mi).

We find:

9.1.9 Proposition A one-dimensional regular local ring is the same thing as a DVR.

Finally, we extend the notion to general noetherian rings:

9.1.10 Definition A general noetherian ring is called regular if every localization at a maximal
ideal is a regular local ring.

In fact, it turns out that if a noetherian ring is regular, then so are all its localizations. This
fact relies on a fact, to be proved in the distant future, that the localization of a regular local
ring at a prime ideal is regular.

Quotients of regular local rings

We now study quotients of regular local rings. In general, if pA,mq is a regular local ring and
f1, . . . , fk P m, the quotient A{pf1, . . . , fkq is far from being regular. For instance, if k is a
field and A is krxspxq (geometrically, this is the local ring of the affine line at the origin), then
A{x2 “ krεs{ε2 is not a regular local ring; it is not even a domain. In fact, the local ring of any
variety at a point is a quotient of a regular local ring, and this is because any variety locally sits
inside affine space.1

9.1.11 Proposition If pA,mAq is a regular local ring, and f P m is such that f P mA ´ m2
A.

Then A1 “ A{fA is also regular of dimension dimpAq ´ 1.

Proof. First let us show the dimension part of the statement. We know from proposition 7.2.2
that the dimension has to drop precisely by one (since f is a non-zero-divisor on A by proposi-
tion 9.1.4).

Now we want to show that A1 “ A{fA is regular. Let mA1 “ m{fA be the maximal ideal of A1.
Then we should show that dimA1{mA1

pmA1{m
2
A1q “ dimpA1q, and it suffices to see that

dimA1{mA1
pmA1{m

2
A1q ď dimA{mApmA{m

2
Aq ´ 1. (9.1.2)

In other words, we have to show that the embedding dimension drops by one.

Note that the residue fields k “ A{mA, A
1{mA1 are naturally isomorphic. To see (9.1.2), we use

the natural surjection of k-vector spaces

mA{m
2
A Ñ mA1{m

2
A1 .

Since there is a nontrivial kernel (the class of f is in the kernel), we obtain the inequality (9.1.2).
1Incidentally, the condition that a noetherian local ring pA,mq is a quotient of a regular local ring pB, nq imposes
conditions on A: for instance, it has to be catenary. As a result, one can obtain examples of local rings which
cannot be expressed as quotients in this way.
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9.1.12 Corollary Consider elements f1, . . . fm in m such that f̄1, . . . f̄m P m{m2 are linearly
independent. Then A{pf1, . . . fmq is regular with dimpA{pf1, . . . fmqq “ dimpAq ´m

Proof. This follows from proposition 9.1.11 by induction. One just needs to check that in A1 “

A{pf1q, m1 “ m{pf1q, we have that f2, . . . fm are still linearly independent in m1{m
2
1. This is

easy to check.

9.1.13 Remark In fact, note in the above result that each fi is a non-zero-divisor onA{pf1, . . . , fi´1q,
because a regular local ring is a domain. We will later say that the tfiu form a regular sequence.

We can now obtain a full characterization of when a quotient of a regular local ring is still
regular; it essentially states that the above situation is the only possible case. Geometrically, the
intuition is that we are analyzing when a subvariety of a smooth variety is smooth; the answer
is when the subvariety is cut out by functions with linearly independent images in the maximal
ideal mod its square.

This corresponds to the following fact: ifM is a smooth manifold and f1, . . . , fm smooth functions
such that the gradients tdfiu are everywhere independent, then the common zero locus of the
tfiu is a smooth submanifold of M , and conversely every smooth submanifold of M locally looks
like that.

9.1.14 Theorem Let A0 be a regular local ring of dimension n, and let I Ă A0 be a proper
ideal. Let A “ A0{I. Then the following are equivalent

1. A is regular.

2. There are elements f1, . . . fm P I such that f̄1, . . . f̄m are linearly independent in mA0{m
2
A0

where m “ n´ dimpAq such that pf1, . . . fmq “ I.

Proof. (2) ñ (1) This is exactly the statement of corollary 9.1.12.

(1) ñ (2) Let k be the residue field of A (or A0, since I is contained in the maximal ideal). We
see that there is an exact sequence

I bA0 k Ñ mA0{m
2
A0
Ñ mA{m

2
A Ñ 0.

We can obtain this from the exact sequence I Ñ A0 Ñ AÑ 0 by tensoring with k.

By assumption A0 and A are regular local, so

dimA0{mA0
pmA0{m

2
A0
q “ dimpA0q “ n

and
dimA0{mA0

pmA{m
2
Aq “ dimpAq

so the image of I bA0 k in mA0{m
2
A0

has dimension m “ n ´ dimpAq. Let f̄1, . . . f̄m be a set of
linearly independent generators of the image of IbA0 k in mA0{m

2
A0

, and let f1, . . . fm be liftings
to I. The claim is that the tfiu generate I.
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Let I 1 Ă A0 be the ideal generated by f1, . . . fm and consider A1 “ A0{I
1. Then by corol-

lary 9.1.12, we know that A1 is a regular local ring with dimension n´m “ dimpAq. Also I 1 Ă I
so we have an exact sequence

0 Ñ I{I 1 Ñ A1 Ñ AÑ 0

But proposition 9.1.4, this means that A1 is a domain, and we have just seen that it has the same
dimension as A. Now if I{I 1 ‰ 0, then A would be a proper quotient of A1, and hence of a smaller
dimension (because quotienting by a non-zero-divisor drops the dimension). This contradiction
shows that I “ I 1, which means that I is generated by the sequence tfiu as claimed.

So the reason that krxspxq{px2q was not regular is that x2 vanishes to too high an order: it lies
in the square of the maximal ideal.

We can motivate the results above further with:

9.1.15 Definition In a regular local ring pR,mq, a regular system of parameters is a mini-
mal system of generators for m, i.e. elements of m that project to a basis of m{m2.

So a quotient of a regular local ring is regular if and only if the ideal is generated by a portion
of a system of parameters.

Regularity and smoothness

We now want to connect the intuition (described in the past) that, in the algebro-geometric
context, regularity of a local ring corresponds to smoothness of the associated variety (at that
point).

Namely, let R be be the (reduced) coordinate ring Crx1, . . . , xns{I of an algebraic variety. Let
m be a maximal ideal corresponding to the origin, so generated by px1, . . . , xnq. Suppose I Ă m,
which is to say the origin belongs to the corresponding variety. Then MaxSpecR Ă SpecR is the
corresponding subvariety of Cn, which is what we apply the intuition to. Note that 0 is in this
subvariety.

Then we claim:

9.1.16 Proposition Rm is regular iff MaxSpecR is a smooth submanifold near 0.

Proof. We will show that regularity implies smoothness. The other direction is omitted for now.

Note that S “ Crx1, . . . , xnsm is clearly a regular local ring of dimension n (Cn is smooth,
intuitively), and Rm is the quotient S{I. By theorem 9.1.14, we have a good criterion for when
Rm is regular. Namely, it is regular if and only if I is generated by elements (without loss of
generality, polynomials) f1, . . . , fk whose images in the quotient mS{m

2
S (where we write mS to

emphasize that this is the maximal ideal of S).

But we know that this “cotangent space” corresponds to cotangent vectors in Cn, and in partic-
ular, we can say the following. There are elements ε1, . . . , εn P mS{m

2
S that form a basis for this
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space (namely, the images of x1, . . . , xn P mS). If f is a polynomial vanishing at the origin, then
the image of f in mS{m

2
S takes only the linear terms—that is, it can be identified with

ÿ Bf

Bxi
|0εi,

which is essentially the gradient of f .

It follows that Rm is regular if and only if I is generated (in Rm, so we should really say IRm) by
a family of polynomials vanishing at zero with linearly independent gradients, or if the variety
is cut out by the vanishing of such a family of polynomials. However, we know that this implies
that the variety is locally a smooth manifold (by the inverse function theorem).

The other direction is a bit trickier, and will require a bit of “descent.” For now, we omit it. But
we have shown something in both directions: the ring Rm is regular if and only if I is generated
locally (i.e., in Rm by a family of polynomials with linearly independent gradients). Hartshorne
uses this as the definition of smoothness in ?, and thus obtains the result that a variety over an
algebraically closed field (not necessarily C!) is smooth if and only if its local rings are regular.

9.1.17 Remark (Warning) This argument proves that if R » Krx1, . . . , xns{I for K alge-
braically closed, then Rm is regular local for some maximal ideal m if the corresponding algebraic
variety is smooth at the corresponding point. We proved this in the special case K “ C and m
the ideal of the origin.

If K is not algebraically closed, we can’t assume that any maximal ideal corresponds to a point
in the usual sense. Moreover, if K is not perfect, regularity does not imply smoothness. We have
not quite defined smoothness, but here’s a definition: smoothness means that the local ring you
get by base-changing K to the algebraic closure is regular. So what this means is that regularity
of affine rings over a field K is not preserved under base-change from K to K.

9.1.18 Example Let K be non-perfect of characteristic p. Let a not have a pth root. Consider
Krxs{pxp ´ aq. This is a regular local ring of dimension zero, i.e. is a field. If K is replaced
by its algebraic closure, then we get Krxs{pxp ´ aq, which is Krxs{px ´ a1{pqp. This is still
zero-dimensional but is not a field. Over the algebraic closure, the ring fails to be regular.

Regular local rings look alike

So, as we’ve seen, regularity corresponds to smoothness. Complex analytically, all smooth points
are the same though—they’re locally Cn. Manifolds have no local invariants. We’d like an
algebraic version of this. The vague claim is that all regular local rings of the same dimension
“look alike.” We have already seen one instance of this phenomenon: a regular local ring’s
associated graded is uniquely determined by its dimension (as a polynomial ring). This was in
fact how we defined the notion, in part. Now we would like to transfer this to statements about
things closer to R.

Let pR,mq be a regular local ring. Assume now for simplicity that the residue field of
k “ R{m maps back into R. In other words, R contains a copy of its residue field, or there
is a section of R Ñ k. This is always true in the case we use for geometric intuition—complex
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algebraic geometry—as the residue field at any maximal ideal is just C (by the Nullstellensatz),
and one works with C-algebras.

Choose generators y1, . . . , yn P m where n “ dimk m{m
2 is the embedding dimension. We get a

map in the other direction
φ : krY1, . . . , Yns Ñ R, Yi ÞÑ yi,

thanks to the section k Ñ R. This map from the polynomial ring is not an isomorphism (the
polynomial ring is not local), but if we let m Ă R be the maximal ideal and n “ py1, . . . , ynq, then
the map on associated gradeds is an isomorphism (by definition). That is, φ : nt{nt`1 Ñ mt{mt`1

is an isomorphism for each t P Zě0.

Consequently, φ induces an isomorphism

krY1, . . . , Yns{n
t » R{mt

for all t, because it is an isomorphism on the associated graded level. So this in turn is equivalent,
upon taking inverse limits, to the statement that φ induces an isomorphism

krrY1, . . . , Ynss Ñ R̂

at the level of completions.

We can now conclude:

9.1.19 Theorem Let R be a regular local ring of dimension n. Suppose R contains a copy of
its residue field k. Then, as k-algebras, R̂ » krrY1, . . . , Ymss.

Finally:

9.1.20 Corollary A complete noetherian regular local ring that contains a copy of its residue
field k is a power series ring over k.

It now makes sense to say:

All complete regular local rings of the same dimension look alike. (More
precisely, this is true when R is assumed to contain a copy of its residue field, but
this is not a strong assumption in practice. One can show that this will be satisfied
if R contains any field.2)

We won’t get into the precise statement of the general structure theorem, when the ring is not
assumed to contain its residue field, but a safe intuition to take away from this is the above
bolded statement. Note that “looking alike” requires the completeness, because completions are
intuitively like taking analytically local invariants (while localization corresponds to working
Zariski locally, which is much weaker).

2This is not always satisfied—take the p-adic integers, for instance.
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9.2. Kähler differentials

Derivations and Kähler differentials

Let R be a ring with the maximal ideal m. Then there is a R{m-vector space m{m2. This is what
we would like to think of as the “cotangent space” of SpecR at m. Intuitively, the cotangent
space is what you get by differentiating functions which vanish at the point, but differentiating
functions that vanish twice should give zero. This is the moral justification. (Recall that on
a smooth manifold M , if Op is the local ring of smooth functions defined in a neighborhood
of p P M , and mp Ă Op is the maximal ideal consisting of “germs” vanishing at p, then the
cotangent space T ˚pM is naturally mp{m

2
p.)

A goal might be to generalize this. What if you wanted to think about all points at once? We’d
like to describe the “cotangent bundle” to SpecR in an analogous way. Let’s try and describe
what would be a section to this cotangent bundle. A section of Ω˚SpecR should be the same thing
as a “1-form” on SpecR. We don’t know what a 1-form is yet, but at least we can give some
examples. If f P R, then f is a “function” on SpecR, and its “differential” should be a 1-form.
So there should be a “df ” which should be a 1-form. This is analogous to the fact that if g is a
real-valued function on the smooth manifold M , then there is a 1-form dg.

We should expect the rules dpfgq “ df ` dg and dpfgq “ fpdgq ` gpdfq as the usual rules of
differentiation. For this to make sense, 1-forms should be an R-module. Before defining the
appropriate object, we start with:

9.2.1 Definition Let R be a commutative ring, M an R-module. A derivation from R to M
is a map D : RÑM such that the two identities below hold:

Dpfgq “ Df `Dg (9.2.1)
Dpfgq “ fpDgq ` gpDfq. (9.2.2)

These equations make sense as M is an R-module.

Whatever a 1-form on SpecR might be, there should be a derivation

d : RÑ t1–formsu .

An idea would be to define the 1-forms or the “cotangent bundle” ΩR by a universal property.
It should be universal among R-modules with a derivation.

To make this precise:

9.2.2 Proposition There is an R-module ΩR and a derivation duniv : R Ñ ΩR satisfying the
following universal property. For all R-modules M , there is a canonical isomorphism

homRpΩR,Mq » DerpR,Mq

given by composing the universal duniv with a map ΩR ÑM .

420



III.9. Regularity, differentials, and smoothness 9.2. Kähler differentials

That is, any derivation d : R Ñ M factors through this universal derivation in a unique way.
Given the derivation d : R Ñ M , we can make the following diagram commutative in a unique
way such that ΩR ÑM is a morphism of R-modules:

R
d //

��

M

ΩR

duniv

==

9.2.3 Definition ΩR is called the module of Kähler differentials of R.

Let us now verify this proposition.

Proof. This is like the verification of the tensor product. Namely, build a free gadget and quotient
out to enforce the desired relations.

Let ΩR be the quotient of the free R-module generated by elements da for a P R by enforcing
the relations

1. dpa` bq “ da` db.

2. dpabq “ adb` bda.

By construction, the map a Ñ da is a derivation R Ñ ΩR. It is easy to see that it is universal.
Given a derivation d1 : RÑM , we get a map ΩR ÑM sending daÑ d1paq, a P R.

The philosophy of Grothendieck says that we should do this, as with everything, in a relative
context. Indeed, we are going to need a slight variant, for the case of a morphism of rings.

Relative differentials

On a smooth manifold M , the derivation d from smooth functions to 1-forms satisfies an ad-
ditional property: it maps the constant functions to zero. This is the motivation for the next
definition:

9.2.4 Definition Let f : R Ñ R1 be a ring-homomorphism. Let M be an R1-module. A
derivation d : R1 Ñ M is R-linear if dpfpaqq “ 0, a P R. This is equivalent to saying that d is
an R-homomorphism by the Leibnitz rule.

Now we want to construct an analog of the “cotangent bundle” taking into account linearity.

9.2.5 Proposition Let R1 be an R-algebra. Then there is a universal R-linear derivation R1 duniv
Ñ

ΩR1{R.

Proof. Use the same construction as in the absolute case. We get a map R1 Ñ ΩR1 as before.
This is not generally R-linear, so one has to quotient out by the images of dpfprqq, r P R. In other
words, ΩR1{R is the quotient of the free R1-module on symbols tdr1, r1 P R1u with the relations:

1. dpr11r12q “ r11dpr
1
2q ` dpr

1
1qr

1
2.
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2. dpr11 ` r12q “ dr11 ` dr
1
2.

3. dr “ 0 for r P R (where we identify r with its image fprq in R1, by abuse of notation).

9.2.6 Definition ΩR1{R is called the module of relative Kähler differentials, or simply Käh-
ler differentials.

Here ΩR1{R also corepresents a simple functor on the category of R1-modules: given an R1-module
M , we have

homR1pΩR1{R,Mq “ DerRpR
1,Mq,

where DerR denotes R-derivations. This is a subfunctor of the functor DerRpR
1, ¨q, and so by

Yoneda’s lemma there is a natural map ΩR1 Ñ ΩR1{R. We shall expand on this in the future.

The case of a polynomial ring

Let us do a simple example to make this more concrete.

9.2.7 Example Let R1 “ Crx1, . . . , xns, R “ C. In this case, the claim is that there is an
isomorphism

ΩR1{R » R1n.

More precisely, ΩR1{R is free on dx1, . . . , dxn. So the cotangent bundle is “free.” In general, the
module ΩR1{R will not be free, or even projective, so the intuition that it is a vector bundle will
be rather loose. (The projectivity will be connected to smoothness of R1{R.)

Proof. The construction f Ñ
´

Bf
Bxi

¯

gives a map R1 Ñ R1n. By elementary calculus, this is a
derivation, even an R-linear derivation. We get a map

φ : ΩR1{R Ñ R1n

by the universal property of the Kähler differentials. The claim is that this map is an isomor-
phism. The map is characterized by sending df to

´

Bf
Bxi

¯

. Note that dx1, . . . , dxn map to a basis
of R1n because differentiating xi gives 1 at i and zero at j ‰ i. So we see that φ is surjective.

There is a map ψ : R1n Ñ ΩR1{R sending paiq to
ř

aidxi. It is easy to check that φ ˝ ψ “ 1 from
the definition of φ. What we still need to show is that ψ ˝ φ “ 1. Namely, for any f , we want to
show that ψ ˝ φpdfq “ df for f P R1. This is precisely the claim that df “

ř Bf
Bxi
dxi. Both sides

are additive in f , indeed are derivations, and coincide on monomials of degree one, so they are
equal.

By the same reasoning, one can show more generally:

9.2.8 Proposition If R is any ring, then there is a canonical isomorphism

ΩRrx1,...,xns{R »

n
à

i“1

Rrx1, . . . , xnsdxi,

i.e. it is Rrx1, . . . , xns-free on the dxi.

This is essentially the claim that, given an Rrx1, . . . , xns-module M and elements m1, . . . ,mn P

M , there is a unique R-derivation from the polynomial ring into M sending xi ÞÑ mi.
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Exact sequences of Kähler differentials

We now want to prove a few basic properties of Kähler differentials, which can be seen either
from the explicit construction or in terms of the functors they represent, by formal nonsense.
These results will be useful in computation.

Recall that if φ : A Ñ B is a map of rings, we can define a B-module ΩB{A which is generated
by formal symbols dx|xPB and subject to the relations dpx ` yq “ dx ` dy, dpaq “ 0, a P A,
and dpxyq “ xdy ` ydx. By construction, ΩB{A is the receptacle from the universal A-linear
derivation into a B-module.

Let AÑ B Ñ C be a triple of maps of rings. There is an obvious map dxÑ dx

ΩC{A Ñ ΩC{B

where both sides have the same generators, except with a few additional relations on ΩC{B. We
have to quotient by db, b P B. In particular, there is a map ΩB{A Ñ ΩC{A, dx Ñ dx, whose
images generate the kernel. This induces a map

C bB ΩB{A Ñ ΩC{A.

The image is the C-module generated by db|bPB, and this is the kernel of the previous map. We
have proved:

9.2.9 Proposition (First exact sequence) Given a sequence A Ñ B Ñ C of rings, there is
an exact sequence

C bB ΩB{A Ñ ΩC{A Ñ ΩC{B Ñ 0.

Second proof. There is, however, a more functorial means of seeing this sequence, which we now
describe. Namely, let us consider the category of C-modules, and the functors corepresented by
these three objects. We have, for a C-module M :

homCpΩC{B,Mq “ DerBpC,Mq

homCpΩC{A,Mq “ DerApC,Mq

homCpC bB ΩB{A,Mq “ homBpΩB{A,Mq “ DerApB,Mq.

By Yoneda’s lemma, we know that a map of modules is the same thing as a natural transformation
between the corresponding corepresentable functors, in the reverse direction. It is easy to see
that there are natural transformations

DerBpC,Mq Ñ DerApC,Mq, DerApC,Mq Ñ DerApB,Mq

obtained by restriction in the second case, and by doing nothing in the first case (a B-derivation
is automatically an A-derivation). The induced maps on the modules of differentials are precisely
those described before; this is easy to check (and we could have defined the maps by these functors
if we wished). Now to say that the sequence is right exact is to say that for each M , there is an
exact sequence of abelian groups

0 Ñ DerBpC,Mq Ñ DerApC,Mq Ñ DerApB,Mq.

But this is obvious from the definitions: an A-derivation is a B-derivation if and only if the
restriction to B is trivial. This establishes the claim.
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Next, we are interested in a second exact sequence. In the past (example 9.2.7), we computed
the module of Kähler differentials of a polynomial algebra. While this was a special case, any
algebra is a quotient of a polynomial algebra. As a result, it will be useful to know how ΩB{A

behaves with respect to quotienting B.

Let AÑ B be a homomorphism of rings and I Ă B an ideal. We would like to describe ΩB{I{A.
There is a map

ΩB{A Ñ ΩB{I{A

sending dx to dx for x the reduction of x in B{I. This is surjective on generators, so it is
surjective. It is not injective, though. In ΩB{I{A, the generators dx, dx1 are identified if x ” x1

mod I. Moreover, ΩB{I{A is a B{I-module. This means that there will be additional relations
for that. To remedy this, we can tensor and consider the morphism

ΩB{A bB B{I Ñ ΩB{I{A Ñ 0.

Let us now define a map
φ : I{I2 Ñ ΩB{A bB B{I,

which we claim will generate the kernel. Given x P I, we define φpxq “ dx. If x P I2, then
dx P IΩB{A so φ is indeed a map of abelian groups I{I2 Ñ ΩB{A bB B{I. Let us check that
this is a B{I-module homorphism. We would like to check that φpxyq “ yφpxq for x P I in
ΩB{A{IΩB{A. This follows from the Leibnitz rule, φpxyq “ yφpxq ` xdy ” xφpxq mod IΩB{A.
So φ is also defined. Its image is the submodule of ΩB{A{IΩB{A generated by dx, x P I. This is
precisely what one has to quotient out by to get ΩB{I{A. In particular:

9.2.10 Proposition (Second exact sequence) Let B be an A-algebra and I Ă B an ideal.
There is an exact sequence

I{I2 Ñ ΩB{A bB B{I Ñ ΩB{I{A Ñ 0.

These results will let us compute the module of Kähler differentials in cases we want.

9.2.11 Example Let B “ Arx1, . . . , xns{I for I an ideal. We will compute ΩB{A.

First, ΩArx1,...,xns{A bB » Bn generated by symbols dxi. There is a surjection of

Bn Ñ ΩB{A Ñ 0

whose kernel is generated by dx, x P I, by the second exact sequence above. If I “ pf1, . . . , fmq,
then the kernel is generated by tdfiu. It follows that ΩB{A is the cokernel of the map

Bm Ñ Bn

that sends the ith generator of Bm to dfi thought of as an element in the free B-module Bn on
generators dx1, . . . , dxn. Here, thanks to the Leibnitz rule, dfi is given by formally differentiating
the polynomial, i.e.

dfi “
ÿ

j

Bfi
Bxj

dxj .

We have thus explicitly represented ΩB{A as the cokernel of the matrix
´

Bfi
Bxj

¯

.
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In particular, the above example shows:

9.2.12 Proposition If B is a finitely generated A-algebra, then ΩB{A is a finitely generated
B-module.

Given how Ω behaves with respect to localization, we can extend this to the case where B is
essentially of finite type over A (recall that this means B is a localization of a finitely generated
A-algebra).

LetR “ Crx1, . . . , xns{I be the coordinate ring of an algebraic variety. Letm Ă R be the maximal
ideal. Then ΩR{C is what one should think of as containing information of the cotangent bundle
of SpecR. One might ask what the fiber over a point m P SpecR is, though. That is, we might
ask what ΩR{C bR R{m is. To see this, we note that there are maps

CÑ RÑ R{m » C.

There is now an exact sequence by proposition 9.2.9

m{m2 Ñ ΩR{C bR R{mÑ ΩR{m{C Ñ 0,

where the last thing is zero as R{m » C by the Nullstellensatz. The upshot is that ΩR{CbRR{m
is a quotient of m{m2.

In fact, the natural map m{m2 Ñ ΩR{CbR C (given by d) is an isomorphism of C-vector spaces.
We have seen that it is surjective, so we need to see that it is injective. That is, if V is a C-vector
space, then we need to show that the map

homCpΩR{C bR C, V q Ñ homCpm{m
2, V q

is surjective. This means that given any C-linear map λ : m{m2 Ñ V , we can extend this to a
derivation R Ñ V (where V becomes an R-module by R{m » C, as usual). But this is easy:
given f P R, we write f “ f0 ` c for c P C and f0 P m, and have the derivation send f to λpf0q.
(Checking that this is a well-defined derivation is straightforward.)

This goes through if C is replaced by any algebraically closed field. We have found:

9.2.13 Proposition Let pR,mq be the localization of a finitely generated algebra over an alge-
braically closed field k at a maximal ideal m. Then there is a natural isomorphism:

ΩR{k bR k » m{m2.

This result connects the Kähler differentials to the cotangent bundle: the fiber of the cotangent
bundle at a point in a manifold is, similarly, the maximal ideal modulo its square (where the
“maximal ideal” is the maximal ideal in the ring of germs of functions at that point).
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Kähler differentials and base change

We now want to show that the formation of Ω is compatible with base change. Namely, let B
be an A-algebra, visualized by a morphism AÑ B. If AÑ A1 is any morphism of rings, we can
think of the base-change A1 Ñ A1 bA B; we often write B1 “ A1 bA B.

9.2.14 Proposition With the above notation, there is a canonical isomorphism of B1-modules:

ΩB{A bA A
1 » ΩB1{A1 .

Note that, for a B-module, the functors bAA1 and bBB1 are the same. So we could have as well
written ΩB{A bB B

1 » ΩB1{A1 .

Proof. We will use the functorial approach. Namely, for a B1-moduleM , we will show that there
is a canonical isomorphism

homB1pΩB{A bA A
1,Mq » homB1pΩB1{A1 ,Mq.

The right side represents A1-derivations B1 Ñ M , or DerA1pB
1,Mq. The left side represents

homBpΩB{A,Mq, or DerApB,Mq. Here the natural map of modules corresponds by Yoneda’s
lemma to the restriction

DerA1pB
1,Mq Ñ DerApB,Mq.

We need to see that this restriction map is an isomorphism. But given an A-derivation B ÑM ,
this is to say that extends in a unique way to an A1-linear derivation B1 Ñ M . This is easy to
verify directly.

We next describe how Ω behaves with respect to forming tensor products.

9.2.15 Proposition Let B,B1 be A-algebras. Then there is a natural isomorphism

ΩBbAB1{A » ΩB{A bA B
1 ‘B bA ΩB1{A.

Since Ω is a linearization process, it is somewhat natural that it should turn tensor products into
direct sums.

Proof. The “natural map” can be described in the leftward direction. For instance, there is a
natural map ΩB{A bA B

1 Ñ ΩBbAB1{A. We just need to show that it is an isomorphism. For
this, we essentially have to show that to give an A-derivation of B bA B1 is the same as giving
a derivation of B and one of B1. This is easy to check.

Differentials and localization

We now show that localization behaves extremely nicely with respect to the formation of Kähler
differentials. This is important in algebraic geometry for knowing that the “cotangent bundle”
can be defined locally.
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9.2.16 Proposition Let f : A Ñ B be a map of rings. Let S Ă B be multiplicatively closed.
Then the natural map

S´1ΩB{A Ñ ΩS´1B{A

is an isomorphism.

So the formation of Kähler differentials commutes with localization.

Proof. We could prove this by the calculational definition, but perhaps it is better to prove it
via the universal property. If M is any S´1B-module, then we can look at

homS´1BpΩS´1B{A,Mq

which is given by the group of A-linear derivations S´1B ÑM , by the universal property.

On the other hand,
homS´1BpS

´1ΩB{A,Mq

is the same thing as the set of B-linear maps ΩB{A Ñ M , i.e. the set of A-linear derivations
B ÑM .

We want to show that these two are the same thing. Given an A-derivation S´1B ÑM , we get
an A-derivation B ÑM by pulling back. We want to show that any A-linear derivation B ÑM
arises in this way. So we need to show that any A-linear derivation d : B ÑM extends uniquely
to an A-linear d : S´1B ÑM . Here are two proofs:

1. (Lowbrow proof.) For x{s P S´1B, with x P B, s P S, we define dpx{sq “ dx{s ´ xds{s2

as in calculus. The claim is that this works, and is the only thing that works. One should
check this—remark.

2. (Highbrow proof.) We start with a digression. Let B be a commutative ring, M a B-
module. Consider B ‘M , which is a B-module. We can make it into a ring (via square
zero multiplication) by multiplying

pb, xqpb1, x1q “ pbb1, bx1 ` b1xq.

This is compatible with the B-module structure on M Ă B ‘M . Note that M is an ideal
in this ring with square zero. Then the projection π : B‘M Ñ B is a ring-homomorphism
as well. There is also a ring-homomorphism in the other direction b Ñ pb, 0q, which is a
section of π. There may be other homomorphisms B Ñ B ‘M .

You might ask what all the right inverses to π are, i.e. ring-homomorphisms φ : B Ñ B‘M
such that π ˝ φ “ 1B. This must be of the form φ : b Ñ pb, dbq where d : B Ñ M is some
map. It is easy to check that φ is a homomorphism precisely when d is a derivation.

Suppose now AÑ B is a morphism of rings making B an A-algebra. Then B‘M is an A-
algebra via the inclusion aÑ pa, 0q. Then you might ask when φ : bÑ pb, dbq, B Ñ B‘M
is an A-homomorphism. The answer is clear: when d is an A-derivation.
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Recall that we were in the situation of f : AÑ B a morphism of rings, S Ă B a multiplica-
tively closed subset, and M an S´1B-module. The claim was that any A-linear derivation
d : B ÑM extends uniquely to d : S´1B ÑM . We can draw a diagram

B ‘M

��

// S´1B ‘M

��
A // B // S´1B

.

This is a cartesian diagram. So given a section of A-algebras B Ñ B ‘M , we have to
construct a section of A-algebras S´1B Ñ S´1B ‘M . We can do this by the universal
property of localization, since S acts by invertible elements on S´1B ‘M . (To see this,
note that S acts by invertible elements on S´1B, and M is a nilpotent ideal.)

Finally, we note that there is an even slicker argument. (We learned this from ?.) Namely, it
suffices to show that ΩS´1B{B “ 0, by the exact sequences. But this is a S´1B-module, so we
have

ΩS´1B{B “ ΩS´1B{B bB S
´1B,

because tensoring with S´1B localizes at S, but this does nothing to a S´1B-module! By the
base change formula (proposition 9.2.14), we have

ΩS´1B{B bB S
´1B “ ΩS´1B{S´1B “ 0,

where we again use the fact that S´1B bB S
´1B » S´1B.

Another construction of ΩB{A

Let B be an A-algebra. We have constructed ΩB{A by quotienting generators by relations. There
is also a simple and elegant “global” construction one sometimes finds useful in generalizing the
procedure to schemes.

Consider the algebra B bA B and the map B bA B Ñ B given by multiplication. Note that B
acts on B bA B by multiplication on the first factor: this is how the latter is a B-module, and
then the multiplication map is a B-homomorphism. Let I Ă B bA B be the kernel.

9.2.17 Proposition There is an isomorphism of B-modules

ΩB{A » I{I2

given by the derivation b ÞÑ 1b b´ bb 1, from B to I{I2.

Proof. It is clear that the maps

bÑ 1b b, bÑ bb 1 : B Ñ B bA B

are A-linear, so their difference is too. The quotient d : B Ñ I{I2 is thus A-linear too.
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First, note that if c, c1 P B, then 1b c´ cb 1, 1b c1 ´ c1 b 1 P I. Their product is thus zero in
I{I2:

p1b c´ cb 1qp1b c1 ´ c1 b 1q “ 1b cc1 ` cc1 b 1´ cb c1 ´ c1 b c P I2.

Next we must check that d : B Ñ I{I2 is a derivation. So fix b, b1 P B; we have

dpbb1q “ 1b bb1 ´ bb1 b 1

and
bdb1 “ bp1b b1 ´ b1 b 1q, b1db “ b1p1b b´ bb 1q.

The second relation shows that

bdb1 ` b1db “ bb b1 ´ bb1 b 1` b1 b b´ bb1 b 1.

Modulo I2, we have as above bb b1 ` b1 b b ” 1b bb1 ` bb1 b 1, so

bdb1 ` b1db ” 1b bb1 ´ bb1 b 1 mod I2,

and this last is equal to dpbb1q by definition. So we have an A-linear derivation d : B Ñ I{I2. It
remains to be checked that this is universal. In particular, we must check that the induced

φ : ΩB{A Ñ I{I2

sending db Ñ 1 b b ´ b b 1. is an isomorphism. We can define the inverse ψ : I{I2 Ñ ΩB{A by
sending

ř

bibb
1
i P I to

ř

bidb
1
i. This is clearly a B-module homomorphism, and it is well-defined

mod I2.

It is clear that ψpφpdbqq “ db from the definitions, since this is

ψp1b b´ bb 1q “ 1pdbq ´ bd1 “ db,

as d1 “ 0. So ψ ˝φ “ 1ΩB{A . It follows that φ is injective. We will check now that it is surjective.
Then we will be done.

9.2.18 Lemma Any element in I is a B-linear combination of elements of the form 1bb´bb1.

Every such element is the image of db under φ by definition of the derivation B Ñ I{I2. So this
lemma will complete the proof.

Proof. Let Q “
ř

ci b di P I. By assumption,
ř

cidi “ 0 P B. We have by this last identity

Q “
ÿ

ppci b diq ´ pcidi b 1qq “
ÿ

cip1b di ´ di b 1q.

So Q is in the submodule spanned by the t1b b´ bb 1ubPB.
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9.3. Introduction to smoothness

Kähler differentials for fields

Let us start with the simplest examples—fields.

9.3.1 Example Let k be a field, k1{k an extension.

9.3.2 Remark (Question) What does Ωk1{k look like? When does it vanish?

Ωk1{k is a k1-vector space.

9.3.3 Proposition Let k1{k be a separable algebraic extension of fields. Then Ωk1{k “ 0.

Proof. We will need a formal property of Kähler differentials that is easy to check, namely that
they are compatible with filtered colimits. If B “ lim

ÝÑ
Bα for A-algebras Bα, then there is a

canonical isomorphism
ΩB{A » lim

ÝÑ
ΩBα{A.

One can check this on generators and relations, for instance.

Given this, we can reduce to the case of k1{k finite and separable.

9.3.4 Remark Given a sequence of fields and morphisms k Ñ k1 Ñ k2, then there is an exact
sequence

Ωk1{k b k
2 Ñ Ωk2{k Ñ Ωk2{k1 Ñ 0.

In particular, if Ωk1{k “ Ωk2{k1 “ 0, then Ωk2{k “ 0. This is a kind of dévissage argument.

Anyway, recall that we have a finite separable extension k1{k where k1 “ kpx1, . . . , xnq.3 We will
show that

Ωkpx1,...,xiq{kpx1,...,xi´1q
“ 0 @i,

which will imply by the devissage argument that Ωk1{k “ 0. In particular, we are reduced to
showing the proposition when k1 is generated over k by a single element x. Then we have that

k1 » krXs{pfpXqq

for fpXq an irreducible polynomial. Set I “ pfpXqq. We have an exact sequence

I{I2 Ñ ΩkrXs{k bkrXs k
1 Ñ Ωk1{k Ñ 0

The middle term is a copy of k1 and the first term is isomorphic to krXs{I » k1. So there is an
exact sequence

k1 Ñ k1 Ñ Ωk1{k Ñ 0.

The first term is, as we have computed, multiplication by f 1pxq; however this is nonzero by
separability. Thus we find that Ωk1{k “ 0.

3We can take n “ 1 by the primitive element theorem, but shall not need this.
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9.3.5 Remark The above result is not true for inseparable extensions in general.

9.3.6 Example Let k be an imperfect field of characteristic p ą 0. There is x P k such that
x1{p R k, by definition. Let k1 “ kpx1{pq. As a ring, this looks like krts{ptp ´ xq. In writing
the exact sequence, we find that Ωk1{k “ k1 as this is the cokernel of the map k1 Ñ k1 given by
multiplication d

dt |x1{pptp ´ xq. That polynomial has identically vanishing derivative, though. We
find that a generator of Ωk1{k is dt where t is a pth root of x, and Ωk1{k » k.

Now let us consider transcendental extensions. Let k1 “ kpx1, . . . , xnq be a purely transcendental
extension, i.e. the field of rational functions of x1, . . . , xn.

9.3.7 Proposition If k1 “ kpx1, . . . , xnq, then Ωk1{k is a free k1-module on the generators dxi.

This extends to an infinitely generated purely transcendental extension, because Kähler differ-
entials commute with filtered colimits.

Proof. We already know this for the polynomial ring krx1, . . . , xns. However, the rational func-
tion field is just a localization of the polynomial ring at the zero ideal. So the result will follow
from proposition 9.2.16.

We have shown that separable algebraic extensions have no Kähler differentials, but that purely
transcendental extensions have a free module of rank equal to the transcendence degree.

We can deduce from this:

9.3.8 Corollary Let L{K be a field extension of fields of char 0. Then

dimL ΩL{K “ trdegpL{Kq.

Partial proof. Put the above two facts together. Choose a transcendence basis txαu for L{K.
This means that L is algebraic over Kptxαuq and the txαu are algebraically independent. More-
over L{Kptxαuq is separable algebraic. Now let us use a few things about these cotangent
complexes. There is an exact sequence:

ΩKptxαuq bKptxαuq LÑ ΩL{K Ñ ΩL{Kptxαuq Ñ 0

The last thing is zero, and we know what the first thing is; it’s free on the dxα. So we find that
ΩL{K is generated by the elements dxα. If we knew that the dxα were linearly independent, then
we would be done. But we don’t, yet.

This is not true in characteristic p. If L “ Kpα1{pq for α P K and α1{p R K, then ΩL{K ‰ 0.
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Regularity, smoothness, and Kähler differentials

From this, let us revisit a statement made last time. Let K be an algebraically closed field, let
R “ krx1, . . . , xns{I and let m Ă R be a maximal ideal. Recall that the Nullstellensatz implies
that R{m » k. We were studying

ΩR{k.

This is an R-module, so ΩR{k bR k makes sense. There is a surjection

m{m2 Ñ ΩR{k bR k Ñ 0,

that sends xÑ dx.

9.3.9 Proposition This map is an isomorphism.

Proof. We construct a map going the other way. Call the map m{m2 Ñ ΩR{k bR k as φ. We
want to construct

ψ : ΩR{k bR k Ñ m{m2.

This is equivalent to giving an R-module map

ΩR{k Ñ m{m2,

that is a derivation B : RÑ m{m2. This acts via Bpλ`xq “ x for λ P k, x P m. Since k`m “ R,
this is indeed well-defined. We must check that B is a derivation. That is, we have to compute
Bppλ` xqpλ1 ` x1qq. But this is

Bpλλ1 ` pλx1 ` λ1xq ` xx1q.

The definition of B is to ignore the constant term and look at the nonconstant term mod m2. So
this becomes

λx1 ` λ1x “ pBpλ` xqqpx1 ` λ1q ` pBpλ1 ` x1qqpx` λq

because xx1 P m2, and because m acts trivially on m{m2. Thus we get the map ψ in the inverse
direction, and one checks that φ, ψ are inverses. This is because φ sends x Ñ dx and ψ sends
dxÑ x.

9.3.10 Corollary Let R be as before. Then Rm is regular iff dimRm “ dimk ΩR{k bR R{m.

In particular, the modules of Kähler differentials detect regularity for certain rings.

9.3.11 Definition Let R be a noetherian ring. We say that R is regular if Rm is regular for
every maximal ideal m. (This actually implies that Rp is regular for all primes p, though we are
not ready to see this. It will follow from the fact that the localization of a regular local ring at
a prime ideal is regular.)

Let R “ krx1, . . . , xns{I be an affine ring over an algebraically closed field k. Then:

9.3.12 Proposition TFAE:

1. R is regular.
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2. “R is smooth over k” (to be defined)

3. ΩR{k is a projective module over R of rank dimR.

A finitely generated projective module is locally free. So the last statement is that pΩR{kqp is
free of rank dimR for each prime p.

9.3.13 Remark A projective module does not necessarily have a well-defined rank as an integer.
For instance, if R “ R1 ˆR2 and M “ R1 ˆ 0, then M is a summand of R, hence is projective.
But there are two candidates for what the rank should be. The problem is that SpecR is
disconnected into two pieces, and M is of rank one on one piece, and of rank zero on the other.
But in this case, it does not happen.

9.3.14 Remark The smoothness condition states that locally on SpecR, we have an isomor-
phism with kry1, . . . , yns{pf1, . . . , fmq with the gradients ∇fi linearly independent. Equivalently,
if Rm is the localization of R at a maximal ideal m, then Rm is a regular local ring, as we have
seen.

Proof. We have already seen that 1 and 2 are equivalent. The new thing is that they are
equivalent to 3. First, assume 1 (or 2). First, note that ΩR{k is a finitely generated R-module;
that’s a general observation:

9.3.15 Proposition If f : AÑ B is a map of rings that makes B a finitely generated A-algebra,
then ΩB{A is a finitely generated B-module.

Proof. We’ve seen this is true for polynomial rings, and we can use the exact sequence. If B
is a quotient of a polynomial ring, then ΩB{A is a quotient of the Kähler differentials of the
polynomial ring.

Return to the main proof. In particular, ΩR{k is projective if and only if pΩR{kqm is projec-
tive for every maximal ideal m. According to the second assertion, we have that Rm looks like
pkry1, . . . , yns{pf1, . . . , fmqqn for some maximal ideal n, with the gradients ∇fi linearly indepen-
dent. Thus pΩR{kqm “ ΩRm{k looks like the cokernel of

Rmm Ñ Rnm

where the map is multiplication by the Jacobian matrix
´

Bfi
Byj

¯

. By assumption this matrix has
full rank. We see that there is a left inverse of the reduced map km Ñ kn. We can lift this to
a map Rnm Ñ Rmm . Since this is a left inverse mod m, the composite is at least an isomorphism
(looking at determinants). Anyway, we see that ΩR{k is given by the cokernel of a map of free
module that splits, hence is projective. The rank is n´m “ dimRm.

Finally, let us prove that 3 implies 1. Suppose ΩR{k is projective of rank dimR. So this means
that ΩRm{k is free of dimension dimRm. But this implies that pΩR{kq bR R{m is free of the
appropriate rank, and that is—as we have seen already—the embedding dimension m{m2. So if
3 holds, the embedding dimension equals the usual dimension, and we get regularity.

9.3.16 Corollary Let R “ Crx1, . . . , xns{p for p a prime. Then there is a nonzero f P R such
that Rrf´1s is regular.
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Geometrically, this says the following. SpecR is some algebraic variety, and SpecRrf´1s is a
Zariski open subset. What we are saying is that, in characteristic zero, any algebraic variety has
a nonempty open smooth locus. The singular locus is always smaller than the entire variety.

Proof. ΩR{C is a finitely generated R-module. Let KpRq be the fraction field of R. Now

ΩR{C bR KpRq “ ΩKpRq{C

is a finite KpRq-vector space. The dimension is trdegpKpRq{Cq. That is also d “ dimR, as we
have seen. Choose elements x1, . . . , xd P ΩR{C which form a basis for ΩKpRq{C. There is a map

Rd Ñ ΩR{C

which is an isomorphism after localization at p0q. This implies that there is f P R such that the
map is an isomorphism after localization at f .4 We find that ΩRrf´1s{C is free of rank d for some
f , which is what we wanted.

This argument works over any algebraically closed field of characteristic zero, or really any field
of characteristic zero.

9.3.17 Remark (Warning) Over imperfect fields in characteristic p, two things can happen:

1. Varieties need not be generically smooth

2. ΩR{k can be projective with the wrong rank

(Nothing goes wrong for algebraically closed fields of characteristic p.)

9.3.18 Example Here is a silly example. Say R “ krys{pyp ´ xq where x P K has no pth root.
We know that ΩR{k is free of rank one. However, the rank is wrong: the variety has dimension
zero.

Last time, were trying to show that ΩL{K is free on a transcendence basis if L{K is an extension
in characteristic zero. So we had a tower of fields

K Ñ K 1 Ñ L,

where L{K 1 was separable algebraic. We claim in this case that

ΩL{K » ΩK1{K bK1 L.

This will prove the result. But we had not done this yesterday.

Proof. This doesn’t follow directly from the previous calculations. Without loss of generality, L
is finite over K 1, and in particular, L “ K 1rxs{pfpxqq for f separable. The claim is that

ΩL{K » pΩK1{K bK1 L‘K
1dxq{f 1pxqdx` . . .

When we kill the vector f 1pxqdx` . . . , we kill the second component.

4There is an inverse defined over the fraction field, so it is defined over some localization.
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IV.1. Homological algebra à la
Cartan–Eilenberg

1.1. Introduction

Homological algebra begins with the notion of a differential object, that is, an object with an
endomorphism C

B
Ñ C such that B2 “ 0. This equation leads to the obvious inclusion ImpBq Ă

KerpBq, but the inclusion generally is not equality. We will find that the difference between
KerpBq and ImpBq, called the homology, is a highly useful variant of a differential object: its first
basic property is that if an exact sequence

0 ÝÑ C 1 ÝÑ C ÝÑ C2 ÝÑ 0

of differential graded objects is given, the homology of C is related to that of C 1 and C2 through
a long exact sequence. The basic example, and the one we shall focus on, is where C is a chain
complex pCkqkPZ, and B is the differential induced by the boundary operators Bk : Ck Ñ Ck´1.
In this case, homology simply measures the failure of a complex to be exact.

After introducing these preliminaries, we develop the theory of derived functors. Given a functor
that is only left or right-exact, derived functors allow for an extension of a partially exact
sequence to a long exact sequence. The most important examples to us, Tor and Ext, provide
characterizations of flatness, projectivity, and injectivity.

The classic reference for this part of homological algebra is Cartan & Eilenberg (1999).

1.2. (Co)Chain complexes and their (co) homology

Chain complexes

The chain complex is the most fundamental construction in homological algebra.

1.2.1 Definition Let R be a ring. A chain complex (over R) is a family of (left) R-modules
pCkqkPZ together with so-called boundary operators Bk : Ck Ñ Ck´1, k P Z, such that Bk´1Bk “ 0
for all k P Z. The boundary map B is also called the differential. Often, notation is abused
and the indices for the boundary map are dropped. A chain complex is often simply denoted by
pC‚, Bq or even only by C‚.

One calls a chain complex C‚ bounded below (respectively bounded above) if there exists an n P Z
such that Ck “ 0 for all k ď n (respectively Ck “ 0 for all k ě n). If one has Ck “ 0 for all
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k ă 0 (respectively Ck “ 0 for all k ą 0), the chain complex C‚ is called positive (respectively
negative). A chain complex C‚ is called bounded if it is both bounded below and bounded above.

1.2.2 Example Any family of R-modules pCkqkPZ with the boundary operators identically zero
forms a chain complex.

We will see plenty of more examples in due time.

1.2.3 Proposition If pC‚, Bq is a chain complex, then Im Bk`1 Ă Ker Bk for each k P Z.

Proof. The claim is an immediate consequence of the relation BkBk`1 “ 0.

The observation from the proposition leads us to the following definition.

1.2.4 Definition Let pC‚, Bq be a chain complex. For each k P Z one calls the module Ck the
module of k-chains. The submodule of k-cycles Zk Ă Ck is the kernel KerpBkq. The submodule of
k-boundaries Bk Ă Ck is the image ImpBk`1q. The k-th homology group of the complex pC‚, Bq is
now defined as the R-moduleHkpC‚q :“ HkpC‚, Bq :“ Zk{Bk. The familyH‚pC‚q “

`

HkpC‚q
˘

kPZ
is usually referred to as the homology of pC‚, Bq.

A chain complex pC‚, Bq for which Zk “ Bk or equivalently HkpC‚q “ 0 for every k P Z is called
exact.

1.2.5 Remark In general, a chain complex need not be exact, and this failure of exactness is
measured by its homology.

1.2.6 Examples (a) In a chain complex pC‚, Bq where all the boundary maps are trivial, i.e. where
B “ 0, one has HkpC‚q “ Ck for all k P Z.

(b) The homology H‚pC‚q of a chain complex C‚ can and will be understood as a chain complex
again with boundary maps being trivial. This interpretation will be very useful when studying
formality in rational or real homotopy theory, see ??.

We have defined chain complexes now, but we have no notion of a morphism between chain com-
plexes yet. We do this next; it turns out that chain complexes form a category when morphisms
are appropriately defined.

1.2.7 Definition A morphism of chain complexes (over the ring R) from pC‚, Bq to pD‚, δq or
a chain map is a family of R-module maps fk : Ck Ñ Dk, k P Z, such that fk´1Bk “ δkfk for all
k P Z. In other words this means that the diagram

Ck`1 Ck Ck´1

Dk`1 Dk Dk´1

fk`1

Bk`1

fk

Bk

fk´1

δk`1 δk

commutes. We will denote such a morphism of chain complexes by f : pC‚, Bq Ñ pD‚, δq.
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1.2.8 Remark To further simplify notation, often all differentials regardless of what chain com-
plex they are part of are denoted B, thus the commutativity relation on chain maps is simply
fB “ Bf with indices and distinction between the boundary operators dropped. Sometimes,
though, when a distinction is really necessary, one writes BC or BD to denote the boundery map
of C‚ respectively D‚. We will make sure in this book that the context or the notation will
always make clear what is meant.

1.2.9 Proposition and Definition Chain complexes over a ring R together with their chain
maps as morphisms become a category which we denote by Ch‚pR-Modq or just Ch‚ when the
ground ring R is clear. The chain complexes bounded below (respectively bounded above, bounded,
positive, or negative) form a full subcategory of Ch‚pR-Modq. The resulting subcategories are
denoted by Ch`‚ pR-Modq, Ch´‚ pR-Modq, Chb

‚pR-Modq, Chě0
‚ pR-Modq, and Chď0

‚ pR-Modq, respec-
tively.

Proof. If pC‚, Bq is a chain complex, then the family of identity maps idCk : Ck Ñ Ck is clearly a
chain map which we denote by idC‚ . If f : pC‚, Bq Ñ pD‚, δq and g : pD‚, δq Ñ pE‚, %q are chain
maps, then g ˝ f : pC‚, Bq Ñ pE‚, %q with components pg ˝ fqk :“ gk ˝ fk : Ck Ñ Ek is a chain
map as well, since for all k P Z

pg ˝ fqk´1Bk “ gk´1 ˝ fk´1 ˝ Bk “ gk´1 ˝ δk ˝ fk “ %k ˝ gk ˝ fk “ %kpg ˝ fqk .

Hence the chain complexes over the ring R together with the chain maps form a category indeed.
The rest of the claim is obvious.

1.2.10 Proposition A chain map f : C‚ Ñ D‚ between chain complexes over a ring R induces
for each k P Z a map in homology Hkpfq : HkpC‚q Ñ HkpD‚q. More precisely, each Hk is a
functor from chain complexes to R-modules, and homology becomes a covariant functor from the
category of chain complexes to the category of chain complexes with zero differential.

Proof. Let f : C‚ Ñ D‚ be a chain map. Let B and δ be the differentials for C‚ and D‚
respectively. Then we have a commutative diagram:

Ck`1 Ck Ck´1

Dk`1 Dk Dk´1 .

fk`1

Bk`1

fk

Bk

fk´1

δk`1 δk

Now, in order to check that the chain map f induces a map Hkpfq on homology, we need to
check that fpImpBqq Ă Impδq and fpKerpBqq Ă Kerpδq. We first check the condition on images:
we want to look at fkpImpBk`1qq. By commutativity of f and the boundary maps, this is equal
to δk`1pImpfk`1q. Hence we have fkpImpBk`1qq Ă Impδk`1q. For the condition on kernels, let
c P KerpBkq. Then by commutativity, δkpfkpcqq “ fk´1Bkpcq “ 0. Thus we have that f induces
for each k P Z an R-module map Hkpfq : HkpC‚q Ñ HkpD‚q. Hence it induces a morphism on
homology as a chain complex with zero differential.
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Long exact sequences

add: OMG! We have all this and not the most basic theorem of them all.

1.2.11 Definition If M is a complex then for any integer k, we define a new complex M rks by
shifting indices, i.e. pM rksqi :“M i`k.

1.2.12 Definition If f : M Ñ N is a map of complexes, we define a complex Conepfq :“
tN i ‘M i`1u with differential

dpni,mi`1q :“ pdiN pniq ` p´1qi ¨ fpmi`1, di`1
M pmi`1qq

Remark: This is a special case of the total complex construction to be seen later.

1.2.13 Proposition A map f : M Ñ N is a quasi-isomorphism if and only if Conepfq is
acyclic.

1.2.14 Proposition Note that by definition we have a short exact sequence of complexes

0 Ñ N Ñ Conepfq ÑM r1s Ñ 0

so by Proposition 2.1, we have a long exact sequence

¨ ¨ ¨ Ñ H i´1pConepfqq Ñ H ipMq Ñ H ipNq Ñ H ipConepfqq Ñ . . .

so by exactness, we see that H ipMq » H ipNq if and only if H i´1pConepfqq “ 0 and H ipConepfqq “
0. Since this is the case for all i, the claim follows. �

Cochain complexes

Cochain complexes are much like chain complexes except the arrows point in the opposite direc-
tion. Like before, R denotes a fixed ring.

1.2.15 Definition A cochain complex is a sequence of R-modules pCkqkPZ with coboundary
operators, also called differentials, dk : Ck Ñ Ck`1, k P Z, such that dk`1dk “ 0. A cochain
copmplex is usually denoted by pC‚, dq or shortly by C‚.

One calls a cochain complex C‚ bounded below (respectively bounded above) if there exists an
n P Z such that Ck “ 0 for all k ď n (respectively Ck “ 0 for all k ě n). If one has Ck “ 0 for all
k ă 0 (respectively Ck “ 0 for all k ą 0), the cochain complex C‚ is called positive (respectively
negative). A cochain complex C‚ which is both bounded below and bounded above is said to be
bounded.

Let pC‚, dq and pD‚, δq denote cochain complexes. By a morphism of cochain complexes or a
cochain map from pC‚, dq to pD‚, δq we understand a family of R-module maps gk : Ck Ñ Dk,
k P Z, such that gk`1dk “ δkgk for all k P Z. In other words this means we have a commutative
diagram:
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Ck´1 Ck Ck`1

Dk´1 Dk Dk´1 .

gk´1

dk´1

gk

dk

gk`1

δk´1 δk

We will denote such a morphism of cochain complexes usually by g : pC‚, dq Ñ pD‚, δq.

1.2.16 Proposition and Definition Cochain complexes over a ring R together with their cochain
maps as morphisms become a category which we denote by Ch‚pR-Modq or just Ch‚ when the
ground ring R is clear. The cochain complexes bounded below (respectively bounded above,
bounded, positive, or negative) form a full subcategory of Ch‚pR-Modq. The corresponding subcat-
egories are denoted by Ch‚`pR-Modq, Ch‚´pR-Modq, Ch‚bpR-Modq, Ch‚ě0pR-Modq, and Ch‚ď0pR-Modq,
respectively.

Proof. The proof is completely dual to the proof of Proposition 1.2.16.

The theory of cochain complexes is entirely dual to that of chain complexes, and we often shall
not spell it out in detail.

For instance, we can form a category of cochain complexes and chain maps (families of mor-
phisms commuting with the differential). Moreover, given a cochain complex C‚, we define the
cohomology objects to be hipC˚q “ kerpBiq{ImpBi´1q; one obtains cohomology functors.

It should be noted that the long exact sequence in cohomology runs in the opposite direction.
If 0 Ñ C 1˚ Ñ C˚ Ñ C2˚ Ñ 0 is a short exact sequence of cochain complexes, we get a long exact
sequence

¨ ¨ ¨ Ñ H ipC 1q Ñ H ipCq Ñ H ipC2q Ñ H i`1pC 1q Ñ H i`1pCq Ñ . . . .

Similarly, we can also turn cochain complexes and cohomology modules into a graded module.

Let us now give a standard example of a cochain complex.

1.2.17 Example (The de Rham complex) Readers unfamiliar with differential forms may
omit this example. Let M be a smooth manifold. For each p, let CppMq be the R-vector space
of smooth p-forms on M . We can make the tCppMqu into a complex by defining the maps

CppMq Ñ Cp`1pMq

via ω Ñ dω, for d the exterior derivative. (Note that d2 “ 0.) This complex is called the de
Rham complex of M , and its cohomology is called the de Rham cohomology. It is known
that the de Rham cohomology is isomorphic to singular cohomology with real coefficients, cf. ?
and Hatcher (2002).
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1.3. Chain Homotopies

1.3.1 In general, two maps of complexes C‚ Ñ D‚ need not be equal to induce the same
morphisms in homology. It is thus of interest to determine conditions when they do. One
important condition is given by chain homotopy: chain homotopic maps are indistinguishable in
homology. In algebraic topology, this fact is used to show that singular homology is a homotopy
invariant. We will find it useful in showing that the construction (to be given later) of a projective
resolution is essentially unique.

As before, we will understand all of the following constructions to be performed within the
category R-Mod of left modules over a fixed ring R, unless stated differently.

1.3.2 Definition Let C‚, D‚ be chain complexes with differentials BC and BD, respectively.
A chain homotopy between two chain maps f, g : C‚ Ñ D‚ is a sequence of homomorphism
hk : Ck Ñ Dk`1, k P Z satisfying

fk ´ gk “ B
D
k`1hk ` hk´1B

C
k for all k P Z .

Again, often notation is abused and the condition is written f ´ g “ Bh` hB.

Dually, if C‚ and D‚ are two cochain complexes with respective differentials dC and dD, then
a chain homotopy between two morphisms of cochain complexes f, g : Cbullet Ñ Dbullet is a
sequence of homomorphisms hk : Ck Ñ Dk´1, k P Z satisfying

fk ´ gk “ dk´1
D hk ` hk`1dkC for all k P Z .

or shortly f ´ g “ dh` hd.

1.3.3 Proposition If two morphisms of chain complexes f, g : C‚ Ñ D‚ are chain homotopic,
they are taken to the same induced map after applying the homology functor. Likewise, two chain
homotopic morphisms of cochain complexes f, g : C‚ Ñ D‚ induce the same map in cohomology.

Proof. Write tdiu for the various differentials (in both complexes). Let m P ZipCq, the group
of i-cycles. Suppose there is a chain homotopy h between f, g (that is, a set of morphisms
Ci Ñ Di´1). Then

f ipmq ´ gipmq “ hi`1 ˝ dipmq ` di´1 ˝ hipmq “ di´1 ˝H ipmq P Impdi´1q

which is zero in the cohomology H ipDq.

1.3.4 Corollary If two chain complexes are chain homotopically equivalent (there are maps
f : C˚ Ñ D˚ and g : D˚ Ñ C˚ such that both fg and gf are chain homotopic to the identity),
they have isomorphic homology.

Proof. Clear.

1.3.5 Example Not every quasi-isomorphism is a homotopy equivalence. Consider the complex

¨ ¨ ¨ Ñ 0 Ñ Z{¨2 Ñ ZÑ 0 Ñ 0 Ñ . . .
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so H0 “ Z{2Z and all cohomologies are 0. We have a quasi-isomorphism from the above complex
to the complex

¨ ¨ ¨ Ñ 0 Ñ 0 Ñ Z{2ZÑ 0 Ñ 0 Ñ . . .

but no inverse can be defined (no map from Z{2ZÑ Z).

1.3.6 Proposition Additive functors preserve chain homotopies

Proof. Since an additive functor F is a homomorphism on Homp´,´q, the chain homotopy con-
dition will be preserved; in particular, if t is a chain homotopy, then F ptq is a chain homotopy.

In more sophisticated homological theory, one often makes the definition of the “homotopy cat-
egory of chain complexes.”

1.3.7 Definition The homotopy category of chain complexes is the category hKompRq where
objects are chain complexes of R-modules and morphisms are chain maps modulo chain homo-
topy.

1.4. Differential modules

Often we will bundle all the modules Ck of a chain complex C‚ together to form a graded module
À

k Ck. In this case, the boundary operator is an endomorphism that takes elements from degree
k to degree k´1. Similarly, we often bundle together all the homology modules to give a graded
homology module

À

kHkpC‚q.

1.4.1 Definition A differential module over a ring R is a (left) R-module M together with a
morphism d : M ÑM such that d2 “ 0.

Thus, given a chain complex C‚, the module
À

kPZCk is a differential module with the direct
sum of all the differentials Bk. A chain complex is just a special kind of differential module, one
where the objects are graded and the differential drops the grading by one.

As we have sen, there is a category of chain complexes where the morphisms are chain maps.
One can make a similar definition for differential modules.

1.4.2 Definition If pM,dq and pN, d1q are differential modules, then a morphism of differential
modules pM,dq Ñ pN, d1q is a morphism of modules M Ñ N such that the diagram

M

��

d //M

��
N

d1 // N

commutes.

There is therefore a category of differential modules, and the map C˚ Ñ
À

Ci gives a functor
from the category of chain complexes to that of differential modules.

1.4.3 Remark Define the homology HpMq of a differential module pM,dq via ker d{ im d. Show
that M ÞÑ HpMq is a functor from differential modules to modules.
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1.5. Derived functors

Projective resolutions

Fix a ring R. Let us recall (4.2.7) that an R-module P is called projective if the functor N Ñ

homRpP,Nq (which is always left-exact) is exact.

Projective objects are useful in defining chain exact sequences known as “projective resolutions.”
In the theory of derived functors, the projective resolution of a module M is in some sense a
replacement for M : thus, we want it to satisfy some uniqueness and existence properties. The
uniqueness is not quite true, but it is true modulo chain equivalence.

1.5.1 Definition Let M be an arbitrary module, a projective resolution of M is an exact se-
quence

¨ ¨ ¨ Ñ Pi Ñ Pi´1 Ñ Pi´2 ¨ ¨ ¨ Ñ P1 Ñ P0 ÑM (1.5.1)

where the Pi are projective modules.

1.5.2 Proposition Any module admits a projective resolution.

The proof will even show that we can take a free resolution.

Proof. We construct the resolution inductively. First, we take a projective module P0 with
P0 � N surjective by the previous part. Given a portion of the resolution

Pn Ñ Pn´1 Ñ ¨ ¨ ¨ Ñ P0 � N Ñ 0

for n ě 0, which is exact at each step, we consider K “ kerpPn Ñ Pn´1q. The sequence

0 Ñ K Ñ Pn Ñ Pn´1 Ñ ¨ ¨ ¨ Ñ P0 � N Ñ 0

is exact. So if Pn`1 is chosen such that it is projective and there is an epimorphism Pn`1 � K,
(which we can construct by 2.8.6), then

Pn`1 Ñ Pn Ñ . . .

is exact at every new step by construction. We can repeat this inductively and get a full projective
resolution.

Here is a useful observation:

1.5.3 Proposition If R is noetherian, and M is finitely generated, then we can choose a pro-
jective resolution where each Pi is finitely generated.

We can even take a resolution consisting of finitely generated free modules.

Proof. To say that M is finitely generated is to say that it is a quotient of a free module on
finitely many generators, so we can take P0 free and finitely generated. The kernel of P0 Ñ M
is finitely generated by noetherianness, and we can proceed as before, at each step choosing a
finitely generated object.
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1.5.4 Example The abelian group Z{2 has the free resolution 0 Ñ ¨ ¨ ¨ 0 Ñ Z Ñ Z Ñ Z{2.
Similarly, since any finitely generated abelian group can be decomposed into the direct sum of
torsion subgroups and free subgroups, all finitely generated abelian groups admit a free resolution
of length two.

Actually, over a principal ideal domain R (e.g. R “ Z), every module admits a free resolution
of length two. The reason is that if F � M is a surjection with F free, then the kernel F 1 Ă F
is free by a general fact (add: citation needed) that a submodule of a free module is free (if
one works over a PID). So we get a free resolution of the type

0 Ñ F 1 Ñ F ÑM Ñ 0.

In general, projective resolutions are not at all unique. Nonetheless, they are unique up to chain
homotopy. Thus a projective resolution is a rather good “replacement” for the initial module.

1.5.5 Proposition Let M,N be modules and let P˚ Ñ M,P 1˚ Ñ N be projective resolutions.
Let f : M Ñ N be a morphism. Then there is a morphism

P˚ Ñ P 1˚

such that the following diagram commutes:

. . . // P1
//

��

P0
//

��

M

f

��
. . . // P 11

// P 10
// N

This morphism is unique up to chain homotopy.

Proof. Let P˚ Ñ M and P 1˚ Ñ N be projective resolutions. We will define a morphism of
complexes P˚ Ñ P 1˚ such that the diagram commutes. Let the boundary maps in P˚, P

1
˚ be

denoted d (by abuse of notation). We have an exact diagram

. . . // Pn
d // Pn´1

d // . . .
d // P0

//M

f

��

// 0

. . . // P 1n
d // P 1n´1

// . . .
d // P 10

// N // 0

Since P 10 � N is an epimorphism, the map P0 Ñ M Ñ N lifts to a map P0 Ñ P 10 making the
diagram

P0

��

//M

f

��
P 10

// N

commute. Suppose we have defined maps Pi Ñ P 1i for i ď n such that the following diagram
commutes:

Pn
d //

��

Pn´1
d //

��

. . .
d // P0

��

//M

f

��

// 0

P 1n
d // P 1n´1

// . . .
d // P 10

// N // 0
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Then we will define Pn`1 Ñ P 1n`1, after which induction will prove the existence of a map. To
do this, note that the map

Pn`1 Ñ Pn Ñ P 1n Ñ P 1n´1

is zero, because this is the same as Pn`1 Ñ Pn Ñ Pn´1 Ñ P 1n´1 (by induction, the diagrams
before n commute), and this is zero because two P -differentials were composed one after another.
In particular, in the diagram

Pn`1
// Pn

��
P 1n`1

// P 1n

,

the image in P 1n of Pn`1 lies in the kernel of P 1n Ñ P 1n´1, i.e. in the image I of P 1n`1. The exact
diagram

Pn`1

��
P 1n`1

// I // 0

shows that we can lift Pn`1 Ñ I to Pn`1 Ñ P 1n`1 (by projectivity). This implies that we can
continue the diagram further and get a morphism P˚ Ñ P 1˚ of complexes.

Suppose f, g : P˚ Ñ P 1˚ are two morphisms of the projective resolutions making

P0
//

��

M

��
P 10

// N

commute. We will show that f, g are chain homotopic.

For this, we start by defining D0 : P0 Ñ P 11 such that dD0 “ f ´ g : P0 Ñ P 10. This we
can do because f ´ g sends P0 into kerpP 10 Ñ Nq, i.e. into the image of P 11 Ñ P 10, and P0

is projective. Suppose we have defined chain-homotopies Di : Pi Ñ Pi`1 for i ď n such that
dDi `Di´1d “ f ´ g for i ď n. We will define Dn`1. There is a diagram

Pn`1

��

// Pn

Dn}} ��

// Pn´1

Dn´1}} ��
P 1n`2

// P 1n`1
// P 1n // P 1n´1

where the squares commute regardless of whether you take the vertical maps to be f or g
(provided that the choice is consistent).

We would like to define Dn`1 : Pn Ñ P 1n`1. The key condition we need satisfied is that

dDn`1 “ f ´ g ´Dnd.

However, we know that, by the inductive hypothesis on the D’s

dpf ´ g ´Dndq “ fd´ gd´ dDnd “ fd´ gd´ pf ´ gqd`Dndd “ 0.
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In particular, f ´ g ´Dnd lies in the image of P 1n`1 Ñ P 1n. The projectivity of Pn ensures that
we can define Dn`1 satisfying the necessary condition.

1.5.6 Corollary Let P˚ Ñ M,P 1˚ Ñ M be projective resolutions of M . Then there are maps
P˚ Ñ P 1˚, P

1
˚ Ñ P˚ under M such that the compositions are chain homotopic to the identity.

Proof. Immediate.

Injective resolutions

One can dualize all this to injective resolutions. add: do this

Definition

Often in homological algebra, we see that “short exact sequences induce long exact sequences.”
Using the theory of derived functors, we can make this formal.

Let us work in the category of modules over a ring R. Fix two such categories. Recall that a right-
exact functor F (from the category of modules over a ring to the category of modules over another
ring) is an additive functor such that for every short exact sequence 0 Ñ A Ñ B Ñ C Ñ 0, we
get a exact sequence F pAq Ñ F pBq Ñ F pCq Ñ 0.

We want a natural way to continue this exact sequence to the left; one way of doing this is to
define the left derived functors.

1.5.7 Definition Let F be a right-exact functor and P˚ Ñ M are projective resolution. We
can form a chain complex F pP˚q whose object in degree i is F pPiq with boundary maps F pBq.
The homology of this chain complex denoted LiF are the left derived functors.

For this definition to be useful, it is important to verify that deriving a functor yields functors
independent on choice of resolution. This is clear by ??.

1.5.8 Theorem The following properties characterize derived functors:

1. L0F p´q “ F p´q

2. Suppose 0 Ñ A Ñ B Ñ C Ñ 0 is an exact sequence and F a right-exact functor; the left
derived functors fit into the following exact sequence:

¨ ¨ ¨LiF pAq Ñ LiF pBq Ñ LiF pCq Ñ Li´1F pAq ¨ ¨ ¨ Ñ L1pCq Ñ L0F pAq Ñ L0F pBq Ñ L0F pCq Ñ 0
(1.5.2)

Proof. The second property is the hardest to prove, but it is by far the most useful; it is essentially
an application of the snake lemma.
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One can define right derived functors analogously; if one has a left exact functor (an additive
functor that takes an exact sequence 0 Ñ AÑ B Ñ C Ñ 0 to 0 Ñ F pAq Ñ F pBq Ñ F pCq), we
can pick an injective resolution instead (the injective criterion is simply the projective criterion
with arrows reversed). If M Ñ I˚ is a injective resolution then the cohomology of the chain
complex F pI˚q gives the right derived functors. However, variance must also be taken into
consideration so the choice of whether or not to use a projective or injective resolution is of
importance (in all of the above, functors were assumed to be covariant). In the following, we see
an example of when right derived functors can be computed using projective resolutions.

Ext functors

1.5.9 Definition The right derived functors of Homp´, Nq are called the Ext-modules denoted
ExtiRp´, Nq.

We now look at the specific construction:

Let M,M 1 be R-modules. Choose a projective resolution

¨ ¨ ¨ Ñ P2 Ñ P1 Ñ P0 ÑM Ñ 0

and consider what happens when you hom this resolution into N . Namely, we can consider
homRpM,Nq, which is the kernel of hompP0,Mq Ñ hompP1,Mq by exactness of the sequence

0 Ñ homRpM,Nq Ñ homRpP0, Nq Ñ homRpP1, Nq.

You might try to continue this with the sequence

0 Ñ homRpM,Nq Ñ homRpP0, Nq Ñ homRpP1, Nq Ñ homRpP2, Nq Ñ . . . .

In general, it won’t be exact, because homR is only left-exact. But it is a chain complex. You
can thus consider the homologies.

1.5.10 Definition The homology of the complex thomRpPi, Nqu is denoted ExtiRpM,Nq. By
definition, this is kerphompPi, Nq Ñ hompPi`1, Nqq{ imphompPi´1, Nq Ñ hompPi, Nqq. This is
an R-module, and is called the ith ext group.

Let us list some properties (some of these properties are just case-specific examples of general
properties of derived functors)

1.5.11 Proposition Ext0
RpM,Nq “ homRpM,Nq.

Proof. This is obvious from the left-exactness of homp´, Nq. (We discussed this.)

1.5.12 Proposition ExtipM,Nq is a functor of N .

Proof. Obvious from the definition.

Here is a harder statement.
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1.5.13 Proposition ExtipM,Nq is well-defined, independent of the projective resolution P˚ Ñ
M , and is in fact a contravariant additive functor of M .1

Proof. Omitted. We won’t really need this, though; it requires more theory about chain com-
plexes.

1.5.14 Proposition If M is annihilated by some ideal I Ă R, then so is ExtipM,Nq for each
i.

Proof. This is a consequence of the functoriality in M . If x P I,then x : M Ñ M is the zero
map, so it induces the zero map on ExtipM,Nq.

1.5.15 Proposition ExtipM,Nq “ 0 if M projective and i ą 0.

Proof. In that case, one can use the projective resolution

0 ÑM ÑM Ñ 0.

Computing Ext via this gives the result.

1.5.16 Proposition If there is an exact sequence

0 Ñ N 1 Ñ N Ñ N2 Ñ 0,

there is a long exact sequence of Ext groups

0 Ñ hompM,N 1q Ñ hompM,Nq Ñ hompM,N2q Ñ Ext1pM,N 1q Ñ Ext1pM,Nq Ñ . . .

Proof. This proof will assume a little homological algebra. Choose a projective resolution P˚ Ñ
M . (The notation P˚ means the chain complex ¨ ¨ ¨ Ñ P2 Ñ P1 Ñ P0.) In general, homming out
of M is not exact, but homming out of a projective module is exact. For each i, we get an exact
sequence

0 Ñ homRpPi, N
1q Ñ homRpPi, Nq Ñ homRpPi, N

2q Ñ 0,

which leads to an exact sequence of chain complexes

0 Ñ homRpP˚, N
1q Ñ homRpP˚, Nq Ñ homRpP˚, N

2q Ñ 0.

Taking the long exact sequence in homology gives the result.

Much less obvious is:

1.5.17 Proposition There is a long exact sequence in the M variable. That is, a short exact
sequence

0 ÑM 1 ÑM ÑM2 Ñ 0

leads a long exact sequence

0 Ñ homRpM
2, Nq Ñ homRpM,Nq Ñ homRpM

1, Nq Ñ Ext1pM2, Nq Ñ Ext1pM,Nq Ñ . . . .

1I.e. a map M ÑM 1 induces ExtipM 1, Nq Ñ ExtipM,Nq.
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Proof. Omitted.

We now can characterize projectivity:

1.5.18 Corollary TFAE:

1. M is projective.

2. ExtipM,Nq “ 0 for all R-modules N and i ą 0.

3. Ext1pM,Nq “ 0 for all N .

Proof. We have seen that 1 implies 2 because projective modules have simple projective resolu-
tions. 2 obviously implies 3. Let’s show that 3 implies 1.Choose a projective module P and a
surjection P �M with kernel K. There is a short exact sequence 0 Ñ K Ñ P ÑM Ñ 0. The
sequence

0 Ñ hompM,Kq Ñ hompP,Kq Ñ hompK,Kq Ñ Ext1pM,Kq “ 0

shows that there is a map P Ñ K which restricts to the identity K Ñ K. The sequence
0 Ñ K Ñ P Ñ M Ñ 0 thus splits, so M is a direct summand in a projective module, so is
projective.

Finally, we note that there is another way of constructing Ext. We constructed them by choosing
a projective resolution of M . But you can also do this by resolving N by injective modules.

1.5.19 Definition An R-module Q is injective if homRp´, Qq is an exact (or, equivalently,
right-exact) functor. That is, if M0 Ă M is an inclusion of R-modules, then any map M0 Ñ Q
can be extended to M Ñ Q.

If we are given M,N , and an injective resolution N Ñ Q˚, we can look at the chain complex
thompM,Qiqu, i.e. the chain complex

0 Ñ hompM,Q0q Ñ hompM,Q1q Ñ . . .

and we can consider the cohomologies.

1.5.20 Definition We call these cohomologies

ExtiRpM,Nq1 “ kerphompM,Qiq Ñ hompM,Qi`1qq{ imphompM,Qi´1q Ñ hompM,Qiqq.

This is dual to the previous definitions, and it is easy to check that the properties that we
couldn’t verify for the previous Exts are true for the Ext1’s.

Nonetheless:

1.5.21 Theorem There are canonical isomorphisms:

ExtipM,Nq1 » ExtipM,Nq.

In particular, to compute Ext groups, you are free either to take a projective resolution of M ,
or an injective resolution of N .
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Idea of proof. In general, it might be a good idea to construct a third more complex construction
that resembles both. Given M,N construct a projective resolution P˚ Ñ M and an injective
resolution N Ñ Q˚. Having made these choices, we get a double complex

homRpPi, Q
jq

of a whole lot of R-modules. The claim is that in such a situation, where you have a double
complex Cij , you can form an ordinary chain complex C 1 by adding along the diagonals. Namely,
the nth term is C 1n “

À

i`j“nCij . This total complex will receive a map from the chain complex
used to compute the Ext groups and a chain complex used to compute the Ext1 groups. There
are maps on cohomology,

ExtipM,Nq Ñ H ipC 1˚q, ExtipM,Nq1 Ñ H ipC 1˚q.

The claim is that isomorphisms on cohomology will be induced in each case. That will prove the
result, but we shall not prove the claim.

Last time we were talking about Ext groups over commutative rings. For R a commutative
ring and M,N R-modules, we defined an R-module ExtipM,Nq for each i, and proved various
properties. We forgot to mention one.

1.5.22 Proposition If R noetherian, andM,N are finitely generated, ExtipM,Nq is also finitely
generated.

Proof. We can take a projective resolution P˚ of M by finitely generated free modules, R being
noetherian. Consequently the complex hompP˚, Nq consists of finitely generated modules. Thus
the cohomology is finitely generated, and this cohomology consists of the Ext groups.
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2.1. Exact categories

In this section we will introduce exact categories which allow us to define the concepts of kernels,
cokernels, images and coimages crucial for doing homological algebra in a more abstract sense.
The main goal will to prove the snake lemma and the five lemma in exact categories.

2.1.1 Definition Let C be a category. An object of C which is is both an initial and a terminal
object is termed a zero object of C. It is necessarily uniquely defined up to isomorphism and will
be denoted by 0C or briefly by 0.

For every object A of C, the unique morphism 0 Ñ A will be denoted by 00ÑA. The unique
morphism A Ñ 0 will be denoted by 0AÑ0. If B is another object, we denote the composition
00ÑB0AÑ0 : A Ñ B by 0AÑB, 0AB or just zero if no confusion can arise and call it the zero
morphism between A and B.

2.1.2 Definition Assume that C is a category with zero object 0 and let f : A Ñ B be a
morphism in C.

(i) By a kernel of f one understands a morphism i : K Ñ A such that fi “ 0KB and such that
for every morphism j : L Ñ A which satisfies fj “ 0LB there exists a unique morphism
l : LÑ K making the diagram

K A

L

i

l
j

(2.1.1)

commute.

(ii) By a cokernel of f one understands a morphism c : B Ñ Q such that cf “ 0AQ and such
that for every morphism d : B Ñ R which satisfies df “ 0AR there exists a unique morphism
r : QÑ R making the diagram

B Q

R

c

d
r (2.1.2)

commute.

2.1.3 Remark By definition it is clear that the kernel of f : A Ñ B can be identified with
the equalizer eqpf, 0ABq and that the cokernel of f : A Ñ B coincides with the coqualizer
coeqpf, 0ABq. Either using this observation and uniqueness (up to isomorphism) of equalizers
and coequalizers or by direct argument using the universal property of the kernel respectively
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the cokernel one shows that kernels and cokernels are unique up to unique isomorphism. By this
uniqueness property it makes sense to give the kernel and the cokernel of f each a symbol. We
will from now on write kerpfq : Kerpfq Ñ A for the kernel of f and cokerpfq : B Ñ Cokerpfq
for the cokernel of f . Note that Kerpfq andf Cokerpfq are objects of the underlying category
whereas kerpfq and cokerpfq are morphisms.

2.1.4 Lemma In a category C with zero object 0 all kernels are monomorphisms and all co-
kernels are epimorphisms.

Proof. Let f : AÑ B be a morphism and assume that i : K Ñ A is a kernel. Let g, h : C Ñ K
be two morphisms and assume that ig “ ih. Denote that morphism by j. Then

fj “ fig “ fih “ 0CB .

Hence, by the universal property of the kernel there exists a unique morphism C Ñ K making
the diagram

K A

C

i

j

commute. But both g and h make this diagram commute, so they have to coincide. Therefore,
i is a monomorphism. The argument for the cokernel is dual.

2.1.5 Still working in a category C with a zero object and all kernels and cokernels we construct
two binary relations ěs and ďq between morphisms in C having the same codomain respectively
the same domain.

For morphisms of the form u : X Ñ Z and v : Y Ñ Z we say that u succeeds v, in signs u ěs v
if there exists a morphism y : Y Ñ X such that the diagram

Y

X Z

vy

u

commutes. In other words, u to succeed v means that v factors through u. If u succeeds v and
v succeeds u, we say that u and v are s-equivalent and write u ”s v.

Given two morphisms of the form f : A Ñ B and g : A Ñ C we say that f precedes g, in signs
f ďq g, if g factors through f , that is, if there exists a morphism c : B Ñ C such that the
diagram

C

A B

g

f

c

commutes. If f precedes g and g precedes f , then we call f and g q-equivalent and write f ”q g.
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By definition it is clear that the relations ěs and ďq are reflexive and transitive. If C is a small
category, ěs and ďq are therefore preorders on the morphism sets Cp´, Zq and CpA,´q, respec-
tively. Since ěs and ďq are reflexive and transitive so are s-equivalence and q-equivalence. Both
are symmetric by definition, hence s-equivalence and q-equivalence are equivalence relations. In
general, if f and g are q-equivalent, the relating morphisms b and c which fulfill the equalities
g “ cf and f “ bg are neither uniquely determined nor need to be isomorphisms. An analo-
gous observation holds for s-equivalence. The following results state conditions under which the
relating morphisms for s-equivalence and for q-equivalence are isomorphisms.

2.1.6 Lemma Let C be a category with zero object and all kernels and cokernels. Assume that
A and Z are objects of C.

(i) Two monomorphisms u : X Ñ Z and v : Y Ñ Z are s-equivalent if and only there exists
an isomorphism y : Y Ñ X such that v “ uy. In this case, the inverse x :“ y´1 satisfies
u “ vx.

(ii) Two epimorphisms f : A Ñ B and g : A Ñ C are q-equivalent if and only if there exists
an isomorphism c : B Ñ C such that g “ cf . In this case, the inverse b :“ c´1 satisfies
f “ bg.

Proof. ad (i ). Assume that u : X Ñ Z and v : Y Ñ Z are s-equivalent. Then there exist
morphisms y : Y Ñ X and x : X Ñ Y such that v “ uy and u “ vy. Therefore,

u y x “ u idX and v x y “ v idY .

Since both u and v are monomorphisms, the equalities yx “ idX and xy “ idY follow, hence x
and y are mutually inverse isomorphisms. The converse is clear by definition of s-equivalence.

ad (ii ). The argument is dual to the one for (i).

2.1.7 Remark Given two monomorphisms u : X Ñ Z and v : Y Ñ Z, we will often just
write u ” v instead of u ”s v to denote that u and v are s-equivalent. Similarly, for two
epimorphisms f : AÑ B and g : AÑ C we usually abbreviate q-equivalence, that is f ”q g, by
f ” g. In addition, we will often briefly say that u and v (respectively f and g) are equivalent
instead of saying they are s-equivalent (respectively q-equivalent). By the preceding lemma,
these agreements will not cause any confusion rather will they improve readability.

2.1.8 Definition Assume that C is a category with zero object 0 and that all morphisms in C
have a kernel and a cokernel. Let f : AÑ B be a morphism.

(i) The kernel kerpcokerpfqq : Kerpcokerpfqq Ñ B of the cokernel of f is called the image of f .
It is denoted by impfq : Impfq Ñ B.

(ii) The cokernel cokerpkerpfqq : AÑ Cokerpkerpfqq of the kernel of f is called the coimage of
f . One denotes it by coimpfq : AÑ Coimpfq.

2.1.9 Lemma In a category C which possess a zero object 0 and all kernels and cokernels, the
follow natural equivalences hold true.
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(i)

ker coker ker f ” ker f

(ii)
to be added: coker ker coker case!

question: does one need C to be exact?

2.1.10 Under the same assumptions as before that C has a zero object and possesses all kernels
and cokernels consider in the following diagram a morphism f : A Ñ B and the associated
kernel, coimage, image and cokernel of f :

A B

Kerpfq Coimpfq Impfq Cokerpfq

f

coimpfq

cokerpfqkerpfq f 1

f

impfq
(2.1.3)

Since the composition f kerpfq coincides with the zero morphism, there exists by the universal
property of the coimage a unique morphism f 1 : Coimpfq Ñ B such that the diagram consisting
of the straight and dashed arrows commutes. Since the composition

cokerpfq f 1 coimpfq “ cokerpfq f

is the zero morphism and coimpfq is an epimorphism by Lemma 2.1.4, the morphism cokerpfq f 1

has to be the zero morphism as well. By the universal property of the image, there exists a unique
morphism f : Coimpfq Ñ Impfq making the full diagram commutate.

2.1.11 Definition A category C which has a zero object 0 and possesses all kernels and cokernels
is called an exact category if for all morphisms f : A Ñ B the associated unique morphism
f : Coimpfq Ñ Impfq making the diagram (2.1.3) commute is an isomorphism.

2.1.12 Definition Let
f‚ : . . . An´1

fn´1
ÝÑ An

fn
ÝÑ An`1 . . .

be a sequence of objects and morphisms in the exact category C. One says that f‚ is exact at
An if the kernel of fn is an image of fn´1. If the sequence is exact at each An, then f‚ is called
an exact sequence.

From now on we always assume that the underlying category C is exact.

2.1.13 Lemma Let
A B C

f g (2.1.4)

be an exact sequence of objects and morphisms in C. Then the following holds true.
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(i) If d : D Ñ B is a morphism such that the diagram of straight arrows in the diagram

D

0 A B C

0 (2.1.5)

commutes and such that the horizontal sequence is exact, then there exists a unique morphism
D Ñ A making the full diagram commute.

(ii) If e : B Ñ E is a morphism such that the diagram of straight arrows in the diagram

A B C 0

E
0

(2.1.6)

commutes and such that the horizontal sequence is exact, then there exists a unique morphism
C Ñ E making the full diagram commute.

Proof. ad (i ). Since gd “ 0, there exists a unique morphism d : D Ñ Ker g such that d “
ker d d. Since by exactness ker g ” im f , we actually have unique morphism d : D Ñ Im f such
that d “ im f d.

2.1.14 Lemma The sequence

f‚ : . . . An´1
fn´1
ÝÑ An

fn
ÝÑ An`1 . . .

in C is exact at An if and only the following conditions hold true:

(i) fn fn´1 “ 0An´1ÑAn`1.

(ii) cokerpfn´1q kerpfnq “ 0KerpfnqÑCoker fn´1
.

2.2. Additive categories

2.2.1 Definition By a pre-additive category one understands a category A enriched over the
category of abelian groups. This means that for each pair of objects A,B in A the morphism set
MorpA,Bq carries an abelian group structure

`pA,Bq : MorpA,Bq ˆMorpA,Bq Ñ MorpA,Bq, pf, gq ÞÑ f ` g

such that composition of morphisms in A is bilinear in the following sense:

(BL) If A,B,C are objects of A, f, f 1 P MorpA,Bq and g, g1 P MorpB,Cq, then

g ˝ pf ` f 1q “ pg ˝ fq ` pg ˝ f 1q and pg ` g1q ˝ f “ pg ˝ fq ` pg1 ˝ fq .
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IV.2. Homological algebra à la Grothendieck 2.2. Additive categories

2.2.2 Usually one denotes the set of morphism between objects A and B of a pre-additive
category A by HompA,Bq instead of MorpA,Bq. We will follow this conention from now on. The
zero element of HompA,Bq will be denoted by 0pA,Bq or briefly by 0, if no confusion can arise.
In general, and as done already in the definition, we will abbreviate the group operation `pA,Bq
on HompA,Bq by ` for clearity of exposition.

A pre-additive structure on a category imposes quite a useful relation between finite products
and coproducts of its objects, namely that they have to coincide when they exist.

2.2.3 Proposition Let A be a pre-additive category, and A1, . . . , An a finite family of objects in
A.

(1) If
śn
l“1Al is a product with canonical projections pk :

śn
l“1Al Ñ Ak, k “ 1, . . . , n, then

it is also a coproduct where the canonical injections are given by the uniquely determined
morphisms ik : Ak ÞÑ

śn
l“1Al such that

pl ˝ ik “

#

idAk , if k “ l,

0, else.

In addition, the equality
n
ÿ

l“1

il ˝ pl “ idśn
l“1 Al

(2.2.1)

holds true.

(2) If
šn
l“1Al is a coproduct with canonical injections ik :

šn
l“1Al Ñ Ak, k “ 1, . . . , n, then

it is also a product with canonical projections given by the uniquely determined morphisms
pk :

šn
l“1Al ÞÑ Ak such that

pk ˝ il “

#

idAk , if k “ l,

0, else.

In addition, the equality
n
ÿ

l“1

il ˝ pl “ idšn
l“1 Al

(2.2.2)

holds true.

Proof. Let us first show (1). So assume that
śn
l“1Al is a product with canonical projections pk,

and define the ik as in (1). Then we have, for k “ 1, . . . , n,

pk ˝
´

n
ÿ

l“1

il ˝ pl

¯

“

n
ÿ

l“1

pk ˝ il ˝ pl “ pk .

By the universal property of the product, Equation (2.2.1) follows. Now let fk : Ak Ñ X,
k “ 1, . . . , n, be a family of morphisms in A. Define f :

śn
l“1Al Ñ X by f “

řn
l“1 fl ˝ pl and

compute

f ˝ ik “
´

n
ÿ

l“1

fl ˝ pl

¯

˝ ik “
n
ÿ

l“1

fl ˝ pl ˝ ik “ fk .
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IV.2. Homological algebra à la Grothendieck 2.3. Abelian categories

If f̃ :
śn
l“1Al Ñ X is another morphism satisfying f̃ ˝ ik “ fk for all i, then

f ´ f̃ “
`

f ´ f̃
˘

˝

´

n
ÿ

l“1

il ˝ pl

¯

“

n
ÿ

l“1

`

f ´ f̃
˘

˝ il ˝ pl “

“

n
ÿ

l“1

`

f ´ f̃
˘

˝ il ˝ pl “
n
ÿ

l“1

`

fl ´ fl
˘

˝ pl “ 0 .

But this entails that
śn
l“1Al together with the morphisms ik fulfills the universal property of a

coproduct of the family pAlqnl“1.

One shows (2) by an analogous but dual argument.

Since by the proposition the product and the coproduct of finitely many objects Ak, k “ 1, . . . , n
in a pre-additive category A coincide (up to canonical isomorphism), one denotes them by the
same symbol, namely by

n
à

k“1

Ak,

and calls the resulting object the direct sum of the Ak. The proposition tells also that an initial
or terminal object in A has to be a zero object which we then denote by 0A or 0 if no confusion
can arise.

2.2.4 Definition A pre-additive category A is called additive, if it has the following properties:

(A0) A has a zero object.

(A1) Every finite family of objects has a product.

(A1)˝ Every finite family of objects has a coproduct.

2.2.5 Example The category Ab of abelian groups carries in a natural way the structure of
an additive category. Likewise, if R is a (unital) ring, the category R-Mod of R-left modules is
additive.

2.3. Abelian categories

2.3.1 Definition By an abelian category one understands an additive category A which fulfills
the following axioms by Grothendieck:

(AB1) Every morphism has a kernel and a cokernel.

(AB2) For every morphism f the induced canonical morphism coim f Ñ im f is an isomorphism.
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IV.2. Homological algebra à la Grothendieck 2.3. Abelian categories

2.3.2 Proposition Assume that A is an abelian category, and let

X A

B Y

f

g r

s

(2.3.1)

be a commutative diagram in A.

(1) The diagram is cartesian if and only if the sequence

0 ÝÝÝÝÝÑ X
i1f`i2g
ÝÝÝÝÝÑ A‘B

rp1´sp2
ÝÝÝÝÝÑ Y (2.3.2)

is exact.

(2) The diagram is cocartesian, if and only if

X
i1f´i2g
ÝÝÝÝÝÑ A‘B

rp1`sp2
ÝÝÝÝÝÑ Y ÝÝÝÝÝÑ 0 (2.3.3)

is exact.

(3) If the diagram is cartesian, and s an epimorphism, then the diagram is even bicartesian, and
f is an epimorphism, too. Moreover, one obtains in this case a commutative diagram with
exact rows

0 ker s X A 0

0 ker s B Y 0 .

f

g r

s

(2.3.4)

In particular this means that the kernel of s factors through g then.

(4) If the diagram is cocartesian, and f a monomorphism, then the diagram is even bicartesian,
and s is a monomorphism, too. Moreover, one obtains in this case a commutative diagram
with exact rows

0 X A coker f 0

0 B Y coker f 0.

f

g r

s

(2.3.5)

In particular this means that the cokernel of f factors through r then.

Proof. To prove (1), consider the sequence

0 ÝÝÝÝÝÑ K
k

ÝÝÝÝÝÑ A‘B
rp1´sp2
ÝÝÝÝÝÑ Y, (2.3.6)

where k is the kernel of rp1 ´ sp2. Given a commutative diagram

P A

B Y,

l

m r

s
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the morphism P
i1l`i2m
ÝÝÝÝÝÑ A‘B must then factor through k in a unique way. Since the diagram

K A

B Y

p1k

p2k r

s

commutes as well, this implies that (2.3.1) is cartesian if and only if the sequence (2.3.2) is exact.

Next let us show (3). So assume that the diagram (2.3.1) is cartesian and that s is epic. Then
rp1 ´ sp2 must be epic as well, since prp1 ´ sp2qi2 “ ´s. So both sequences (2.3.2) and (2.3.3)
are exact, and the diagram is bicartesian. Now assume that hf “ 0 for some morphism h. Then
f “ p1k, where k “ i1f ` i2g is monic by (1). Since hp1k “ 0, the morphism hp1 factors through
the cokernel of k which is rp1 ` sp2. Hence hp1 “ h1prp1 ` sp2q for some h1. One then obtains

0 “ hp1i2 “ h1prp1 ` sp2qi1 “ h1r .

By assumption, r is epic, hence h1 “ 0. But then hp1 “ 0, which entails h “ hp1ii “ 0. Therefore
f must be epic as well.

Now consider l : ker s Ñ B, the kernel of s. Since sl “ 0 “ r0, and since the diagram (2.3.1)
is assumed to be cartesian, there exists a unique l1 : ker s Ñ X such that gl1 “ l and fl1 “ 0.
As a kernel, l is monic, hence so is l1. It remains to show that l1 is the kernel of f . To this end
assume fj “ 0 for some morphism j. Because sgj “ rfj “ 0, gj factors through the kernel of
s, hence gj “ lj1 “ gl1j1, and 0 “ sgj “ sgl1j1. On the other hand, rfj “ 0 “ sgl1j1 “ rfl1j1.
By the universal property of the pullback one obtains j “ l1j1. Since j1 is monic, j1 is uniquely
determined by j, so l1 is the kernel of f .

Statments (2) and (4) follow by dualization.

2.4. Abeliannes of a category is a property

Introduction

One of the fundamental observations about an abelian category is that the corresponding additive
structure, meaning the abelian group structures on its hom-sets, actually is uniquely determined
by the underlying category and its fundamental properties. In this section, we will make this
statement precise and show how to recover the additive structure, if the category satisfies certain
properties.

The A-axioms

2.4.1 Given a category A we consider the following axioms:

(A0) A has a zero object.

(A1) Every finite family of objects has a product.
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(A1)˝ Every finite family of objects has a coproduct.

(A2) Every morphism has a kernel.

(A2)˝ Every morphism has a cokernel.

(A3) Every monomorphism is the kernel of a morphism.

(A3)˝ Every epimorphism is the cokernel of a morphism.

It is the goal of this section to prove the following fundamental result.

2.4.2 Theorem Every abelian category A satisfies Axioms (A0) to (A3)˝. Vice versa, if A is a
category satisfying Axioms (A0) to (A3)˝, then there exists a unique pre-additive structure on A,
and the resulting additive category is abelian.
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IV.3. Homotopical algebra

3.1. Introduction

In this chapter, we shall introduce the formalism of model categories. Model categories provide
an abstract setting for homotopy theory: in particular, we shall see that topological spaces form
a model category. In a model category, it is possible to talk about notions such as “homotopy,”
and thus to pass to the homotopy category.

But many algebraic categories form model categories as well. The category of chain complexes
over a ring forms one. It turns out that this observation essentially encodes classical homological
algebra. We shall see, in particular, how the notion of derived functor can be interpreted in a
model category, via this model structure on chain complexes.

Our ultimate goal in developing this theory, however, is to study the non-abelian case. We
are interested in developing the theory of the cotangent complex, which is loosely speaking the
derived functor of the Kähler differentials ΩS{R on the category of R-algebras. This is not a
functor on an additive category; however, we shall see that the non-abelian version of derived
functors (in the category of simplicial R-algebras) allows one to construct the cotangent complex
in an elegant way.

3.2. Model categories

Definition

We need to begin with the notion of a retract of a map.

3.2.1 Definition Let C be a category. Then we can form a new category MapC of maps of C.
The objects of this category are the morphisms A Ñ B of C, and a morphism between A Ñ B
and C Ñ D is given by a commutative square

A

��

// C

��
B // D

.
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IV.3. Homotopical algebra 3.2. Model categories

A map in C is a retract of another map in C if it is a retract as an object of MapC. This means
that there is a diagram:

A //

Id

''

f
��

B

g

��

// A

f
��

X //

Id

@@Y // X

For instance, one can prove:

3.2.2 Proposition In any category, isomorphisms are closed under retracts.

We leave the proof as an exercise.

3.2.3 Definition Amodel category is a category C equipped with three classes of maps called
cofibrations, fibrations, and weak equivalences. They have to satisfy five axioms M1´M5.

Denote cofibrations as ãÑ, fibrations as �, and weak equivalences as Ñ „.

(M1) C is closed under all limits and colimits.1

(M2) Each of the three classes of cofibrations, fibrations, and weak equivalences is closed under
retracts.2

(M3) If two of three in a composition are weak equivalences, so is the third.

f //

h

��
g

��

(M4) (Lifts) Suppose we have a diagram

A //� _

i
��

X

p
����

B //

>>

Y

Here i : AÑ B is a cofibration and p : X Ñ Y is a fibration. Then a lift exists if i or p is
a weak equivalence.

1Many of our arguments will involve infinite colimits. The original formulation in ? required only finite such,
but most people assume infinite.

2Quillen initially called model categories satisfying this axiom closed model categories. All the model categories
we consider will be closed, and we have, following ?, omitted this axiom.
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IV.3. Homotopical algebra 3.2. Model categories

(M5) (Factorization) Every map can be factored in two ways:

.
„

    ..
�

>>

p�

„
  

f // .

.

>> >>

In words, it can be factored as a composite of a cofibration followed by a fibration which is
a weak equivalence, or as a cofibration which is a weak equivalence followed by a fibration.

A map which is a weak equivalence and a fibration will be called an acyclic fibration. Denote
this by � „. A map which is both a weak equivalence and a cofibration will be called an acyclic
cofibration, denoted ãÑ „. (The word “acyclic” means for a chain complex that the homology
is trivial; we shall see that this etymology is accurate when we construct a model structure on
the category of chain complexes.)

3.2.4 Remark If C is a model category, then Cop is a model category, with the notions of
fibrations and cofibrations reversed. So if we prove something about fibrations, we automatically
know something about cofibrations.

We begin by listing a few elementary examples of model categories:

3.2.5 Example 1. Given a complete and cocomplete category C, then we can give a model
structure to C by taking the weak equivalences to be the isomorphisms and the cofibrations
and fibrations to be all maps.

2. If R is a Frobenius ring, or the classes of projective and injective R-modules coincide, then
the category of modules over R is a model category. The cofibrations are the injections,
the fibrations are the surjections, and the weak equivalences are the stable equivalences (a
term which we do not define). See ?.

3. The category of topological spaces admits a model structure where the fibrations are the
Serre fibrations and the weak equivalences are the weak homotopy equivalences. The cofi-
brations are, as we shall see, determined from this, though they can be described explicitly.

3.2.6 Remark Show that there exists a model structure on the category of sets where the
injections are the cofibrations, the surjections are fibrations, and all maps are weak equivalences.

The retract argument

The axioms for a model category are somewhat complicated. We are now going to see that
they are actually redundant. That is, any two of the classes of cofibrations, fibrations, and
weak equivalences determine the third. We shall thus introduce a useful trick that we shall have
occasion to use many times further when developing the foundations.
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IV.3. Homotopical algebra 3.2. Model categories

3.2.7 Definition Let C be any category. Suppose that P is a class of maps of C. A map
f : A Ñ B has the left lifting property with respect to P iff: for all p : C Ñ D in P and all
diagrams

A //

f
��

C

p

��
B

D

>>

// D

a lift represented by the dotted arrow exists, making the diagram commute. We abbreviate this
property to LLP. There is also a notion of a right lifting property, abbreviated RLP, where
f is on the right.

3.2.8 Proposition Let P be a class of maps of C. Then the set of maps f : A Ñ B that have
the LLP (resp. RLP) with respect to P is closed under retracts and composition.

Proof. This will be a diagram chase. Suppose f : A Ñ B and g : B Ñ C have the LLP with
respect to maps in P . Suppose given a diagram

A

g˝f
��

// X

��
C // Y

with X Ñ Y in P . We have to show that there exists a lift C Ñ X. We can split this into a
commutative diagram:

A

f
��

// X

��

B

>>

  
g

��
C // Y

The lifting property provides a map φ : B Ñ X as in the dotted line in the diagram. This gives
a diagram

B

g

��

φ // X

��
C //

>>

Y

and in here we can find a lift because g has the LLP with respect to p. It is easy to check that
this lift is what we wanted.

The axioms of a model category imply that cofibrations have the LLP with respect to trivial
fibrations, and acyclic cofibrations have the LLP with respect to fibrations. There are dual state-
ments for fibrations. It turns out that these properties characterize cofibrations and fibrations
(and acyclic ones).

3.2.9 Theorem Suppose C is a model category. Then:
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(1) A map f is a cofibration iff it has the left lifting property with respect to the class of acyclic
fibrations.

(2) A map is a fibration iff it has the right lifting property w.r.t. the class of acyclic cofibrations.

Proof. Suppose you have a map f , that has LLP w.r.t. all acyclic fibrations and you want it to
be a cofibration. (The other direction is an axiom.) Somehow we’re going to have to get it to be
a retract of a cofibration. Somehow you have to use factorization. Factor f :

A

f
��

� p

  
X X 1„
oooo

We had assumed that f has LLP. There is a lift:

A �
� i //

f
��

X 1

„
����

X
Id //

>>

X

This implies that f is a retract of i.

A //

f
��

A� _

i
��

// A

f
��

X
D // X 1 // X

3.2.10 Theorem (1) A map p is an acyclic fibration iff it has RLP w.r.t. cofibrations

(2) A map is an acyclic cofibration iff it has LLP w.r.t. all fibrations.

Suppose we know the cofibrations. Then we don’t know the weak equivalences, or the fibrations,
but we know the maps that are both. If we know the fibrations, we know the maps that are both
weak equivalences and cofibrations. This is basically the same argument. One direction is easy:
if a map is an acyclic fibration, it has the lifting property by the definitions. Conversely, suppose
f has RLP w.r.t. cofibrations. Factor this as a cofibration followed by an acyclic fibration.

X
Id //� _

��

X

f
��

Y 1
p

„
// //

>>

Y

f is a retract of p; it is a weak equivalence because p is a weak equivalence. It is a fibration by
the previous theorem.

3.2.11 Corollary A map is a weak equivalence iff it can be written as the product of an acyclic
fibration and an acyclic cofibration.
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We can always write
.

p

    .
f //. �

„
>>

.

By two out of three f is a weak equivalence iff p is. The class of weak equivalences is determined
by the fibrations and cofibrations.

3.2.12 Example (Topological spaces) The construction here is called the Serre model struc-
ture (although it was defined by Quillen). We have to define some maps.

(1) The fibrations will be Serre fibrations.

(2) The weak equivalences will be weak homotopy equivalences

(3) The cofibrations are determined by the above classes of maps.

3.2.13 Theorem A space equipped with these classes of maps is a model category.

Proof. More work than you realize. M1 is not a problem. The retract axiom is also obvious.
(Any class that has the lifting property also has retracts.) The third property is also obvious:
something is a weak equivalence iff when you apply some functor (homotopy), it becomes an
isomorphism. (This is important.) So we need lifting and factorization. One of the lifting
axioms is also automatic, by the definition of a cofibration. Let’s start with the factorizations.
Introduce two classes of maps:

A “ tDn ˆ t0u Ñ Dn ˆ r0, 1s | n ě 0u

B “ AY tSn´1 Ñ Dn | n ě 0, S´1 “ Hu

These are compact, in a category-theory sense. By definition of Serre fibrations, a map is a
fibration iff it has the right lifting property with respect to A. A map is an acyclic fibration iff
it has the RLP w.r.t. B. (This was on the homework.) I need another general fact:

3.2.14 Proposition The class of maps having the left lifting property w.r.t. a class P is closed
under arbitrary coproducts, co-base change, and countable (or even transfinite) composition. By
countable composition

A0 ãÑ A1 Ñ A2 Ñ ¨ ¨ ¨

we mean the map AÑ colimnAn.

Suppose I have a map f0 : X0 Ñ Y0. We want to produce a diagram:

X0
//

f0 !!

X1

f1

��
Y

We have \V Ñ \D where the disjoint union is taken over commutative diagrams

V

��

// X

��
D // Y
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where V Ñ D is in A. Sometimes we call these lifting problems. For every lifting problem, we
formally create a solution. This gives a diagram:

\V //

��

\D

��

��

X

((

// X1
f1

!!
Y

where we have subsequently made the pushout to Y . By construction, every lifting problem in
X0 can be solved in X1.

V //

��

X0

��

� � k // X1

��
D //

>> 66

Y // Y

We know that every map in A is a cofibration. Also, \V Ñ \D is a homotopy equivalence. k is
an acylic cofibration because it is a weak equivalence (recall that it is a homotopy equivalence)
and a cofibration.

Now we make a cone of X0 Ñ X1 Ñ ¨ ¨ ¨X8 into Y . The claim is that f is a fibration:

X �
� „ //

!!

X8

f
��
Y

by which we mean
V //

`
��

Xn

��

// Xn`1

��

// X8

��
D

>>

// Y // Y // Y

where ` P A. V is compact Hausdorff. X8 was a colimit along closed inclusions.

So I owe you one lifting property, and the other factorization.
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V.1. Flatness revisited

In the past, we have already encountered the notion of flatness. We shall now study it in more
detail. We shall start by introducing the notion of faithful flatness and introduce the idea of
“descent.” Later, we shall consider other criteria for (normal) flatness that we have not yet
explored.

We recall (definition 4.4.7) that a module M over a commutative ring R is flat if the functor
N ÞÑ N bRM is an exact functor. An R-algebra is flat if it is flat as a module. For instance, we
have seen that any localization of R is a flat algebra, because localization is an exact functor.

All this has not been added yet!

1.1. Faithful flatness

Faithfully flat modules

Let R be a commutative ring.

1.1.1 Definition The R-module M is faithfully flat if any complex N 1 Ñ N Ñ N2 of R-
modules is exact if and only if the tensored sequence N 1 bR M Ñ N bR M Ñ N2 bR M is
exact.

Clearly, a faithfully flat module is flat.

1.1.2 Example The direct sum of faithfully flat modules is faithfully flat.

1.1.3 Example A (nonzero) free module is faithfully flat, because R itself is flat (tensoring with
R is the identity functor).

We shall now prove several useful criteria about faithfully flat modules.

1.1.4 Proposition An R-module M is faithfully flat if and only if it is flat and if M bRN “ 0
implies N “ 0 for any N .

Proof. Suppose M faithfully flat Then M is flat, clearly. In addition, if N is any R-module,
consider the sequence

0 Ñ N Ñ 0;

it is exact if and only if
0 ÑM bR N Ñ 0
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is exact. Thus N “ 0 if and only if M bR N “ 0.

Conversely, suppose M is flat and satisfies the additional condition. We need to show that if
N 1bRM Ñ NbRM Ñ N2bRM is exact, so is N 1 Ñ N Ñ N2. SinceM is flat, taking homology
commutes with tensoring with M . In particular, if H is the homology of N 1 Ñ N Ñ N2, then
H bRM is the homology of N 1 bRM Ñ N bRM Ñ N2 bRM . It follows that H bRM “ 0,
so H “ 0, and the initial complex is exact.

1.1.5 Example Another illustration of the above technique is the following observation: if M
is faithfully flat and N Ñ N 1 is any morphism, then N Ñ N 1 is an isomorphism if and only if
M b N 1 Ñ M b N is an isomorphism. This follows because the condition that a map be an
isomorphism can be phrased as the exactness of a certain (uninteresting) complex.

1.1.6 Remark (exercise) The direct sum of a flat module and a faithfully flat module is faith-
fully flat.

From the above result, we can get an important example of a faithfully flat algebra over a ring.

1.1.7 Example Let R be a commutative ring, and tfiu a finite set of elements that generate
the unit ideal in R (or equivalently, the basic open sets Dpfiq “ SpecRfi form a covering of
SpecR). Then the algebra

ś

Rfi is faithfully flat over R (i.e., is so as a module). Indeed, as a
product of localizations, it is certainly flat.

So by proposition 1.1.4, we are left with showing that if M is any R-module and Mfi “ 0 for all
i, then M “ 0. Fix m PM , and consider the ideal Annpmq of elements annihilating m. Since m
maps to zero in each localization Mfi , there is a power of fi in Annpmq for each i. This easily
implies that Annpmq “ R, so m “ 0. (We used the fact that if the tfiu generate the unit ideal,
so do

 

fNi
(

for any N P Zě0.)

A functor F between two categories is said to be faithful if the induced map on the hom-sets
hompx, yq Ñ hompFx, Fyq is always injective. The following result explains the use of the term
“faithful.”

1.1.8 Proposition A module M is faithfully flat if and only if it is flat and the functor N Ñ

N bRM is faithful.

Proof. Let M be flat. We need to check that M is faithfully flat if and only if the natural map

homRpN,N
1q Ñ homRpN bRM,N 1 bRMq

is injective. Suppose first M is faithfully flat and f : N Ñ N 1 goes to zero f b 1M : N bRM Ñ

N 1 bRM . We know by flatness that

impfq bRM “ impf b 1M q

so that if f b 1M “ 0, then impfq bM “ 0. Thus by faithful flatness, impfq “ 0 by Proposi-
tion 1.1.4.

Conversely, let us supposeM flat and the functor N Ñ NbRM faithful. Let N ‰ 0; then 1N ‰ 0
as maps N Ñ N . It follows that 1N b 1M and 0 b 1M “ 0 are different as endomorphisms of
M bR N . Thus M bR N ‰ 0. By Proposition 1.1.4, we are done again.
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1.1.9 Example Note, however, that Z‘Z{2 is a Z-module such that tensoring by it is a faithful
but not exact functor.

Finally, we prove one last criterion:

1.1.10 Proposition M is faithfully flat if and only if M is flat and mM ‰M for all maximal
ideals m Ă R.

Proof. IfM is faithfully flat, thenM is flat, andMbRR{m “M{mM ‰ 0 for all m as R{m ‰ 0,
by Proposition 1.1.4. So we get one direction.

Alternatively, suppose M is flat and M bRR{m ‰ 0 for all maximal m. Since every proper ideal
is contained in a maximal ideal, it follows that M bR R{I ‰ 0 for all proper ideals I. We shall
use this and Proposition 1.1.4 to prove that M is faithfully flat

Let N now be any nonzero module. Then N contains a cyclic submodule, i.e. one isomorphic
to R{I for some proper I. The injection

R{I ãÑ N

becomes an injection
R{I bRM ãÑ N bRM,

and since R{I bRM ‰ 0, we find that N bRM ‰ 0. By Proposition 1.1.4, it follows that M is
faithfully flat

1.1.11 Corollary A nonzero finitely generated flat module over a local ring is faithfully flat.

Proof. This follows from proposition 1.1.10 and Nakayama’s lemma.

A finitely presented flat module over a local ring is in fact free, but we do not prove this (except
when the ring is noetherian, see ??).

Proof. Indeed, let R be a local ring with maximal ideal m, and M a finitely generated flat
R-module. Then by Nakayama’s lemma, M{mM ‰ 0, so that M must be faithfully flat.

1.1.12 Proposition Faithfully flat modules are closed under direct sums and tensor products.

Proof. Exercise.

Faithfully flat algebras

Let φ : RÑ S be a morphism of rings, making S into an R-algebra.

1.1.13 Definition S is a faithfully flat R-algebra if it is faithfully flat as an R-module.

1.1.14 Example The map R Ñ Rrxs from a ring into its polynomial ring is always faithfully
flat. This is clear.
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Next, we indicate the usual “sorite” for faithfully flat morphisms:

1.1.15 Proposition Faithfully flat morphisms are closed under composition and base change.

That is, if R Ñ S, S Ñ T are faithfully flat, so is R Ñ T . Similarly, if R Ñ S is faithfully flat
and R1 any R-algebra, then R1 Ñ S bR R

1 is faithfully flat.

The reader may wish to try this proof as an exercise.

Proof. The first result follows because the composite of the two faithful and exact functors
(tensoring bRS and tensoring bST gives the composite bRT ) yields a faithful and exact functor.

In the second case, let M be an R1-module. Then M bR1 pR
1 bR Sq is canonically isomorphic

to M bR S. From this it is clear if the functor M ÞÑ M bR S is faithful and exact, so is
M ÞÑM bR1 pR

1 bR Sq.

Flat maps are usually injective, but they need not be. For instance, if R is a product R1ˆR2, then
the projection map RÑ R1 is flat. This never happens for faithfully flat maps. In particular, a
quotient can never be faithfully flat.

1.1.16 Proposition If S is a faithfully flat R-algebra, then the structure map RÑ S is injective.

Proof. Indeed, let us tensor the map RÑ S with S, over R. We get a morphism of S-modules

S Ñ S bR S,

sending s ÞÑ 1bs. This morphism has an obvious section SbRS Ñ S sending ab b ÞÑ ab. Since
it has a section, it is injective. But faithful flatness says that the original map R Ñ S must be
injective itself.

1.1.17 Example The converse of proposition 1.1.16 definitely fails. Consider the localization
Zp2q; it is a flat Z-algebra, but not faithfully flat (for instance, tensoring with Z{3 yields zero).

1.1.18 Remark (exercise) Suppose φ : RÑ S is a flat, injective morphism of rings such that
S{φpRq is a flat R-module. Then show that φ is faithfully flat.

Flat morphisms need not be injective, but they are locally injective. We shall see this using:

1.1.19 Proposition A flat local homomorphism of local rings is faithfully flat. In particular, it
is injective.

Proof. Let φ : R Ñ S be a local homomorphism of local rings with maximal ideals m, n. Then
by definition φpmq Ă n. It follows that S ‰ φpmqS, so by Proposition 1.1.10 we win.

The point of the above proof was, of course, the fact that the ring-homomorphism was local. If
we just had that φpmqS Ĺ S for every maximal ideal m Ă R, that would be sufficient for the
argument.

1.1.20 Corollary Let φ : R Ñ S be a flat morphism. Let q P SpecS, p “ φ´1pqq the image in
SpecR. Then Rp Ñ Sq is faithfully flat, hence injective.
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Proof. We only need to show that the map is flat by proposition 1.1.19. Let M 1 ãÑ M be an
injection of Rp Ñ Sq-modules. Note that M 1,M are then R-modules as well. Then

M 1 bRp Sq “ pM
1 bR Rpq bRp Sq “M 1 bR Sq.

Similarly for M . This shows that tensoring over Rp with Sq is the same as tensoring over R with
Sq. But Sq is flat over S, and S is flat over R, so by proposition 1.1.15, Sq is flat over R. Thus
the result is clear.

Descent of properties under faithfully flat base change

Let S be an R-algebra. Often, things that are true about objects over R (for instance, R-modules)
will remain true after base-change to S. For instance, if M is a finitely generated R-module,
thenMbRS is a finitely generated S-module. In this section, we will show that we can conclude
the reverse implication when S is faithfully flat over R.

1.1.21 Remark (exercise) LetRÑ S be a faithfully flat morphism of rings. If S is noetherian,
so is R. The converse is false!

1.1.22 Remark (exercise) Many properties of morphisms of rings are such that if they hold
after one makes a faithfully flat base change, then they hold for the original morphism. Here is
a simple example. Suppose S is a faithfully flat R-algebra. Let R1 be any R-algebra. Suppose
S1 “ S bR R

1 is finitely generated over R1. Then S is finitely generated over R.

To see that, note that R1 is the colimit of its finitely generated R-subalgebras Rα. Thus S1

is the colimit of the Rα bR S, which inject into S1; finite generation implies that one of the
RαbRS Ñ S1 is an isomorphism. Now use the fact that isomorphisms “descend” under faithfully
flat morphisms.

In algebraic geometry, one can show that many properties of morphisms of schemes allow for
descent under faithfully flat base-change. See ?, volume IV-2.

Topological consequences

There are many topological consequences of faithful flatness on the Spec’s. These are explored
in detail in volume 4-2 of ?. We shall only scratch the surface. The reader should bear in mind
the usual intuition that flatness means that the fibers “look similar” to one other.

1.1.23 Proposition Let RÑ S be a faithfully flat morphism of rings. Then the map SpecS Ñ
SpecR is surjective.

Proof. Since RÑ S is injective, we may regard R as a subring of S. We shall first show that:

1.1.24 Lemma If I Ă R is any ideal, then RX IS “ I.
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Proof. To see this, note that the morphism

R{I Ñ S{IS

is faithfully flat, since faithful flatness is preserved by base-change, and this is the base-change
of RÑ S via RÑ R{I. In particular, it is injective. Thus IS XR “ I.

Now to see surjectivity, we use a general criterion:

1.1.25 Lemma Let φ : R Ñ S be a morphism of rings and suppose p P SpecR. Then p is in
the image of SpecS Ñ SpecR if and only if φ´1pφppqSq “ p.

This lemma will prove the proposition.

Proof. Suppose first that p is in the image of SpecS Ñ SpecR. In this case, there is q P SpecS
such that p is the preimage of q. In particular, q Ą φppqS, so that, if we take pre-images,

p Ą φ´1pφppqSq,

while the other inclusion is obviously true.

Conversely, suppose that p Ă φ´1pφppqSq. In this case, we know that

φpR´ pq X φppqS “ H.

Now T “ φpR´ pq is a multiplicatively closed subset. There is a morphism

Rp Ñ T´1S (1.1.1)

which sends elements of p into non-units, by (1.1.1) so it is a local homomorphism. The maximal
ideal of T´1S pulls back to that of Rp. By the usual commutative diagrams, it follows that p is
the preimage of something in SpecS.

1.1.26 Remark The converse also holds. If φ : R Ñ S is a flat morphism of rings such that
SpecS Ñ SpecR is surjective, then φ is faithfully flat. Indeed, lemma 1.1.25 shows then that
for any prime ideal p Ă R, φppq fails to generate S. This is sufficient to imply that S is faithfully
flat by proposition 1.1.10.

1.1.27 Remark A “slicker” argument that faithful flatness implies surjectiveness on spectra can
be given as follows. Let R Ñ S be faithfully flat. Let p P SpecR; we want to show that p is in
the image of SpecS. Now base change preserves faithful flatness. So we can replace R by R{p,
S by S{pS, and assume that R is a domain and p “ 0. Indeed, the commutative diagram

SpecS{pS

��

// SpecR{p

��
SpecS // SpecR
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shows that p is in the image of SpecS Ñ SpecR if and only if t0u is in the image of SpecS{pS Ñ
SpecR{p.

We can make another reduction: by localizing at p (that is, t0u), we may assume that R is local
and thus a field. So we have to show that if R is a field and S a faithfully flat R-algebra, then
SpecS Ñ SpecR is surjective. But since S is not the zero ring (by faithful flatness!), it is clear
that S has a prime ideal and SpecS Ñ SpecR is thus surjective.

In fact, one can show that the morphism SpecS Ñ SpecR is actually an identification, that is,
a quotient map. This is true more generally for faithfully flat and quasi-compact morphisms of
schemes; see ?, volume 4-2.

1.1.28 Theorem Let φ : RÑ S be a faithfully flat morphism of rings. Then SpecS Ñ SpecR
is a quotient map of topological spaces.

In other words, a subset of SpecR is closed if and only if its pre-image in SpecS is closed.

Proof. We need to show that if F Ă SpecR is such that its pre-image in SpecS is closed, then
F itself is closed. ADD THIS PROOF

1.2. Faithfully flat descent

Fix a ring R, and let S be an R-algebra. Then there is a natural functor from R-modules to
S-modules sending N ÞÑ S bRN . In this section, we shall be interested in going in the opposite
direction, or in characterizing the image of this functor. Namely, given an S-module, we want
to “descend” to an R-module when possible; given a morphism of S-modules, we want to know
when it comes from a morphism of R-modules by base change.

To be added: this entire section!

The Amitsur complex

To be added: citation needed

Suppose B is an A-algebra. Then we can construct a complex of A-modules

0 Ñ AÑ B Ñ B bA B Ñ B bA B bA B Ñ . . .

as follows. For each n, we denote by Bbn the tensor product of B with itself n times (over A).
There are morphisms of A-algebras

di : Bbn Ñ Bbn`1, 0 ď i ď n` 1

where the map sends

b1 b ¨ ¨ ¨ b bn ÞÑ b1 b ¨ ¨ ¨ b bi´1 b 1b bi b ¨ ¨ ¨ b bn,

so that the 1 is placed in the ith spot. Then the coboundary B : Bbn Ñ Bbn`1 is defined as
ř

p´1qidi. It is easy to check that this forms a complex of A-modules.
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1.2.1 Definition The above complex of B-modules is called the Amitsur complex of B over
A, and we denote it AB{A. It is clearly functorial in B; a map of A-algebras B Ñ C induces a
morphism of complexes AB{A Ñ AC{A.

Note that the Amitsur complex behaves very nicely with respect to base-change. If A1 is an
A-algebra and B1 “ B bA A

1 is the base extension, then AB1{A1 “ AB{A bA A
1, which follows

easily from the fact that base-change commutes with tensor products.

In general, the Amitsur complex is not even exact. For instance, if it is exact in degree one, then
the map AÑ B is necessarily injective. If, however, the morphism is faithfully flat, then we do
get exactness:

1.2.2 Theorem If B is a faithfully flat A-algebra, then the Amitsur complex of B{A is exact.
In fact, if M is any A-module, then AB{A bAM is exact.

Proof. We prove this first under the assumption that AÑ B has a section. In this case, we will
even have:

1.2.3 Lemma Suppose AÑ B is a morphism of rings with a section B Ñ A. Then the Amitsur
complex AB{A is homotopically trivial. (In particular, AB{A bAM is acyclic for all M .)

Proof. Let s : B Ñ A be the section; by assumption, this is a morphism of A-algebras. We
shall define a chain contraction of AB{A. To do this, we must define a collection of morphisms
of A-modules hn`1 : Bbn`1 Ñ Bbn, and this we do by sending

b1 b ¨ ¨ ¨ b bn`1 ÞÑ spbn`1q pb1 b ¨ ¨ ¨ b bnq .

It is still necessary to check that the thn`1u form a chain contraction; in other words, that
Bhn`hn`1B “ 1Bbn . By linearity, we need only check this on elements of the form b1b ¨ ¨ ¨ b bn.
Then we find

Bhnpb1 b bnq “ spb1q
ÿ

p´1qib2 b ¨ ¨ ¨ b 1b ¨ ¨ ¨ b bn

where the 1 is in the ith place, while

hn`1Bpb1 b ¨ ¨ ¨ b bnq “ b1 b ¨ ¨ ¨ b bn `
ÿ

ią0

spb1qp´1qi´1b2 b ¨ ¨ ¨ b 1b ¨ ¨ ¨ b bn

where again the 1 is in the ith place. The assertion is from this clear. Note that if AB{A

is contractible, we can tensor the chain homotopy with M to see that AB{A bA M is chain
contractible for any M .

With this lemma proved, we see that the Amitsur complex AB{A (or even AB{AbAM) is acyclic
whenever B{A admits a section. Now if we make the base-change by the morphism AÑ B, we
get the morphism B Ñ B bA B. That is,

B bA
`

AB{A bAM
˘

“ ABbAB{B bB pM bA Bq.

The latter is acyclic because B Ñ B bA B admits a section (namely, b1 b b2 ÞÑ b1b2). So the
complex AB{AbAM becomes acyclic after base-changing to B; this, however, is a faithfully flat
base-extension, so the original complex was itself exact.
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1.2.4 Remark A powerful use of the Amitsur complex in algebraic geometry is to show that the
cohomology of a quasi-coherent sheaf on an affine scheme is trivial. In this case, the Cech complex
(of a suitable covering) turns out to be precisely the Amitsur complex (with the faithfully flat
morphism AÑ

ś

Afi for the tfiu a family generating the unit ideal). This argument generalizes
to showing that the étale cohomology of a quasi-coherent sheaf on an affine is trivial; cf. ?.

Descent for modules

Let A Ñ B be a faithfully flat morphism of rings. Given an A-module M , we have a natural
way of getting a B-module MB “ M bA B. We want to describe the image of this functor;
alternatively, given a B-module, we want to describe the image of this functor.

Given an A-module M and the associated B-module MB “ M bA B, there are two ways of
getting BbAB-modules from MB, namely the two tensor products MB bB pBbABq according
as we pick the first map b ÞÑ bb 1 from B Ñ B bA B or the second b ÞÑ 1b b. We shall denote
these by MB bA B and B bA MB with the action clear. But these are naturally isomorphic
because both are obtained from M by base-extension A Ñ B bA B, and the two maps are the
same. Alternatively, these two tensor products are M bA B bA B and B bAM bA B and these
are clearly isomorphic by the braiding isomorphism1 of the first two factors as B bA B-modules
(with the B bA B part acting on the B’s in the above tensor product!).

1.2.5 Definition The category of descent data for the faithfully flat extension A Ñ B is
defined as follows. An object in this category consists of the following data:

1. A B-module N .

2. An isomorphism of BbAB-modules φ : N bAB » BbAN . This isomorphism is required
to make the following diagram2 of B bA B bA B-modules commutative:

B bA B bA N
φ23 //

φ13

))

B bA N bA B

φ12uu
N bA B bA B

(1.2.1)

Here φij means that the permutation of the ith and jth factors of the tensor product is
done using the isomorphism φ.

A morphism between objects pN,φq, pN 1, ψq is a morphism of B-modules f : N Ñ N 1 that makes
the diagram

N bA B

fb1
��

φ // B bA N

1bf
��

N 1 bA B
ψ // B bA N

1

(1.2.2)

1It is not the braiding isomorphism MB bA B » B bA MB , which is not an isomorphism of B bA B-modules.
This is the isomorphism that sends mb bb b1 to bbmb b1.

2This is the cocycle condition.
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As we have seen, there is a functor F from A-modules to descent data. Strictly speaking, we
should check the commutativity of (1.2.1), but this is clear: for N “ M bA B, (1.2.1) looks
like

B bA B bAM bA B
φ23 //

φ13

**

B bAM bA B bA B

φ12tt
M bA B bA B bA B

Here all the maps are just permutations of the factors (that is, the braiding isomorphisms in the
structure of symmetric tensor category on the category of A-modules), so it clearly commutes.

The main theorem is:

1.2.6 Theorem (Descent for modules) The above functor from A-modules to descent data
for AÑ B is an equivalence of categories.

We follow ? in the proof.

Proof. We start by describing the inverse functor from descent data to A-modules. Recall that if
M is an A-module, then M can be characterized as the submodule of MB consisting of m PMB

such that 1bm and mb 1 corresponded to the same thing in MB bAB » BbAMB. (The case
M “ A was particularly transparent: elements of A were elements x P B such that xb 1 “ 1bx
in B bA B.) In other words, we had the exact sequence

0 ÑM ÑMB ÑMB bA B.

We want to imitate this for descent data. Namely, we want to construct a functor G from descent
data to A-modules. Given descent data pN,φq where φ : N bA B » B bA N is an isomorphism
of B bA B-modules, we define GN to be

GN “ kerpN
nÞÑ1bn´ψpnb1q

Ñ B bA Nq.

It is clear that this is an A-module, and that it is functorial in the descent data. We have also
shown that GF pMq is naturally isomorphic to M for any A-module M .

We need to show the analog for FGpN,φq; in other words, we need to show that any descent data
arises via the F -construction. Even before that, we need to describe a natural transformation
from FGpN,φq to the identity. Fix a descent data pN,φq. Then GpN,φq gives an A-submodule
M Ă N . We get a morphism

f : MB “M bA B Ñ N

by the universal property. This sends m b b ÞÑ bm. The claim is that this is a map of descent
data. In other words, we have to show that (1.2.2) commutes. The diagram looks like

MB bA B

fb1
��

// B bAMB

1bf
��

N bA B
φ // B bA N

.
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In other words, if mbb PMB and b1 P B, we have to show that φpbmbb1q “ p1bfqpbbmbb1q “
bb b1m.

However,
φpbmb b1q “ pbb b1qφpmb 1q “ pbb b1qp1bmq “ bb b1m

in view of the definition of M “ GN as the set of elements such that φpm b 1q “ 1 bm, and
the fact that φ is an isomorphism of B bA B-modules. The equality we wanted to prove is thus
clear.

So we have the two natural transformations between FG,GF and the respective identity functors.
We have already shown that one of them is an isomorphism. Now we need to show that if pN,φq
is descent data as above, and M “ GpN,φq, the map F pMq Ñ pN,φq is an isomorphism. In
other words, we have to show that the map

M bA B Ñ N

is an isomorphism.

Here we shall draw a commutative diagram. Namely, we shall essentially use the Amitsur complex
for the faithfully flat map B Ñ B bA B. We shall obtain a commutative an exact diagram:

0 //M bA B

��

// N bA B

φ
��

// N bA B bA B

φ´1
13
��

0 // N // B bA N // B bA B bA N

.

Here the map
N bA B Ñ N bA B bA B

sends nb b ÞÑ nb 1b b´ φp1b nq b b. Consequently the first row is exact, B being flat over A.
The bottom map

B bA N Ñ B bA N bA N

sends b b n ÞÑ b b 1 b n ´ 1 b b b n. It follows by the Amitsur complex that the bottom row
is exact too. We need to check that the diagram commutes. Since the two vertical maps on the
right are isomorphisms, it will follow that M bA B Ñ N is an isomorphism, and we shall be
done.

Fix nb b P N bA B. We need to figure out where it goes in B bA B bA N under the two maps.
Going right gives nb1bb´φ12p1bnbbq. Going down then gives φ´1

13 pnb1bbq´φ´1
13 φ12p1bnbbq “

φ´1
13 pnb 1b bq ´ φ´1

23 p1b nb bq, where we have used the cocycle condition. So this is one of the
maps N bA B Ñ B bA B bA N .

Now we consider the other way nb b can map to B bA B bA N .

Going down gives φpn b bq, and then going right gives the difference of two maps N bA B Ñ

B bA B bA N , which are the same as above.

Example: Galois descent

To be added: this section
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1.3. The Tor functor

Introduction

Fix M . The functor N ÞÑ N bRM is a right-exact functor on the category of R-modules. We
can thus consider its left-derived functors as in ??. Recall:

1.3.1 Definition The derived functors of the tensor product functor N ÞÑ NbRM are denoted
by ToriRpN,Mq, i ě 0. We shall sometimes denote omit the subscript R.

So in particular, Tor0
RpM,Nq “ M b N . A priori, Tor is only a functor of the first variable,

but in fact, it is not hard to see that Tor is a covariant functor of two variables M,N . In fact,
ToriRpM,Nq » ToriRpN,Mq for any two R-modules M,N . For proofs, we refer to ??. ADD:
THEY ARE NOT IN THAT CHAPTER YET.

Let us recall the basic properties of Tor that follow from general facts about derived functors.
Given an exact sequence

0 Ñ N 1 Ñ N Ñ N2 Ñ 0

we have a long exact sequence

ToripN 1,Mq Ñ ToripN,Mq Ñ ToripN2,Mq Ñ Tori´1pN 1,Mq Ñ . . .

Since Tor is symmetric, we can similarly get a long exact sequence if we are given a short exact
sequence of M ’s.

Recall, moreover, that Tor can be computed explicitly (in theory). If we have modulesM,N , and
a projective resolution P˚ Ñ N , then ToriRpM,Nq is the ith homology of the complex M b P˚.
We can use this to compute Tor in the case of abelian groups.

1.3.2 Example We compute Tor˚ZpA,Bq whenever A,B are abelian groups and B is finitely
generated. This immediately reduces to the case of B either Z or Z{dZ for some d by the
structure theorem. When B “ Z, there is nothing to compute (derived functors are not very
interesting on projective objects!). Let us compute Tor˚ZpA,Z{dZq for an abelian group A.

Actually, let us be more general and consider the case where the ring is replaced by Z{m for
some m such that d | m. Then we will compute Tor˚Z{mpA,Z{dq for any Z{m-module A. The
case m “ 0 will handle the ring Z. Consider the projective resolution

¨ ¨ ¨
m{d // Z{mZ d // Z{mZ

m{d // Z{mZ d // Z{mZ // Z{dZ // 0.

We apply A bZ{mZ ¨. Since tensoring (over Z{m!) with Z{mZ does nothing, we obtain the
complex

¨ ¨ ¨
m{d // A

d // A
m{d // A

d // A // 0.
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The groups Tor
Z{mZ
n pA,Z{dZq are simply the homology groups (ker/im) of the complex, which

are simply

Tor
Z{mZ
0 pA,Z{dZq – A{dA

TorZ{mZ
n pA,Z{dZq – dA{pm{dqA n odd, n ě 1

TorZ{mZ
n pA,Z{dZq – m{dA{dA n even, n ě 2,

where kA “ ta P A | ka “ 0u denotes the set of elements of A killed by k.

The symmetry of the tensor product also provides with a simple proof that Tor commutes with
filtered colimits.

1.3.3 Proposition Let M be an R-module, tNiu a filtered system of R-modules. Then the
natural morphism

lim
ÝÑ
i

ToriRpM,Niq Ñ ToriRpM, lim
ÝÑ
i

Niq

is an isomorphism.

Proof. We can see this explicitly. Let us compute the Tor functors by choosing a projective
resolution P˚ Ñ M of M (note that which factor we use is irrelevant, by symmetry!). Then
the left side is the colimit lim

ÝÑ
HpP˚ b Niq, while the right side is HpP˚ b lim

ÝÑ
Niq. But tensor

products commute with filtered (or arbitrary) colimits, since the tensor product admits a right
adjoint. Moreover, we know that homology commutes with filtered colimits. Thus the natural
map is an isomorphism.

Tor and flatness

Tor provides a simple way of detecting flatness. Indeed, one of the basic applications of this is
that for a flat module M , the tor-functors vanish for i ě 1 (whatever be N). Indeed, recall that
TorpM,Nq is computed by taking a projective resolution of N ,

¨ ¨ ¨ Ñ P2 Ñ P1 Ñ P0 ÑM Ñ 0

tensoring with M , and taking the homology. But tensoring with M is exact if we have flatness,
so the higher Tor modules vanish.

The converse is also true. In fact, something even stronger holds:

1.3.4 Proposition M is flat iff Tor1pM,R{Iq “ 0 for all finitely generated ideals I Ă R.

Proof. We have just seen one direction. Conversely, suppose ToripM,R{Iq “ 0 for all finitely
generated ideals I and i ą 0. Then the result holds, first of all, for all ideals I, because of
proposition 1.3.3 and the fact that R{I is always the colimit of R{J as J ranges over finitely
generated ideals J Ă I.

We now show that ToripM,Nq “ 0 whenever N is finitely generated. To do this, we induct on
the number of generators of N . When N has one generator, it is cyclic and we are done. Suppose
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we have proved the result whenever for modules that have n´ 1 generators or less, and suppose
N has n generators. Then we can consider an exact sequence of the form

0 Ñ N 1 ãÑ N � N2 Ñ 0

where N 1 has n ´ 1 generators and N2 is cyclic. Then the long exact sequence shows that
ToripM,Nq “ 0 for all i ě 1.

Thus we see that ToripM,Nq “ 0 whenever N is finitely generated. Since any module is a filtered
colimit of finitely generated ones, we are done by proposition 1.3.3.

Note that there is an exact sequence 0 Ñ I Ñ RÑ R{I Ñ 0 and so

Tor1pM,Rq “ 0 Ñ Tor1pM,R{Iq Ñ I bM ÑM

is exact, and by this:

1.3.5 Corollary If the map
I bM ÑM

is injective for all ideals I, then M is flat.

1.4. Flatness over noetherian rings

We shall be able to obtain simpler criterion for flatness when the ring in question is noetherian
local. For instance, we have already seen:

1.4.1 Theorem If M is a finitely generated module over a noetherian local ring R (with residue
field k), then M is free if and only if Tor1pk,Mq “ 0.

In particular, flatness is the same thing as the vanishing of one Tor module, and it equates to
freeness. Now, we want to generalize this result to the case where M is not necessarily finitely
generated over R, but finitely generated over an R-algebra that is also noetherian local. In
particular, we shall get useful criteria for when an extension of noetherian local rings (which in
general is not finite, or even finitely generated) is flat.

We shall prove two main criteria. The local criterion is a direct generalization of the above result
(the vanishing of one Tor group). The infinitesimal criterion reduces checking flatness of M to
checking flatness of M bR R{m

t over R{mt; in particular, it reduces to the case where the base
ring is artinian. Armed with these, we will be able to prove a rather difficult theorem that states
that we can always find lots of flat extensions of noetherian local rings.
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Flatness over a noetherian local ring

We shall place ourselves in the following situation. R,S are noetherian local rings with maximal
ideals m Ă R, n Ă S, and S is an R-algebra (and the morphism RÑ S is local, so mS Ă n). We
will want to know when a S-module is flat over R. In particular, we want a criterion for when
S is flat over R.

1.4.2 Theorem The finitely generated S-module M is flat over R iff

Tor1
Rpk,Mq “ 0.

In this case, M is even free.

It is actually striking how little the condition that M is a finitely generated S-module enters, or
how irrelevant it seems in the statement. The argument will, however, use the fact that M is
separated with respect to the m-adic topology, which relies on Krull’s intersection theorem (note
that since mS Ă n, the m-adic topology on M is separated).

Proof. Necessity is immediate. What we have to prove is sufficiency.

First, we claim that if N is an R-module of finite length, then

Tor1
RpN,Mq “ 0. (1.4.1)

This is because N has by dévissage (proposition 2.2.12) a finite filtration Ni whose quotients are
of the form R{p for p prime and (by finite length hypothesis) p “ m. So we have a filtration on
M whose successive quotients are isomorphic to k. We can then climb up the filtration to argue
that Tor1pNi,Mq “ 0 for each i.

Indeed, the claim (1.4.1) is true N0 “ 0 Ă N trivially. We climb up the filtration piece by piece
inductively; if Tor1

RpNi,Mq “ 0, then the exact sequence

0 Ñ Ni Ñ Ni`1 Ñ k Ñ 0

yields an exact sequence
Tor1

RpNi,Mq Ñ Tor1
RpNi`1,Mq Ñ 0

from the long exact sequence of Tor and the hypothesis on M . The claim is proved.

Now we want to prove that M is flat. The idea is to show that I bRM ÑM is injective for any
ideal I Ă R. We will use some diagram chasing and the Krull intersection theorem on the kernel
K of this map, to interpolate between it and various quotients by powers of m. First we write
some exact sequences.

We have an exact sequence

0 Ñ mt X I Ñ I Ñ I{I Xmt Ñ 0

which we tensor with M :

mt X I bM Ñ I bM Ñ I{I Xmt bM Ñ 0.
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The sequence
0 Ñ I{I Xmt Ñ R{mt Ñ R{pI `mtq Ñ 0

is also exact, and tensoring with M yields an exact sequence:

0 Ñ I{I Xmt bM ÑM{mtM ÑM{pmt ` IqM Ñ 0

because Tor1
RpM,R{pI `mtqq “ 0 by (1.4.1), as R{pI `mtq is of finite length.

Let us draw the following commutative diagram:

0

��
mt X I bM // I bM // I{I Xmt bM

��
M{mtM

(1.4.2)

Here the column and the row are exact. As a result, if an element in I bM goes to zero in M (a
fortiori in M{mtM) it must come from mt X I bM for all t. Thus, by the Artin-Rees lemma, it
belongs to mtpI bMq for all t, and the Krull intersection theorem (applied to S, since mS Ă n)
implies it is zero.

The infinitesimal criterion for flatness

1.4.3 Theorem Let R be a noetherian local ring, S a noetherian local R-algebra. Let M be a
finitely generated module over S. Then M is flat over R iff M{mtM is flat over R{mt for all
t ą 0.

Proof. One direction is easy, because flatness is preserved under base-change R Ñ R{mt. For
the other direction, suppose M{mtM is flat over R{mt for all t. Then, we need to show that if
I Ă R is any ideal, then the map I bR M Ñ M is injective. We shall argue that the kernel is
zero using the Krull intersection theorem.

Fix t P N. As before, the short exact sequence of R{mt-modules 0 Ñ I{pmt X Iq X R{mt Ñ

R{pmt X Iq Ñ 0 gives an exact sequence (because M{mtM is R{mt-flat)

0 Ñ I{I Xmt bM ÑM{mtM ÑM{pmt ` IqM Ñ 0

which we can fit into a diagram, as in (1.4.2)

0

��
mt X I bM // I bM // I{I Xmt bM

��
M{mtM

.
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The horizontal sequence was always exact, as before. The vertical sequence can be argued to be
exact by tensoring the exact sequence

0 Ñ I{I Xmt Ñ R{mt Ñ R{pI `mtq Ñ 0

of R{mt-modules with M{mtM , and using flatness of M{mtM over R{mt (and ??). Thus we get
flatness of M as before.

Incidentally, if we combine the local and infinitesimal criteria for flatness, we get a little more.

1.4.4 Remark (comment) The gr criterion for flatness

Suppose pR,mq is a noetherian local ring and pS, nq a local R-algebra. As usual, we are interested
in criteria for when a finitely generated S-module M is flat over R.

We can, of course, endow M with the m-adic topology. Then M is a filtered module over the
filtered ring R (with the m-adic topology). We have morphisms for each i,

mi{mi`1 bR{m M{mM Ñ miM{mi`1M

that induce map
grpRq bR{m M{mM Ñ grpMq.

If M is flat over

Generalizations of the local and infinitesimal criteria

In the previous subsecs, we obtained results that gave criteria for when, given a local homomor-
phism of noetherian local rings pR,mq Ñ pS, nq, a finitely generated S-module was R-flat. These
criteria generally were related to the Tor groups of the module with respect to R{m. We are now
interested in generalizing the above results to the setting where m is replaced by an ideal that
maps into the Jacobson radical of S. In other words,

φ : RÑ S

will be a homomorphism of noetherian rings, and J Ă R will be an ideal such that φpJq is
contained in every maximal ideal of S.

Ideally, we are aiming for results of the following type:

1.4.5 Theorem (Generalized local criterion for flatness) Let φ : R Ñ S be a morphism
of noetherian rings, J Ă R an ideal with φpJq contained in the Jacobson radical of S. Let
M be a finitely generated S-module. Then M is R-flat if and only if M{JM is R{J-flat and
TorR1 pR{J,Mq “ 0.
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Note that this is a generalization of theorem 1.4.2. In that case, R{J was a field and the R{J-
flatness of M{JM was automatic. One key step in the proof of theorem 1.4.2 was to go from
the hypothesis that Tor1pM,kq “ 0 to Tor1pM,Nq “ 0 whenever N was an R-module of finite
length. We now want to do the same in this generalized case; the analogy would be that, under
the hypotheses of theorem 1.4.5, we would like to conclude that TorR1 pM,Nq “ 0 whenever N is
a finitely generated R-module annihilated by I. This is not quite as obvious because we cannot
generally find a filtration on N whose successive quotients are R{J (unlike in the case where J
was maximal). Therefore we shall need two lemmas.

1.4.6 Remark One situation where the strong form of the local criterion, theorem 1.4.5, is used
is in Grothendieck’s proof (cf. EGA IV-11, ?) that the locus of points where a coherent sheaf is
flat is open (in commutative algebra language, if A is noetherian andM finitely generated over a
finitely generated A-algebra B, then the set of primes q P SpecB such that Mq is A-flat is open
in SpecB).

1.4.7 Lemma (Serre) Suppose R is a ring, S an R-algebra, and M an S-module. Then the
following are equivalent:

1. M bR S is S-flat and TorR1 pM,Sq “ 0.

2. TorR1 pM,Nq “ 0 whenever N is any S-module.

We follow ?.

Proof. Let P be an S-module (considered as fixed), and Q any (variable) R-module. Recall that
there is a homology spectral sequence

TorSp pTorRq pQ,Sq, P q ùñ TorRp`qpQ,P q.

Recall that this is the Grothendieck spectral sequence of the composite functors

Q ÞÑ QbR S, Q1 ÞÑ Q1 bS P

because
pQbR Sq bS P » QbR P.

To be added: This, and generalities on spectral sequences, need to be added! From
this spectral sequence, it will be relatively easy to deduce the result.

1. Suppose M bR S is S-flat and TorR1 pM,Sq “ 0. We want to show that 2 holds, so let N be
any S-module. Consider theE2 page of the above spectral sequence TorSp pTorRq pM,Sq, Nq ùñ

TorRp`qpM,Nq. In the terms such that p`q “ 1, we have the two terms TorS0 pTorR1 pM,Sq, Nq,TorS1 pTorR0 pM,Sq, Nq.
But by hypotheses these are both zero. It follows that TorR1 pM,Nq “ 0.

2. Suppose TorR1 pM,Nq “ 0 for each S-module N . Since this is a homology spectral sequence,
this implies that the E10

2 term vanishes (since nothing will be able to hit this term). In
particular TorS1 pM bR S,Nq “ 0 for each S-module N . It follows that M bR S is S-
flat. Hence the higher terms TorSp pM bR S,Nq “ 0 as well, so the botton row of the E2

page (except p0, 0q) is thus entirely zero. It follows that the E2
01 term vanishes if E01

8 is
trivial. This gives that TorR1 pM,Sq bS N “ 0 for every S-module N , which clearly implies
TorR1 pM,Sq “ 0.
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As a result, we shall be able to deduce the result alluded to in the motivation following the
statement of theorem 1.4.5.

1.4.8 Lemma Let R be a noetherian ring, J Ă R an ideal, M an R-module. Then TFAE:

1. TorR1 pM,R{Jq “ 0 and M{JM is R{J-flat.

2. TorR1 pM,Nq “ 0 for any finitely generated R-module N annihilated by a power of J .

Proof. This is immediate from lemma 1.4.7, once one notes that any N as in the statement
admits a finite filtration whose successive quotients are annihilated by J .

Proof of theorem 1.4.5. Only one direction is nontrivial, so suppose M is a finitely generated
S-module, with M{JM flat over R{J and TorR1 pM,R{Jq “ 0. We know by the lemma that
TorR1 pM,Nq “ 0 whenever N is finitely generated and annihilated by a power of J .

So as to avoid repeating the same argument over and over, we encapsulate it in the following
lemma.

1.4.9 Lemma Let the hypotheses be as in theorem 1.4.5 Suppose for every ideal I Ă R, and
every t P N, the map

I{I X J t bM ÑM{J tM

is an injection. Then M is R-flat.

Proof. Indeed, then as before, the kernel of I bR M Ñ M lives inside the image of pI X J tq b
M Ñ I bRM for every t; by the Artin-Rees lemma, and the Krull intersection theorem (since
Ş

J tpI bRMq “ t0u), it follows that this kernel is zero.

It is now easy to finish the proof. Indeed, we can verify the hypotheses of the lemma by noting
that

I{I X J t bM Ñ I bM

is obtained by tensoring with M the sequence

0 Ñ I{I X J t Ñ R{pI X J tq Ñ R{pI ` J tq Ñ 0.

Since TorR1 pM,R{pI ` J tqq “ 0, we find that the map as in the lemma is an injection, and so we
are done.

The reader can similarly formulate a version of the infinitesimal criterion in this more general case
using lemma 1.4.9 and the argument in theorem 1.4.3. (In fact, the spectral sequence argument
of this section is not necessary.) We shall not state it here, as it will appear as a component of
theorem 1.4.10. We leave the details of the proof to the reader.
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The final statement of the flatness criterion

We shall now bundle the various criteria for flatness into one big result, following ?:

1.4.10 Theorem Let A,B be noetherian rings, φ : A Ñ B a morphism making B into an A-
algebra. Let I be an ideal of A such that φpIq is contained in the Jacobson radical of B. Let M
be a finitely generated B-module. Then the following are equivalent:

1. M is A-flat.

2. (Local criterion) M{IM is A{I-flat and TorA1 pM,A{Iq “ 0.

3. (Infinitesimal criterion) M{InM is A{In-flat for each n.

4. (Associated graded criterion) M{IM is A{I-flat and M{IM bA{I I
n{In`1 Ñ InM{In`1M

is an isomorphism for each n.

The last criterion can be phrased as saying that the I-adic associated graded of M is determined
by M{IM .

Proof. We have already proved that the first three are equivalent. It is easy to see that flatness
of M implies that

M{IM bA{I I
n{In`1 Ñ InM{In`1M (1.4.3)

is an isomorphism for each n. Indeed, this easily comes out to be the quotient ofM bA I
n by the

image of M bA I
n`1, which is InM{In`1M since the map M bA I

n Ñ InM is an isomorphism.
Now we need to show that this last condition implies flatness. To do this, we may (in view of
the infinitesimal criterion) assume that I is nilpotent, by base-changing to A{In. We are then
reduced to showing that TorA1 pM,A{Iq “ 0 (by the local criterion). Then we are, finally, reduced
to showing:

1.4.11 Lemma Let A be a ring, I Ă A be a nilpotent ideal, and M any A-module. If (1.4.3) is
an isomorphism for each n, then TorA1 pM,A{Iq “ 0.

Proof. This is equivalent to the assertion, by a diagram chase, that

I bAM ÑM

is an injection. We shall show more generally that In bA M Ñ M is an injection for each n.
When n " 0, this is immediate, I being nilpotent. So we can use descending induction on n.

Suppose In`1 bAM Ñ In`1M is an isomorphism. Consider the diagram

In`1 bAM //

��

In bAM //

��

In{In`1 bAM Ñ 0

��
0 // In`1M // InM // InM{In`1M // 0.

By hypothesis, the outer two vertical arrows are isomorphisms. Thus the middle vertical arrow
is an isomorphism as well. This completes the induction hypothesis.
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Here is an example of the above techniques:

1.4.12 Proposition Let pA,mq, pB, nq, pC, n1q be noetherian local rings. Suppose given a com-
mutative diagram of local homomorphisms

B // C

A

??__

Suppose B,C are flat A-algebras, and B{mB Ñ C{mC is a flat morphism. Then B Ñ C is flat.

Geometrically, this means that flatness can be checked fiberwise if both objects are flat over the
base. This will be a useful technical fact.

Proof. We will use the associated graded criterion for flatness with the ideal I “ mB Ă B. (Note
that we are not using the criterion with the maximal ideal here!) Namely, we shall show that

In{In`1 bB{I C{IC Ñ InC{In`1C (1.4.4)

is an isomorphism. By theorem 1.4.10, this will do it. Now we have:

In{In`1 bB{I C{IC » mnB{mn`1B bB{mB C{mC

» pmn{mn`1q bA B{mB bB C{mC

» pmn{mn`1q bA B bB C{mC

» pmn{mn`1q bA C{mC

» mnC{mn`1C » InC{In`1C.

In this chain of equalities, we have used the fact that B,C were flat over A, so their associ-
ated gradeds with respect to m Ă A behave nicely. It follows that (1.4.4) is an isomorphism,
completing the proof.

Flatness over regular local rings

Here we shall prove a result that implies geometrically, for instance, that a finite morphism
between smooth varieties is always flat.

1.4.13 Theorem (“Miracle” flatness theorem) Let pA,mq be a regular local (noetherian)
ring. Let pB, nq be a Cohen-Macaulay, local A-algebra such that

dimB “ dimA` dimB{mB.

Then B is flat over A.

Recall that inequality ď always holds in the above for any morphism of noetherian local rings
(??), and equality always holds with flatness supposed. We get a partial converse.
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Proof. We shall work by induction on dimA. Let x P m be a non-zero-divisor, so the first element
in a regular sequence of parameters. We are going to show that pA{pxq, B{pxqq satisfies the same
hypotheses. Indeed, note that

dimB{pxq ď dimA{pxq ` dimB{mB

by the usual inequality. Since dimA{pxq “ dimA ´ 1, we find that quotienting by x drops the
dimension of B by at least one: that is, dimB{pxq ď dimB´ 1. By the principal ideal theorem,
we have equality,

dimB{pxq “ dimB ´ 1.

The claim is that x is a non-zero-divisor in B, and consequently we can argue by induction.
Indeed, but B is Cohen-Macaulay. Thus, any zero divisor in B lies in a minimal prime (since all
associated primes of B are minimal); thus quotienting by a zero divisor would not bring down
the degree. So x is a non-zero-divisor in B.

In other words, we have found x P A which is both A-regular and B-regular (i.e. non-zero-divisors
on both), and such that the hypotheses of the theorem apply to the pair pA{pxq, B{pxqq. It follows
that B{pxq is flat over A{pxq by the inductive hypothesis. The next lemma will complete the
proof.

1.4.14 Lemma Suppose pA,mq is a noetherian local ring, pB, nq a noetherian local A-algebra,
and M a finite B-module. Suppose x P A is a regular element of A which is also regular on M .
Suppose moreover M{xM is A{pxq-flat. Then M is flat over A.

Proof. This follows from the associated graded criterion for flatness (see the omnibus result
theorem 1.4.10). Indeed, if we use the notation of that result, we take I “ pxq. We are given
that M{xM is A{pxq-flat. So we need to show that

M{xM bA{pxq px
nq{pxn`1q Ñ xnM{xn`1M

is an isomorphism for each n. This, however, is implied because pxnq{pxn`1q is isomorphic to
A{pxq by regularity, and multiplication

M
xn
Ñ xnM, xM

xn
Ñ xn`1M

are isomorphisms by M -regularity.

Example: construction of flat extensions

As an illustration of several of the techniques in this chapter and previous ones, we shall show,
following ? (volume III, chapter 0) that, given a local ring and an extension of its residue field,
one may find a flat extension of this local ring with the bigger field as its residue field. One
application of this is in showing (in the context of Zariski’s Main Theorem) that the fibers of a
birational projective morphism of noetherian schemes (where the target is normal) are geomet-
rically connected. We shall later give another application in the theory of étale morphisms.
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1.4.15 Theorem Let pR,mq be a noetherian local ring with residue field k. Suppose K is an
extension of k. Then there is a noetherian local R-algebra pS, nq with residue field K such that
S is flat over R and n “ mS.

Proof. Let us start by motivating the theorem when K is generated over k by one element. This
case can be handled directly, but the general case will require a somewhat tricky passage to the
limit. There are two cases.

1. First, suppose K “ kptq for t P K transcendental over k. In this case, we will take S to
be a suitable localization of Rrts. Namely, we consider the prime3 ideal mRrts Ă Rrts,
and let S “ pRrtsqmRrts. Then S is clearly noetherian and local, and moreover mS is the
maximal ideal of S. The residue field of S is S{mS, which is easily seen to be the quotient
field of Rrts{mRrts “ krts, and is thus isomorphic to K. Moreover, as a localization of a
polynomial ring, S is flat over R. Thus we have handled the case of a purely transcendental
extension generated by one element.

2. Let us now suppose K “ kpaq for a P K algebraic over k. Then a satisfies a monic
irreducible polynomial ppT q with coefficients in k. We lift p to a monic polynomial ppT q P
RrT s. The claim is that then, S “ RrT s{pppT qq will suffice.

Indeed, S is clearly flat over R (in fact, it is free of rank deg p). As it is finite over R,
S is noetherian. Moreover, S{mS “ krT s{pppT qq » K. It follows that mS Ă S is a
maximal ideal and that the residue field is K. Since any maximal ideal of S contains mS
by Nakayama,4 we see that S is local as well. Thus we have showed that S satisfies all the
conditions we want.

So we have proved the theorem when K is generated by one element over k. In general, we can
iterate this procedure finitely many times, so that the assertion is clear when K is a finitely
generated extension of k. Extending to infinitely generated extensions is trickier.

Let us first argue that we can writeK{k as a “transfinite limit” of monogenic extensions. Consider
the set of well-ordered collections C1 of subfields between k and K (containing k) such that if
L P C1 has an immediate predecessor L1, then L{L1 is generated by one element. First, such
collections C1 clearly exist; we can take the one consisting only of k. The set of such collections
is clearly a partially ordered set such that every chain has an upper bound. By Zorn’s lemma,
there is a maximal such collection of subfields, which we now call C.

The claim is that C has a maximal field, which is K. Indeed, if it had no maximal element,
we could adjoin the union

Ť

FPC F to C and make C bigger, contradicting maximality. If this
maximal field of C were not K, then we could add another element to this maximal subfield and
get a bigger collection than C, contradiction.

So thus we have a set of fields Kα (with α, the index, ranging over a well-ordered set) between k
and K, such that if α has a successor α1, then K 1

α is generated by one element over Kα. Moreover
K is the largest of the Kα, and k is the smallest.

3It is prime because the quotient is the domain krts.
4To be added: citation needed

491



V.1. Flatness revisited 1.4. Flatness over noetherian rings

We are now going to define a collection of rings Rα by transfinite induction on α. We start the
induction with R0 “ R (where 0 is the smallest allowed α). The inductive hypothesis that we
will want to maintain is that Rα is a noetherian local ring with maximal ideal mα, flat over R
and satisfying mRα “ mα; we require, moreover, that the residue field of Rα be Kα. Thus if we
can do this at each step, we will be able to work up to K and get the ring S that we want. We
are, moreover, going to construct the Rα such that whenever β ă α, Rα is a Rβ-algebra.

Let us assume that Rβ has been defined for all β ă α and satisfies the conditions. Then we want
to define Rα in an appropriate way. If we can do this, then we will have proved the result. There
are two cases:

1. α has an immediate predecessor αpre. In this case, we can define Rα from Rαpre as above
(because Kα{Kαpre is monogenic).

2. α has no immediate predecessor. Then we define Rα “ lim
ÝÑβăα

Rβ . The following lemma
will show that Rα satisfies the appropriate hypotheses.

This completes the proof, modulo lemma 1.4.16.

We shall need the following lemma to see that we preserve noetherianness when we pass to the
limit.

1.4.16 Lemma Suppose given an inductive system tpAα,mαqu of noetherian rings and flat local
homomorphisms, starting with A0. Suppose moreover that mαAβ “ mβ whenever α ă β.

Then A “ lim
ÝÑ

Aα is a noetherian local ring, flat over each Aα. Moreover, if m Ă A is the
maximal ideal, then mαA “ m. The residue field of A is lim

ÝÑ
Aα{mα.

Proof. First, it is clear that A is a local ring (?? To be added: reference!) with maximal
ideal equal to mαA for any α in the indexing set, and that A has the appropriate residue field.
Since filtered colimits preserve flatness, flatness of A is also clear. We need to show that A is
noetherian; this is the crux of the lemma.

To prove that A is noetherian, we are going to show that its m-adic completion Â is noetherian.
Fortunately, we have a convenient criterion for this. If m̂ “ mÂ, then Â is complete with respect
to the m̂-adic topology. So if we show that Â{m̂ is noetherian and m̂{m̂2 is a finitely generated
Â-module, we will have shown that Â is noetherian by corollary 8.1.13.

But Â{m̂ is a field, so obviously noetherian. Also, m̂{m̂2 “ m{m2, and by flatness of A, this is

AbAα mα{m
2
α

for any α. Since Aα is noetherian, we see that this is finitely generated. The criterion corol-
lary 8.1.13 now shows that the completion Â is noetherian.

Finally, we need to deduce that A is itself noetherian. To do this, we shall show that Â is
faithfully flat over A. Since noetherianness “descends” under faithfully flat extensions (To be
added: citation needed), this will be enough. It suffices to show that Â is flat over each Aα.
For this, we use the infinitesimal criterion; we have that

ÂbAα Aα{m
t
α “ Â{m̂t “ A{mt “ A{Amt

α,
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which is flat over Aα{mt
α since A is flat over Aα.

It follows that Â is flat over each Aα. If we want to see that A Ñ Â is flat, we let I Ă A
be a finitely generated ideal; we shall prove that I bA Â Ñ Â is injective (which will establish
flatness). We know that there is an ideal Iα Ă Aα for some Aα such that

I “ IαA “ Iα bAα A.

Then
I bA Â “ Iα bAα Â

which injects into Â as Aα Ñ Â is flat.

1.4.17 Remark (comment) Let us first show that A is separated with respect to the m-adic
topology. Fix x P A. Then x lies in the subring Aα for some fixed α depending on α (note that
Aα Ñ A is injective since a flat morphism of local rings is faithfully flat). If x P mn “ Amn

α, then
x P mn

α by faithful flatness and lemma 1.1.24. So if x P mn for all n, then x P mn
α for all n; the

separatedness of Aα with respect to the mα-adic topology now shows x “ 0.

Generic flatness

Suppose given a moduleM over a noetherian domain R. ThenMbRKpRq is a finitely generated
free module over the field KpRq. Since KpRq is the inductive limit lim

ÝÑ
Rf as f ranges over

pR´ t0uq{R˚ and KpRq bRM » lim
ÝÑfPpR´t0uq{R˚

Mf , it follows by the general theory of ?? that
there exists f P R´ t0u such that Mf is free over Rf .

Here SpecRf “ Dpfq Ă SpecR should be thought of as a “big” subset of SpecR (in fact, as one
can check, it is dense and open). So the moral of this argument is that M is “generically free.” If
we had the language of schemes, we could make this more precise. But the idea is that localizing
atM corresponds to restricting the sheaf associated toM to Dpfq Ă SpecR; on this dense open
subset, we get a free sheaf. (The reader not comfortable with such “finitely presented” arguments
will find another one below, that also works more generally.)

Now we want to generalize this to the case where M is finitely generated not over R, but over a
finitely generated R-algebra. In particular, M could itself be a finitely generated R-algebra!

1.4.18 Theorem (Generic freeness) Let S be a finitely generated algebra over the noetherian
domain R, and let M be a finitely generated S-module. Then there is f P R´ t0u such that Mf

is a free (in particular, flat) R-module.

Proof. We shall first reduce the result to one about rings instead of modules. By Hilbert’s basis
theorem, we know that S is noetherian. By dévissage (proposition 2.2.12), there is a finite
filtration of M by S-submodules,

0 “M0 ĂM1 Ă ¨ ¨ ¨ ĂMk “M

such that the quotients Mi`1{Mi are isomorphic to quotients S{pi for the pi P SpecS.
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Since localization is an exact functor, it will suffice to show that there exists an f such that
pS{piqf is a free R-module for each f . Indeed, it is clear that if a module admits a finite
filtration all of whose successive quotients are free, then the module itself is free. We may thus
even reduce to the case where M “ S{p.

So we are reduced to showing that if we have a finitely generated domain T over R, then there
exists f P R ´ t0u such that Tf is a free R-module. If R Ñ T is not injective, then the result
is obvious (localize at something nonzero in the kernel), so we need only handle the case where
RÑ T is a monomorphism.

By the Noether normalization theorem, there are d elements of T bRKpRq, which we denote by
t1, . . . , td, which are algebraically independent over KpRq and such that T bR KpRq is integral
over KpRqrt1, . . . , tds. (Here d is the transcendence degree of KpT q{KpRq.) If we localize at
some highly divisible element, we can assume that t1, . . . , td all lie in T itself. Let us assume that
the result for domains is true whenever the transcendence degree is ă d, so that we can induct.

Then we know that Rrt1, . . . , tds Ă T is a polynomial ring. Moreover, each of the finitely many
generators of T {R satisfies a monic polynomial equation over KpRqrt1, . . . , tds (by the integrality
part of Noether normalization). If we localize R at a highly divisible element, we may assume that
the coefficients of these polynomials belong toRrt1, . . . , tds. We have thus reduced to the following
case. T is a finitely generated domain over R, integral over the polynomial ring Rrt1, . . . , tds. In
particular, it is a finitely generated module over the polynomial ring Rrt1, . . . , tds. Thus we have
some r and an exact sequence

0 Ñ Rrt1, . . . , tds
r Ñ T Ñ QÑ 0,

where Q is a torsion Rrt1, . . . , tdsr-module. Since the polynomial ring is free, we are reduced to
showing that by localizing at a suitable element of R, we can make Q free.

But now we can do an inductive argument. Q has a finite filtration by T -modules whose quotients
are isomorphic to T {p for nonzero primes p with p ‰ 0 as T is torsion; these are still domains
finitely generated over R, but such that the associated transcendence degree is less than d. We
have already assumed the statement proven for domains where the transcendence degree is ă d.
Thus we can find a suitable localization that makes all these free, and thus Q free; it follows that
with this localization, T becomes free too.
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We will now apply general homological algebra to commutative algebra proper. The use of
homological machinery provides a new and elegant characterization of regular local rings (among
noetherian local rings, they are the ones with finite global dimension) and leads to proofs of
several difficult results about them. For instance, we will be able to prove the rather important
result (which one repeatedly uses in algebraic geometry) that a regular local ring is a UFD. As
another example, the aforementioned criterion leads to a direct proof of the otherwise non-obvious
that a localization of a regular local ring at a prime ideal is still a regular local ring.

Note: right now, the material on regular local rings is still missing! It should be
added.

2.1. Depth

In this section, we first introduce the notion of depth for local rings via the Ext functor, and
then show that depth can be measured as the length of a maximal regular sequence. After this,
we study the theory of regular sequences in general (on not-necessarily-local rings), and show
that the depth of a module can be bounded in terms of both its dimension and its associated
primes.

Depth over local rings

Throughout, let pR,mq be a noetherian local ring. Let k “ R{m be the residue field.

Let M ‰ 0 be a finitely generated R-module. We are going to define an arithmetic invariant of
M , called the depth, that will measure in some sense the torsion of M .

2.1.1 Definition The depth of M is equal to the smallest integer i such that Extipk,Mq ‰ 0.
If there is no such integer, we set depthM “ 8.

We shall give another characterization of this shortly that makes no reference to Ext functors,
and is purely elementary. We will eventually see that there is always such an i (at least ifM ‰ 0),
so depthM ă 8.

2.1.2 Example (Depth zero) Let us characterize when a module M has depth zero. Depth
zero is equivalent to saying that Ext0pk,Mq “ homRpk,Mq ‰ 0, i.e. that there is a nontrivial
morphism

k ÑM.
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As k “ R{m, the existence of such a map is equivalent to the existence of a nonzero x such that
Annpxq “ m, i.e. m P AsspMq. So depth zero is equivalent to having m P AsspMq.

Suppose now that depthpMq ‰ 0. In particular, m R AsspMq. Since AsspMq is finite, prime
avoidance implies that m Ć

Ť

pPAsspMq p. Thus m contains an element which is a non-zero-divisor
on M (see proposition 2.2.13). So we find:

2.1.3 Proposition M has depth zero iff every element in m is a zero divisor on M .

Now suppose depthM ‰ 0. There is a P m which is a non-zero-divisor onM , i.e. such that there
is an exact sequence

0 ÑM
a
ÑM ÑM{aM Ñ 0.

For each i, there is an exact sequence in Ext groups:

Exti´1pk,M{aMq Ñ Extipk,Mq
a
Ñ Extipk,Mq Ñ Extipk,M{aMq Ñ Exti`1pk,Mq. (2.1.1)

However, the map a : Extipk,Mq Ñ Extipk,Mq is zero as multiplication by a kills k. (If a kills
a module N , then it kills Ext˚pN,Mq for all M .) We see from this that

Extipk,Mq ãÑ Extipk,M{aMq

is injective, and
Exti´1pk,M{aMq� Extipk,Mq

is surjective.

2.1.4 Corollary If a P m is a non-zero-divisor on M , then

depthpM{aMq “ depthM ´ 1.

Proof. When depthM “ 8, this is easy (left to the reader) from the exact sequence. Suppose
depthpMq “ n. We would like to see that depthM{aM “ n ´ 1. That is, we want to see
that Extn´1pk,M{aMq ‰ 0, but Extipk,M{aMq “ 0 for i ă n ´ 1. This is direct from the
sequence (2.1.1) above. In fact, surjectivity of Extn´1pk,M{aMq Ñ Extnpk,Mq shows that
Extn´1pk,M{aMq ‰ 0. Now let i ă n ´ 1. Then in (2.1.1), Extipk,M{aMq is sandwiched
between two zeros, so it is zero.

The moral of the above discussion is that one quotients out by a non-zero-divisor, the depth
drops by one. In fact, we have described a recursive algorithm for computing depthpMq.

1. If m P AsspMq, output zero.

2. If m R AsspMq, choose an element a P m which is a non-zero-divisor on M . Output
depthpM{aMq ` 1.

If one wished to apply this in practice, one would probably start by looking for a non-zero-divisor
a1 P m on M , and then looking for one on M{a1M , etc. From this we make:

2.1.5 Definition Let pR,mq be a local noetherian ring, M a finite R-module. A sequence
a1, . . . , an P m is said to be M-regular iff:
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1. a1 is a non-zero-divisor on M

2. a2 is a non-zero-divisor on M{a1M

3. . . .

4. ai is a non-zero-divisor on M{pa1, . . . , ai´1qM for all i.

A regular sequence a1, . . . , an is maximal if it can be extended no further, i.e. there is no an`1

such that a1, . . . , an`1 is M -regular.

We now get the promised “elementary” characterization of depth.

2.1.6 Corollary depthpMq is the length of every maximal M -regular sequence. In particular,
all M -regular sequences have the same length.

Proof. If a1, . . . , an is M -regular, then

depthM{pa1, . . . , aiqM “ depthM ´ i

for each i, by an easy induction on i and the corollary 2.1.4. From this the result is clear, because
depth zero occurs precisely when m is an associated prime (proposition 2.1.3). But it is also clear
that a regular sequence a1, . . . , an is maximal precisely when every element of m acts as a zero
divisor on M{pa1, . . . , anqM , that is, m P AsspM{pa1, . . . , anqMq.

2.1.7 Remark We could define the depth via the length of a maximal M -regular sequence.

Finally, we can bound the depth in terms of the dimension.

2.1.8 Corollary Let M ‰ 0. Then the depth of M is finite. In fact,

depthM ď dimM. (2.1.2)

Proof. When depthM “ 0, the assertion is obvious. Otherwise, there is a P m which is a
non-zero-divisor on M . We know that

depthM{aM “ depthM ´ 1

and (by proposition 7.2.2)
dimM{aM “ dimM ´ 1.

By induction on dimM , we have that depthM{aM ď dimM{aM . From this the induction step
is clear, because depth and dim both drop by one after quotienting.

Generally, the depth is not the dimension.

2.1.9 Example Given any M , adding k makes the depth zero: M ‘ k has m as an associated
prime. But the dimension does not jump to zero just by adding a copy of k. If M is a direct
sum of pieces of differing dimensions, then the bound (2.1.2) does not exhibit equality. In fact,
if M,M 1 are finitely generated modules, then we have

depthM ‘M 1 “ min
`

depthM,depthM 1
˘

,

which follows at once from the definition of depth in terms of vanishing Ext groups.
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2.1.10 Remark (exercise) Suppose R is a noetherian local ring whose depth (as a module
over itself) is zero. If R is reduced, then R is a field.

Finally, we include a result that states that the depth does not depend on the ring so much as
the module.

2.1.11 Proposition (Depth and change of rings) Let pR,mq Ñ pS, nq be a morphism of
noetherian local rings. SupposeM is a finitely generated S-module, which is also finitely generated
as an R-module. Then depthRM “ depthSM .

Proof. It is clear that we have the inequality depthRM ď depthSM , by the interpretation
of depth via regular sequences. Let x1, . . . , xn P R be a maximal M -sequence. We need to
show that it is a maximal M -sequence in S as well. By quotienting, we may replace M with
M{px1, . . . , xnqM ; we then have to show that if M has depth zero as an R-module, it has depth
zero as an S-module.

But then homRpR{m,Mq ‰ 0. This is a R-submodule of M , consisting of elements killed by m,
and in fact it is a S-submodule. We are going to show that n annihilates some element of it,
which will imply that depthSM “ 0.

To see this, note that homRpR{m,Mq is artinian as an R-module (as it is killed by m). As a
result, it is an artinian S-module, which means it contains n as an associated prime, proving the
claim and the result.

Regular sequences

In the previous subsec, we defined the notion of depth of a finitely generated module over a
noetherian local ring using the Ext functors. We then showed that the depth was the length of
a maximal regular sequence.

Now, although it will not be necessary for the main results in this chapter, we want to generalize
this to the case of a non-local ring. Most of the same arguments go through, though there are
some subtle differences. For instance, regular sequences remain regular under permutation in
the local case, but not in general. Since there will be some repetition, we shall try to be brief.

We start by generalizing the idea of a regular sequence which is not required to be contained
in the maximal ideal of a local ring. Let R be a noetherian ring, and M a finitely generated
R-module.

2.1.12 Definition A sequence x1, . . . , xn P R is M-regular (or is an M-sequence) if for each
k ď n, xk is a non-zero-divisor on the R-module M{px1, . . . , xk´1qM and also px1, . . . , xnqM ‰

M .

So x1 is a non-zero-divisor on M , by the first part. That is, the homothety M x1
ÑM is injective.

The last condition is also going to turn out to be necessary for us. In the previous subsec, it
was automatic as mM ‰ M (unless M “ 0) by Nakayama’s lemma as M was assumed finitely
generated.
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The property of being a regular sequence is inherently an inductive one. Note that x1, . . . , xn is
a regular sequence on M if and only if x1 is a zero divisor on M and x2, . . . , xn is an M{x1M -
sequence.

2.1.13 Definition If M is an R-module and I Ă R an ideal, then we write depthIM for the
length of the length-maximizing M -sequence contained in I. When R is local and I Ă R the
maximal ideal, then we just write depthM as before.

While we will in fact have a similar characterization of depth in terms of Ext, in this section we
define it via regular sequences.

2.1.14 Example The basic example one is supposed to keep in mind is the polynomial ring
R “ R0rx1, . . . , xns and M “ R. Then the sequence x1, . . . , xn is regular in R.

2.1.15 Example Let pR,mq be a regular local ring, and let x1, . . . , xn be a regular system of
parameters in R (i.e. a system of generators for m of minimal size). Then we have seen that the
txiu form a regular sequence on R, in any order. This is because each quotient R{px1, . . . , xiq is
itself regular, hence a domain.

As before, we have a simple characterization of depth zero:

2.1.16 Proposition Let R be noetherian, M finitely generated. If M is an R-module with
IM ‰M , then M has depth zero if and only if I is contained in an element of AsspMq.

Proof. This is analogous to proposition 2.1.3. Note than an ideal consists of zero divisors on M
if and only if it is contained in an associated prime (proposition 2.2.13).

The above proof used proposition 2.2.13, a key fact which will be used repeatedly in the sequel.
This is one reason the theory of depth works best for finitely generated modules over noetherian
rings.

The first observation to make is that regular sequences are not preserved by permutation. This
is one nice characteristic that we would like but is not satisfied.

2.1.17 Example Let k be a field. Consider R “ krx, ys{ppx ´ 1qy, yzq. Then x, z is a regular
sequence on R. Indeed, x is a non-zero-divisor and R{pxq “ krzs. However, z, x is not a regular
sequence because z is a zero divisor in R.

Nonetheless, regular sequences are preserved by permutation for local rings under suitable
noetherian hypotheses:

2.1.18 Proposition Let R be a noetherian local ring andM a finite R-module. Then if x1, . . . , xn
is a M -sequence contained in the maximal ideal, so is any permutation xσp1q, . . . , xσpnq.

Proof. It is clearly enough to check this for a transposition. Namely, if we have an M -sequence

x1, . . . , xi, xi`1, . . . xn
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we would like to check that so is

x1, . . . , xi`1, xi, . . . , xn.

It is here that we use the inductive nature. Namely, all we need to do is check that

xi`1, xi, . . . , xn

is regular onM{px1, . . . , xi´1qM , since the first part of the sequence will automatically be regular.
Now xi`2, . . . , xn will automatically be regular on M{px1, . . . , xi`1qM . So all we need to show
is that xi`1, xi is regular on M{px1, . . . , xi´1qM .

The moral of the story is that we have reduced to the following lemma.

2.1.19 Lemma Let R be a noetherian local ring. Let N be a finite R-module and a, b P R an
N -sequence contained in the maximal ideal. Then so is b, a.

Proof. We can prove this as follows. First, a will be a non-zero-divisor on N{bN . Indeed, if not
then we can write

an “ bn1

for some n, n1 P N with n R bN . But b is a non-zero-divisor on N{aN , which means that bn1 P aN
implies n1 P aN . Say n1 “ an2. So an “ ban2. As a is a non-zero-divisor on N , we see that
n “ bn2. Thus n P bN , contradiction. This part has not used the fact that R is local.

Now we claim that b is a non-zero-divisor on N . Suppose n P N and bn “ 0. Since b is a
non-zero-divisor on N{aN , we have that n P aN , say n “ an1. Thus

bpan1q “ apbn1q “ 0.

The fact that N a
Ñ N is injective implies that bn1 “ 0. So we can do the same and get n1 “ an2,

n2 “ anp3q, np3q “ anp4q, and so on. It follows that n is a multiple of a, a2, a3, . . . , and hence in
mjN for each j where m Ă R is the maximal ideal. The Krull intersection theorem now implies
that n “ 0.

Together, these arguments imply that b, a is an N -sequence, proving the lemma.

The proof of the result is now complete.

One might wonder what goes wrong, and why permutations do not preserve regular sequences
in general; after all, oftentimes we can reduce results to their analogs for local rings. Yet the
fact that regularity is preserved by permutations for local rings does not extend to arbitrary
rings. The problem is that regular sequences do not localize. Well, they almost do, but the final
condition that px1, . . . , xnqM ‰M doesn’t get preserved. We can state:

2.1.20 Proposition Suppose x1, . . . , xn is an M -sequence. Let N be a flat R-module. Then if
px1, . . . , xnqM bR N ‰M bN , then x1, . . . , xn is an M bR N -sequence.

Proof. This is actually very easy now. The fact that xi : M{px1, . . . , xi´1qM ÑM{px1, . . . , xi´1qM
is injective is preserved when M is replaced by M bR N because the functor ´bR N is exact.
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In particular, it follows that if we have a good reason for supposing that px1, . . . , xnqM bN ‰

M bN , then we’ll already be done. For instance, if N is the localization of R at a prime ideal
containing the xi. Then we see that automatically x1, . . . , xn is an Mp “M bR Rp-sequence.

Finally, we have an analog of the previous correspondence between depth and the vanishing of
Ext. Since the argument is analogous to corollary 2.1.6, we omit it.

2.1.21 Theorem Let R be a ring. Suppose M is an R-module and IM ‰ M . All maxi-
mal M -sequences in I have the same length. This length is the smallest value of r such that
ExtrpR{I,Mq ‰ 0.

2.1.22 Remark (exercise) Suppose I is an ideal in R. Let M be an R-module such that
IM ‰M . Show that depthIM ě 2 if and only if the natural map

M » hompR,Mq Ñ hompI,Mq

is an isomorphism.

Powers of regular sequences

Regular sequences don’t necessarily behave well with respect to permutation or localization
without additional hypotheses. However, in all cases they behave well with respect to taking
powers. The upshot of this is that the invariant called depth that we will soon introduce is
invariant under passing to the radical.

We shall deduce this from the following easy fact.

2.1.23 Lemma Suppose we have an exact sequence of R-modules

0 ÑM 1 ÑM ÑM2 Ñ 0.

Suppose the sequence x1, . . . , xn P R is M 1-regular and M2-regular. Then it is M -regular.

The converse is not true, of course.

Proof. Morally, this is the snake lemma. For instance, the fact that multiplication by x1 is
injective on M 1,M2 implies by the snake diagram that M x1

ÑM is injective. However, we don’t
a priori know that a simple inductive argument on n will work to prove this. The reason is that it
needs to be seen that quotienting each term by px1, . . . , xn´1q will preserve exactness. However,
a general fact will tell us that this is indeed the case. See below.

Anyway, this general fact now lets us induct on n. If we assume that x1, . . . , xn´1 is M -regular,
we need only prove that xn : M{px1, . . . , xn´1qM Ñ M{px1, . . . , xn´1q is injective. (It is not
surjective or the sequence would not be M2-regular.) But we have the exact sequence by the
next lemma,

0 ÑM 1{px1 . . . xn´1qM
1 ÑM{px1 . . . xn´1qM ÑM2{px1 . . . xn´1qM

2 Ñ 0

and the injectivity of xn on the two ends implies it at the middle by the snake lemma.
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So we need to prove:

2.1.24 Lemma Suppose 0 ÑM 1 ÑM ÑM2 Ñ 0 is a short exact sequence. Let x1, . . . , xm be
an M2-sequence. Then the sequence

0 ÑM 1{px1 . . . xmqM
1 ÑM{px1 . . . xmqM ÑM2{px1 . . . xmqM

2 Ñ 0

is exact as well.

One argument here uses the fact that the Tor functors vanish when one has a regular sequence
like this. We can give a direct argument.

Proof. By induction, this needs only be proved when m “ 1, since we have the recursive descrip-
tion of regular sequences: in general, x2 . . . xm will be regular on M2{x1M

2. In any case, we
have exactness except possibly at the left as the tensor product is right-exact. So let m1 P M 1;
suppose m1 maps to a multiple of x1 in M . We need to show that m1 is a multiple of x1 in M 1.

Suppose m1 maps to x1m. Then x1m maps to zero in M2, so by regularity m maps to zero in
M2. Thus m comes from something, m1, in M 1. In particular m1 ´ x1m

1 maps to zero in M , so
it is zero in M 1. Thus indeed m1 is a multiple of x1 in M 1.

With this lemma proved, we can state:

2.1.25 Proposition Let M be an R-module and x1, . . . , xn an M -sequence. Then xa1
1 , . . . , x

an
n

is an M -sequence for any a1, . . . , an P Zą0.

Proof. We will use:

2.1.26 Lemma Suppose x1, . . . , xi, . . . , xn and x1, . . . , x
1
i, . . . , xn are M -sequences for some M .

Then so is x1, . . . , xix
1
i, . . . , xn.

Proof. As usual, we can mod out by px1 . . . xi´1q and thus assume that i “ 1. We have to show
that if x1, . . . , xn and x11, . . . , xn are M -sequences, then so is x1x

1
1, . . . , xn.

We have an exact sequence

0 Ñ x1M{x1x
1
1M ÑM{x1x

1
1M ÑM{x1M Ñ 0.

Now x2, . . . , xn is regular on the last term by assumption, and also on the first term, which is
isomorphic to M{x11M as x1 acts as a non-zero-divisor on M . So x2, . . . , xn is regular on both
ends, and thus in the middle. This means that

x1x
1
1, . . . , xn

is M -regular. That proves the lemma.

So we now can prove the proposition. It is trivial if
ř

ai “ n (i.e. if all are 1) it is clear. In
general, we can use complete induction on

ř

ai. Suppose we know the result for smaller values
of

ř

ai. We can assume that some aj ą 1. Then the sequence

xa1
1 , . . . x

aj
j , . . . x

an
n
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is obtained from the sequences
xa1

1 , . . . , x
aj´1
j , . . . , xann

and
xa1

1 , . . . , x
1
j , . . . , x

an
n

by multiplying the middle terms. But the complete induction hypothesis implies that both those
two sequences are M -regular, so we can apply the lemma.

In general, the product of two regular sequences is not a regular sequence. For instance, consider
a regular sequence x, y in some finitely generated module M over a noetherian local ring. Then
y, x is regular, but the product sequence xy, xy is never regular.

Depth

We make the following definition slightly differently than in the local case:

2.1.27 Definition Suppose I is an ideal such that IM ‰ M . Then we define the I-depth of
M to be the maximum length of a maximal M -sequence contained in I. When R is a local ring
and I the maximal ideal, then that number is simply called the depth of M .

The depth of a proper ideal I Ă R is its depth on R.

The definition is slightly awkward, but it turns out that all maximal M -sequences in I have the
same length, as we saw in theorem 2.1.21. So we can use any of them to compute the depth.

The first thing we can prove using the above machinery is that depth is really a “geometric”
invariant, in that it depends only on the radical of I.

2.1.28 Proposition Let R be a ring, I Ă R an ideal, and M an R-module with IM ‰M . Then
depthIM “ depthRadpIqM .

Proof. The inequality depthIM ď depthRadIM is trivial, so we need only show that if x1, . . . , xn
is an M -sequence in RadpIq, then there is an M -sequence of length n in I. For this we just take
a high power

xN1 , . . . , x
N
n

where N is large enough such that everything is in I. We can do this as powers of M -sequences
are M -sequences (proposition 2.1.25).

This was a fairly easy consequence of the above result on powers of regular sequences. On the
other hand, we want to give another proof, because it will let us do more. Namely, we will show
that depth is really a function of prime ideals.

For convenience, we set the following condition: if IM “M , we define

depthIpMq “ 8.
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2.1.29 Proposition Let R be a noetherian ring, I Ă R an ideal, and M a finitely generated
R-module. Then

depthIM “ min
pPV pIq

depthpM.

So the depth of I on M can be calculated from the depths at each prime containing I. In this
sense, it is clear that depthIpMq depends only on V pIq (and the depths on those primes), so
clearly it depends only on I up to radical.

Proof. In this proof, we shall use the fact that the length of every maximal M -sequence is the
same (theorem 2.1.21).

It is obvious that we have an inequality

depthI ď min
pPV pIq

depthpM

as each of those primes contains I. We are to prove that there is a prime p containing I with

depthIM “ depthpM.

But we shall actually prove the stronger statement that there is p Ą I with depthpMp “ depthIM .
Note that localization at a prime can only increase depth because an M -sequence in p leads to
an M -sequence in Mp thanks to Nakayama’s lemma and the flatness of localization.

So let x1, . . . , xn P I be a M -sequence of maximum length. Then I acts by zero divisors on
M{px1, . . . , xnqM or we could extend the sequence further. In particular, I is contained in
an associated prime of M{px1, . . . , xnqM by elementary commutative algebra (basically, prime
avoidance).

Call this associated prime p P V pIq. Then p is an associated prime of Mp{px1, . . . , xnqMp, and
in particular acts only by zero divisors on this module. Thus the Mp-sequence x1, . . . , xn can be
extended no further in p. In particular, since the depth can be computed as the length of any
maximal Mp-sequence,

depthpMp “ depthIM.

Perhaps we should note a corollary of the argument above:

2.1.30 Corollary Hypotheses as above, we have depthIM ď depthpMp for any prime p Ą I.
However, there is at least one p Ą I where equality holds.

We are thus reduced to analyzing depth in the local case.

2.1.31 Remark (exercise) If pR,mq is a local noetherian ring and M a finitely generated R-
module, then show that depthM “ depthR̂ M̂ , where M̂ is the m-adic completion. (Hint: use
M̂ “M bR R̂, and the fact that R̂ is flat over R.)
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Depth and dimension

Consider an R-module M , which is always assumed to be finitely generated. Let I Ă R be an
ideal with IM ‰M . We deduce from the previous subsecs:

2.1.32 Proposition Let M be a finitely generated module over the noetherian ring R. Then

depthIM ď dimM

for any ideal I Ă R with IM ‰M .

Proof. We have proved this when R is a local ring (corollary 2.1.8). Now we just use corol-
lary 2.1.30 to reduce to the local case.

This does not tell us much about how depthIM depends on I, though; it just says something
about how it depends on M . In particular, it is not very helpful when trying to estimate
depthI “ depthIR. Nonetheless, there is a somewhat stronger result, which we will need in the
future. We start by stating the version in the local case.

2.1.33 Proposition Let pR,mq be a noetherian local ring. Let M be a finite R-module. Then
the depth of m on M is at most the dimension of R{p for p an associated prime of M :

depthM ď min
pPAsspMq

dimR{p.

This is sharper than the bound depthM ď dimM , because each dimR{p is at most dimM (by
definition).

Proof. To prove this, first assume that the depth is zero. In that case, the result is immediate.
We shall now argue inductively. Assume that that this is true for modules of smaller depth. We
will quotient out appropriately to shrink the support and change the associated primes. Namely,
choose a M -regular (non-zero-divisor on M) x P R. Then depthM{xM “ depthM ´ 1.

Let p0 be an associated prime ofM . We claim that p0 is properly contained in an associated prime
of M{xM . We will prove this below. Thus p0 is properly contained in some q0 P AsspM{xMq.

Now we know that depthM{xM “ depthM ´ 1. Also, by the inductive hypothesis, we know
that dimR{q0 ě depthM{xM “ depthM´1. But the dimension of R{q0 is strictly smaller than
that of R{p0, so at least dimR{p0 ` 1 ě depthM . This proves the lemma, modulo the result:

2.1.34 Lemma Let pR,mq be a noetherian local ring. Let M be a finitely generated R-module,
x P m an M -regular element. Then each element of AsspMq is properly contained in an element
of AsspM{xMq.

So if we quotient by a regular element, we can make the associated primes jump up.
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Proof. Let p0 P AsspMq; we want to show p0 is properly contained in something in AsspM{xMq.

Indeed, x R p0, so p0 cannot itself be an associated prime. However, p0 annihilates a nonzero
element of M{xM . To see this, consider a maximal principal submodule of M annihilated by
p0. Let this submodule be Rz for some z P M . Then if z is a multiple of x, say z “ xz1, then
Rz1 would be a larger submodule of M annihilated by p0—here we are using the fact that x is
a non-zero-divisor on M . So the image of this z in M{xM is nonzero and is clearly annihilated
by p0. It follows p0 is contained in an element of AsspM{xMq, necessarily properly.

2.1.35 Remark (exercise) Another argument for lemma 2.1.34 is given in §16 of ?, vol. IV,
by reducing to the coprimary case. Here is a sketch.

The strategy is to use the existence of an exact sequence

0 ÑM 1 ÑM ÑM2 Ñ 0

with AsspM2q “ AsspMq´tp0u and AsspM 1q “ tp0u. Quotienting by x preserves exactness, and
we get

0 ÑM 1{xM 1 ÑM{xM ÑM2{xM2 Ñ 0.

Now p0 is properly contained in every associated prime of M 1{xM 1 (as it acts nilpotently on
M 1). It follows that any element of AsspM 1{xM 1q Ă AsspM{xMq will do the job.

In essence, the point is that the result is trivial when AsspMq “ tp0u.

2.1.36 Remark (exercise) Here is a simpler argument for lemma 2.1.34, following ?. Let
p0 P AsspMq, as before. Again as before, we want to show that homRpR{p0,M{xMq ‰ 0. But
we have an exact sequence

0 Ñ homRpR{p0,Mq
x
Ñ homRpR{p0,Mq Ñ homRpR{p0,M{xMq,

and since the first map is not surjective (by Nakayama), the last object is nonzero.

Finally, we can globalize the results:

2.1.37 Proposition Let R be a noetherian ring, I Ă R an ideal, and M a finitely generated
module. Then depthIM is at most the length of every chain of primes in SpecR that starts at
an associated prime of M and ends at a prime containing I.

Proof. Currently omitted.

2.1.38 Remark (comment) Consider a chain of primes p0 Ă ¨ ¨ ¨ Ă pk where p0 is an associated
prime and pk contains I. The goal is to show that

depthIM ď k.

By localization, we can assume that pk is the maximal ideal of R; recall that localization can
only increase the depth. We can also assume I is this maximal ideal, by increasing it.

In this case, the result follows from the local version (proposition 2.1.33).
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2.2. Cohen-Macaulayness

Cohen-Macaualay modules over a local ring

For a local noetherian ring, we have discussed two invariants of a module: dimension and depth.
They generally do not coincide, and Cohen-Macaulay modules will be those where they do.

Let pR,mq be a noetherian local ring.

2.2.1 Definition A finitely generated R-moduleM is Cohen-Macaulay if depthM “ dimM .
The ring R is called Cohen-Macaulay if it is Cohen-Macaulay as a module over itself.

We already know that the inequality ď always holds. If there is a system of parameters for
M (i.e., a sequence x1, . . . , xr P m such that M{px1, . . . , xrqM is artinian) which is a regular
sequence on M , then M is Cohen-Macaulay: we see in fact that dimM “ depthM “ r. This is
the distinguishing trait of Cohen-Macaulay rings.

Let us now give a few examples:

2.2.2 Example (Regular local rings are Cohen-Macaulay) IfR is regular, then depthR “
dimR, so R is Cohen-Macaulay.

Indeed, we have seen that if x1, . . . , xn is a regular system of parameters for R (i.e. a minimal set
of generators for m), then n “ dimR and the txiu form a regular sequence. See the remark after
corollary 9.1.12; the point is that R{px1, . . . , xi´1q is regular for each i (by the aforementioned
corollary), and hence a domain, so xi acts on it by a non-zero-divisor.

The next example easily shows that a Cohen-Macaulay ring need not be regular, or even a
domain:

2.2.3 Example (Local artinian rings are Cohen-Macaulay) Any local artinian ring, be-
cause the dimension is zero for an artinian ring.

2.2.4 Example (Cohen-Macaulayness and completion) A finitely generated moduleM is
Cohen-Macaulay if and only if its completion M̂ is; this follows from remark 2.1.31.

Here is a slightly harder example.

2.2.5 Example A normal local domain pR,mq of dimension 2 is Cohen-Macaulay. This is a
special case of Serre’s criterion for normality.

Here is an argument. If x P m is nonzero, we want to show that depthR{pxq “ 1. To do this, we
need to show that m R AsspR{pxqq for each such x, because then depthR{pxq ě 1 (which is all
we need). However, suppose the contrary; then there is y not divisible by x such that my Ă pxq.
So y{x R R, but mpy{xq Ă R.

This, however, implies m is principal. Indeed, we either have mpy{xq “ R, in which case m
is generated by x{y, or mpy{xq Ă m. The latter would imply that y{x is integral over R (as
multiplication by it stabilizes a finitely generated R-module), and by normality y{x P R. We
have seen much of this argument before.
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2.2.6 Example Consider Crx, ys{pxyq, the coordinate ring of the union of two axes intersecting
at the origin. This is not regular, as its localization at the origin is not a domain. We will later
show that this is a Cohen-Macaulay ring, though.

2.2.7 Remark (comment) Indeed, we can project the associated variety X “ V pxyq onto the
affine line by adding the coordinates. This corresponds to the map

Crzs Ñ Crx, ys{pxyq

sending z Ñ x`y. This makes Crx, ys{pxyq into a free Crzs-module of rank two (with generators
1, x), as one can check. So by the previous result (strictly speaking, its extension to non-domains),
the ring in question is Cohen-Macaulay.

2.2.8 Example R “ Crx, y, zs{pxy, xzq is not Cohen-Macaulay (at the origin). The associated
variety looks geometrically like the union of the plane x “ 0 and the line y “ z “ 0 in affine
3-space. Here there are two components of different dimensions intersecting. Let’s choose a
regular sequence (that is, regular after localization at the origin). The dimension at the origin is
clearly two because of the plane. First, we need a non-zero-divisor in this ring, which vanishes
at the origin, say x` y ` z. (Check this.) When we quotient by this, we get

S “ Crx, y, zs{pxy, xz, x` y ` zq “ Cry, zs{ppy ` zqy, py ` zqzq.

The claim is that S localized at the ideal corresponding to p0, 0q has depth zero. We have
y` z ‰ 0, which is killed by both y, z, and hence by the maximal ideal at zero. In particular the
maximal ideal at zero is an associated prime, which implies the claim about the depth.

As it happens, a Cohen-Macaulay variety is always equidimensional. The rough reason is that
each irreducible piece puts an upper bound on the depth given by the dimension of the piece. If
any piece is too small, the total depth will be too small.

Here is the deeper statement:

2.2.9 Proposition Let pR,mq be a noetherian local ring,M a finitely generated, Cohen-Macaulay
R-module. Then:

1. For each p P AsspMq, we have dimM “ dimR{p.

2. Every associated prime of M is minimal (i.e. minimal in suppM).

3. suppM is equidimensional.

In general, there may be nontrivial inclusion relations among the associated primes of a general
module. However, this cannot happen for a Cohen-Macaulay module.

Proof. The first statement implies all the others. (Recall that equidimensional means that all
the irreducible components of suppM , i.e. the SpecR{p, have the same dimension.) But this in
turn follows from the bound of proposition 2.1.33.

Next, we would like to obtain a criterion for when a quotient of a Cohen-Macaulay module is
still Cohen-Macaulay. The answer will be similar to theorem 9.1.14 for regular local rings.

508



V.2. Homological theory of local rings 2.2. Cohen-Macaulayness

2.2.10 Proposition Let M be a Cohen-Macaulay module over the local noetherian ring pR,mq.
If x1, . . . , xn P m is a M -regular sequence, then M{px1, . . . , xnqM is Cohen-Macaulay of dimen-
sion (and depth) dimM ´ n.

Proof. Indeed, we reduce to the case n “ 1 by induction. But then, because x1 is a non-zero-
divisor on M , we have dimM{x1M “ dimM ´ 1 and depthM{x1M “ depthM ´ 1. Thus

dimM{x1M “ depthM{x1M.

So, if we are given a Cohen-Macaulay module M and want one of a smaller dimension, we just
have to find x P m not contained in any of the minimal primes of suppM (these are the only
associated primes). Then, M{xM will do the job.

The non-local case

More generally, we would like to make the definition:

2.2.11 Definition A general noetherian ring R is Cohen-Macaulay if Rp is Cohen-Macaulay
for all p P SpecR.

We should check that these definitions coincide for a local noetherian ring. This, however, is
not entirely obvious; we have to show that localization preserves Cohen-Macaulayness. In this
subsec, we shall do that, and we shall furthermore show that Cohen-Macaulay rings are catenary,
or more generally that Cohen-Macaulay modules are catenary. (So far we have seen that they
are equidimensional, in the local case.)

We shall deduce this from the following result, which states that for a Cohen-Macaulay module,
we can choose partial systems of parameters in any given prime ideal in the support.

2.2.12 Proposition Let M be a Cohen-Macaulay module over the local noetherian ring pR,mq,
and let p P suppM . Let x1, . . . , xr P p be a maximal M -sequence contained in p. Then:

1. p is an associated and minimal prime of M{px1, . . . , xrqM .

2. dimR{p “ dimM ´ r

Proof. We know (proposition 2.2.10) that M{px1, . . . , xrqM is a Cohen-Macaulay module too.
Clearly p is in its support, since all the xi P p. The claim is that p is an associated prime—
or minimal prime, it is the same thing—of M{px1, . . . , xrqM . If not, there is x P p that is a
non-zero-divisor on this quotient, which means that tx1, . . . , xru was not maximal as claimed.

Now we need to verify the assertion on the dimension. Clearly dimM{px1, . . . , xrqM “ dimM´

r, and moreover dimR{p “ dimM{px1, . . . , xrq by proposition 2.2.9. Combining these gives the
second assertion.

2.2.13 Corollary Hypotheses as above, dimMp “ r “ dimM ´ dimR{p. Moreover, Mp is a
Cohen-Macaulay module over Rp.
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This result shows that definition 2.2.11 is a reasonable definition.

Proof. Indeed, if we consider the conclusions of ??, we find that x1, . . . , xr becomes a system
of parameters for Mp: we have that Mp{px1, . . . , xrqMp is an artinian Rp-module, while the
sequence is also regular. The first claim follows, as does the second: any module with a system
of parameters that is a regular sequence is Cohen-Macaulay.

As a result, we can get the promised result that a Cohen-Macaulay ring is catenary.

2.2.14 Proposition If M is Cohen-Macaulay over the local noetherian ring R, then suppM is
a catenary space.

In other words, if p Ă q are elements of suppM , then every maximal chain of prime ideals from
p to q has the same length.

Proof. We will show that dimR{p “ dimR{q ` dimRq{pRq, a claim that suffices to establish
catenariness. We will do this by using the dimension formulas computed earlier.

Namely, we know that M is catenary over R, so by corollary 2.2.13

dimRq Mq “ dimM ´ dimR{q, dimRp Mp “ dimM ´ dimR{p.

Moreover,Mq is Cohen-Macaulay over Rq. As a result, we have (in view of the previous equation)

dimRp Mp “ dimRq Mq ´ dimRq{pRq “ dimM ´ dimR{q´ dimRq{pRq.

Combining, we find

dimM ´ dimR{p “ dimM ´ dimR{q´ dimRq{pRq,

which is what we wanted.

It thus follows that any Cohen-Macaulay ring, and thus any quotient of a Cohen-Macaualay ring,
is catenary. In particular, it follows any non-catenary local noetherian ring cannot be expressed
as a quotient of a Cohen-Macaulay (e.g. regular) local ring.

It also follows immediately that if R is any regular (not necessarily local) ring, then R is catenary,
and the same goes for any quotient of R. In particular, since a polynomial ring over a field is
regular, we find:

2.2.15 Proposition Any affine ring is catenary.

Reformulation of Serre’s criterion

Much earlier, we proved criteria for a noetherian ring to be reduced and (more interestingly)
normal. We can state them more cleanly using the theory of depth developed.

2.2.16 Definition Let R be a noetherian ring, and let k P Zě0.
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1. We say that R satisfies condition Rk if, for every prime ideal p P SpecR with dimRp ď k,
the local ring Rp is regular.

2. R satisfies condition Sk if depthRp ě infpk, dimRpq for all p P SpecR.

A Cohen-Macaulay ring satisfies all the conditions Sk, and conversely. The condition Rk means
geometrically that the associated variety is regular (i.e., smooth, at least if one works over an
algebraically closed field) outside a subvariety of codimension ě k.

Recall that, according to ??, a noetherian ring is reduced iff:

1. For any minimal prime p Ă R, Rp is a field.

2. Every associated prime of R is minimal.

Condition 1 can be restated as follows. The ideal p Ă R is minimal if and only if it is zero-
dimensional, and Rp is regular if and only if it is a field. So the first condition is that for every
height zero prime, Rp is regular. In other words, it is the condition R0.

For the second condition, p P AsspRq iff p P AsspRpq, which is equivalent to depthRp “ 0. So
the second condition states that for primes p P SpecR of height at least 1, p R AsspRpq, or
depthpRpq ě 1. This is the condition S1.

We find:

2.2.17 Proposition A noetherian ring is reduced if and only if it satisfies R0 and S1.

In particular, for a Cohen-Macaulay ring, checking if it is reduced is easy; one just has to check
R0 (if the localizations at minimal primes are reduced).

Serre’s criterion for normality is in the same spirit, but harder. Recall that a noetherian ring is
normal if it is a finite direct product of integrally closed domains.

The earlier form of Serre’s criterion (see theorem 4.5.14) was:

2.2.18 Proposition Let R be a local ring. Then R is normal iff

1. R is reduced.

2. For every height one prime p P SpecR, Rp is a DVR (i.e. regular).

3. For every non-zero-divisor x P R, every associated prime of R{pxq is minimal.

In view of the criterion for reducedness, these conditions are equivalent to:

1. For every prime p of height ď 1, Rp is regular.

2. For every prime p of height ě 1, depthRp ě 1 (necessary for reducedness)

3. depthRp ě 2 for p containing but not minimal over any principal ideal pxq for x a non-
zero-divisor. This is the last condition of the proposition; to say depthRp ě 2 is to say
that depthRp{pxqRp ě 1, or p R AsspRp{pxqRpq.

Combining all this, we find:
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2.2.19 Theorem (Serre’s criterion) A noetherian ring is normal if and only if it satisfies the
conditions R1 and S2.

Again, for a Cohen-Macaulay ring, the last condition is automatic, as the depth is the codimen-
sion.

2.3. Projective dimension and free resolutions

We shall introduce the notion of projective dimension of a module; this will be the smallest
projective resolution it admits (if there is none such, the dimension is 8). We can think of it as
measuring how far a module is from being projective. Over a noetherian local ring, we will show
that the projective dimension can be calculated very simply using the Tor functor (which is an
elaboration of the story that a projective module over a local ring is free).

Ultimately we want to show that a noetherian local ring is regular if and only if every finitely
generated module admits a finite free resolution. Although we shall not get to that result until
the next section, we will at least relate projective dimension to a more familiar invariant of a
module: depth.

Introduction

Let R be a commutative ring, M an R-module.

2.3.1 Definition The projective dimension of M is the largest integer n such that there
exists a module N with

ExtnpM,Nq ‰ 0.

We allow 8, if arbitrarily large such n exist. We write pdpMq for the projective dimension. For
convenience, we set pdp0q “ ´8.

So, if m ą n “ pdpMq, then we have ExtmpM,Nq “ 0 for all modules N , and n is the smallest
integer with this property. As an example, note that pdpMq “ 0 if and only if M is projective
and nonzero. Indeed, we have seen that the Ext groups ExtipM,Nq, i ą 0 vanish always for M
projective, and conversely.

To compute pdpMq in general, one can proceed as follows. Take any M . Choose a surjection
P �M with P projective; call the kernel K and draw a short exact sequence

0 Ñ K Ñ P ÑM Ñ 0.

For any R-module N , we have a long exact sequence

Exti´1pP,Nq Ñ Exti´1pK,Nq Ñ ExtipM,Nq Ñ ExtipP,Nq.

If i ą 0, the right end vanishes; if i ą 1, the left end vanishes. So if i ą 1, this map
Exti´1pK,Nq Ñ ExtipM,Nq is an isomorphism.
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Suppose that pdpKq “ d ě 0. We find that Exti´1pK,Nq “ 0 for i ´ 1 ą d. This implies that
ExtipM,Nq “ 0 for such i ą d` 1. In particular, pdpMq ď d` 1. This argument is completely
reversible if d ą 0. Then we see from these isomorphisms that

pdpMq “ pdpKq ` 1 , unless pdpMq “ 0 (2.3.1)

If M is projective, the sequence 0 Ñ K Ñ P ÑM Ñ 0 splits, and pdpKq “ 0 too.

The upshot is that we can compute projective dimension by choosing a projective resolution.

2.3.2 Proposition Let M be an R-module. Then pdpMq ď n iff there exists a finite projective
resolution of M having n` 1 terms,

0 Ñ Pn Ñ ¨ ¨ ¨ Ñ P1 Ñ P0 ÑM Ñ 0.

Proof. Induction on n. When n “ 0, M is projective, and we can use the resolution 0 Ñ M Ñ

M Ñ 0.

Suppose pdpMq ď n, where n ą 0. We can get a short exact sequence

0 Ñ K Ñ P0 ÑM Ñ 0

with P0 projective, so pdpKq ď n´1 by (2.3.1). The inductive hypothesis implies that there is a
projective resolution of K of length ď n´ 1. We can splice this in with the short exact sequence
to get a projective resolution of M of length n.

The argument is reversible. Choose any projective resolution

0 Ñ Pn Ñ ¨ ¨ ¨ Ñ P1 Ñ P0 ÑM Ñ 0

and split into short exact sequences, and then one argue inductively to show that pdpMq ď n.

Let pdpMq “ n. Choose any projective resolution ¨ ¨ ¨ Ñ P2 Ñ P1 Ñ P0 Ñ M . Choose
Ki “ kerpPi Ñ Pi´1q for each i. Then there is a short exact sequence 0 Ñ K0 Ñ P0 ÑM Ñ 0.
Moreover, there are exact sequences

0 Ñ Ki Ñ Pi Ñ Ki´1 Ñ 0

for each i. From these, and from (2.3.1), we see that the projective dimensions of the Ki drop
by one as i increments. So Kn´1 is projective if pdpMq “ n as pdpKn´1q “ 0. In particular, we
can get a projective resolution

0 Ñ Kn´1 Ñ Pn´1 Ñ ¨ ¨ ¨ Ñ P0 ÑM Ñ 0

which is of length n. In particular, if one has a (possibly infinite) projective resolution M , one
can stop after going out n terms, because the kernels will become projective. In other words, the
projective resolution can be made to break off at the nth term. This applies to any projective
resolution. Conversely, since any module has a (possibly infinite) projective resolution, we find:
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2.3.3 Proposition We have pdpMq ď n if any projective resolution

¨ ¨ ¨ Ñ P1 Ñ P0 ÑM Ñ 0

breaks off at the nth stage: that is, the kernel of Pn´1 Ñ Pn´2 is projective.

If pdpMq ď n, then by definition we have Extn`1pM,Nq “ 0 for any module N . By itself, this
does not say anything about the Tor functors. However, the criterion for projective dimension
enables us to show:

2.3.4 Proposition If pdpMq ď n, then TormpM,Nq “ 0 for m ą n.

One can define an analog of projective dimension with the Tor functors, called flat dimension,
and it follows that the flat dimension is at most the projective dimension.

In fact, we have more generally:

2.3.5 Proposition Let F be a right-exact functor on the category of R-modules, and let tLiF u
be its left derived functors. If pdpMq ď n, then LiF pMq “ 0 for i ą n.

Clearly this implies the claim about Tor functors.

Proof. Recall how LiF pMq can be computed. Namely, one chooses a projective resolution P‚ Ñ
M (any will do), and compute the homology of the complex F pP‚q. However, we can choose
P‚ ÑM such that Pi “ 0 for i ą n by proposition 2.3.2. Thus F pP‚q is concentrated in degrees
between 0 and n, and the result becomes clear when one takes the homology.

In general, flat modules are not projective (e.g. Q is flat, but not projective, over Z), and while
one can use projective dimension to bound “flat dimension” (the analog for Tor-vanishing), one
cannot use the flat dimension to bound the projective dimension. For a local ring, we will see
that it is possible in the next subsec.

Tor and projective dimension

Over a noetherian local ring, there is a much simpler way to test whether a finitely generated
module is projective. This is a special case of the very general flatness criterion theorem 1.4.10,
but we can give a simple direct proof. So we prefer to keep things self-contained.

2.3.6 Theorem Let M be a finitely generated module over the noetherian local ring pR,mq, with
residue field k “ R{m. Then, if Tor1pM,kq “ 0, M is free.

In particular, projective—or even flat—modules which are of finite type over R are automatically
free. This is a strengthening of the earlier theorem (??) that a finitely generated projective
module over a local ring is free.

514



V.2. Homological theory of local rings 2.3. Projective dimension and free resolutions

Proof. Indeed, we can find a free module F and a surjection F ÑM such that F bRk ÑMbRk
is an isomorphism. To do this, choose elements of M that form a basis of M bR k, and then
define a map F ÑM via these elements; it is a surjection by Nakayama’s lemma.

Let K be the kernel of F �M , so there is an exact sequence

0 Ñ K Ñ F ÑM Ñ 0.

We want to show that K “ 0, which will imply that M “ 0. By Nakayama’s lemma, it suffices
to show that K bR k “ 0. But we have an exact sequence

Tor1pM,kq Ñ K bR k Ñ F bR k ÑM bR k Ñ 0.

The last map is an isomorphism, and Tor1pM,kq “ 0, which implies that K bR k “ 0. The
result is now proved.

As a result, we can compute the projective dimension of a module in terms of Tor.

2.3.7 Corollary Let M be a finitely generated module over the noetherian local ring R with
residue field k. Then pdpMq is the largest integer n such that TornpM,kq ‰ 0. It is also the
smallest integer n such that Torn`1pM,kq “ 0.

There is a certain symmetry: if Ext replaces Tor, then one has the definition of depth. We will
show later that there is indeed a useful connection between projective dimension and depth.

Proof. We will show that if Torn`1pM,kq “ 0, then pdpMq ď n. This implies the claim, in view
of proposition 2.3.4. Choose a (possibly infinite) projective resolution

¨ ¨ ¨ Ñ P1 Ñ P0 ÑM Ñ 0.

Since R is noetherian, we can assume that each Pi is finitely generated.

Write Ki “ kerpPi Ñ Pi´1q, as before; these are finitely generated R-modules. We want to show
that Kn´1 is projective, which will establish the claim, as then the projective resolution will
“break off.” But we have an exact sequence

0 Ñ K0 Ñ P0 ÑM Ñ 0,

which shows that TornpK0, kq “ Torn`1pM,kq “ 0. Using the exact sequencese 0 Ñ Ki Ñ Pi Ñ
Ki´1 Ñ 0, we inductively work downwards to get that Tor1pKn´1, kq “ 0. So Kn´1 is projective
by theorem 2.3.6.

In particular, we find that if pdpkq ď n, then pdpMq ď n for allM . This is because if pdpkq ď n,
then Torn`1pM,kq “ 0 by using the relevant resolution of k (see proposition 2.3.4, but for k).

2.3.8 Corollary Suppose there exists n such that Torn`1pk, kq “ 0. Then every finitely gener-
ated R-module has a finite free resolution of length at most n.

We have thus seen that k is in some sense the “worst” R-module, in that it is as far from being
projective, or that it has the largest projective dimension. We can describe this worst-case
behavior with the next concept:
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2.3.9 Definition Given a ring R, the global dimension is the sup of the projective dimensions
of all finitely generated R-modules.

So, to recapitulate: the global dimension of a noetherian local ring R is the projective dimension
of its residue field k, or even the flat dimension of the residue field.

Minimal projective resolutions

Usually projective resolutions are non-unique; they are only unique up to chain homotopy. We
will introduce a certain restriction that enforces uniqueness. These “minimal” projective resolu-
tions will make it extremely easy to compute the groups Tor‚p¨, kq.

Let pR,mq be a local noetherian ring with residue field k, M a finitely generated R-module. All
tensor products will be over R.

2.3.10 Definition A projective resolution P‚ Ñ M of finitely generated modules is minimal
if for each i, the induced map Pi b k Ñ Pi´1 b k is zero, and the map P0 b k Ñ M{mM is an
isomorphism.

In other words, the complex P‚b k is isomorphic to M b k. This is equivalent to saying that for
each i, the map Pi Ñ kerpPi´1 Ñ Pi´2q is an isomorphism modulo m.

2.3.11 Proposition EveryM (over a local noetherian ring) has a minimal projective resolution.

Proof. Start with a module M . Then M{mM is a finite-dimensional vector space over k, of
dimension say d0. We can choose a basis for that vector space, which we can lift to M . That
determines a map of free modules

Rd0 ÑM,

which is a surjection by Nakayama’s lemma. It is by construction an isomorphism modulo m.
Then define K “ kerpRd0 ÑMq; this is finitely generated by noetherianness, and we can do the
same thing for K, and repeat to get a map Rd1 � K which is an isomorphism modulo m. Then

Rd1 Ñ Rd0 ÑM Ñ 0

is exact, and minimal; we can continue this by the same procedure.

2.3.12 Proposition Minimal projective resolutions are unique up to isomorphism.

Proof. Suppose we have one minimal projective resolution:

¨ ¨ ¨ Ñ P2 Ñ P1 Ñ P0 ÑM Ñ 0

and another:
¨ ¨ ¨ Ñ Q2 Ñ Q1 Ñ Q0 ÑM Ñ 0.
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There is always a map of projective resolutions P˚ Ñ Q˚ by general homological algebra. There
is, equivalently, a commutative diagram

. . .

��

// P2

��

// P1

��

// P0

��

//M

id
��

// 0

. . . // Q2
// Q1

// Q0
//M // 0

If both resolutions are minimal, the claim is that this map is an isomorphism. That is, φi : Pi Ñ
Qi is an isomorphism, for each i.

To see this, note that Pi, Qi are finite free R-modules.1 So φi is an isomorphism iff φi is an
isomorphism modulo the maximal ideal, i.e. if

Pi{mPi Ñ Qi{mQi

is an isomorphism. Indeed, if φi is an isomorphism, then its tensor product with R{m obviously
is an isomorphism. Conversely suppose that the reductions mod m make an isomorphism. Then
the ranks of Pi, Qi are the same, and φi is an n-by-n matrix whose determinant is not in the
maximal ideal, so is invertible. This means that φi is invertible by the usual formula for the
inverse matrix.

So we are to check that Pi{mPi Ñ Qi{mQi is an isomorphism for each i. This is equivalent to
the assertion that

pQi{mQiq
_ Ñ pPi{mPiq

_

is an isomorphism. But this is the map

homRpQi, R{mq Ñ homRpPi, R{mq.

If we look at the chain complexes hompP˚, R{mq, hompQ˚, R{mq, the cohomologies compute the
Ext groups of pM,R{mq. But all the maps in this chain complex are zero because the resolution
is minimal, and we have that the image of Pi is contained in mPi´1 (ditto for Qi). So the
cohomologies are just the individual terms, and the maps homRpQi, R{mq Ñ homRpPi, R{mq
correspond to the identities on ExtipM,R{mq. So these are isomorphisms.2

2.3.13 Corollary If ¨ ¨ ¨ Ñ P2 Ñ P1 Ñ P0 Ñ M is a minimal projective resolution of M , then
the ranks rankpPiq are well-defined (i.e. don’t depend on the choice of the minimal resolution).

Proof. Immediate from the proposition. In fact, the ranks are the dimensions (as R{m-vector
spaces) of ExtipM,R{mq.

1We are using the fact that a finite projective module over a local ring is free.
2We are sweeping under the rug the statement that Ext can be computed via any projective resolution. More
precisely, if you take any two projective resolutions, and take the induced maps between the projective reso-
lutions, hom them into R{m, then the maps on cohomology are isomorphisms.
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The Auslander-Buchsbaum formula

2.3.14 Theorem (Auslander-Buschsbaum formula) Let R be a local noetherian ring, M
a finitely generated R-module of finite projective dimension. If pdpRq ă 8, then pdpMq “
depthpRq ´ depthpMq.

Proof. Induction on pdpMq. When pdpMq “ 0, then M is projective, so isomorphic to Rn for
some n. Thus depthpMq “ depthpRq.

Assume pdpMq ą 0. Choose a surjection P �M and write an exact sequence

0 Ñ K Ñ P ÑM Ñ 0,

where pdpKq “ pdpMq ´ 1. We also know by induction that

pdpKq “ depthR´ depthpKq.

What we want to prove is that

depthR´ depthM “ pdpMq “ pdpKq ` 1.

This is equivalent to wanting know that depthpKq “ depthpMq ` 1. In general, this may not be
true, though, but we will prove it under minimality hypotheses.

Without loss of generality, we can choose that P is minimal, i.e. becomes an isomorphism modulo
the maximal ideal m. This means that the rank of P is dimM{mM . So K “ 0 iff P ÑM is an
isomorphism; we’ve assumed that M is not free, so K ‰ 0.

Recall that the depth of M is the smallest value i such thatExtipR{m,Mq ‰ 0. So we should
look at the long exact sequence from the above short exact sequence:

ExtipR{m, P q Ñ ExtipR{m,Mq Ñ Exti`1pR{m,Kq Ñ Exti`1pR{m, P q.

Now P is just a direct sum of copies of R, so ExtipR{m, P q and Exti`1pR{m, P q are zero if
i`1 ă depthR. In particular, if i`1 ă depthR, then the map ExtipR{m,Mq Ñ Exti`1pR{m,Kq
is an isomorphism. So we find that depthM ` 1 “ depthK in this case.

We have seen that if depthK ă depthR, then by taking i over all integers ă depthK, we find
that

ExtipR{m,Mq “

#

0 if i` 1 ă depthK

Exti`1pR{m,Kq if i` 1 “ depthK
.

In particular, we are done unless depthK ě depthR. By the inductive hypothesis, this is
equivalent to saying that K is projective.

So let us consider the case where K is projective, i.e. pdpMq “ 1. We want to show that
depthM “ d ´ 1 if d “ depthR. We need a slightly different argument in this case. Let
d “ depthpRq “ depthpP q “ depthpKq since P,K are free. We have a short exact sequence

0 Ñ K Ñ P ÑM Ñ 0
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and a long exact sequence of Ext groups:

0 Ñ Extd´1pR{m,Mq Ñ ExtdpR{m,Kq Ñ ExtdpR{m, P q.

We know that ExtdpR{m,Kq is nonzero asK is free andR has depth d. However, ExtipR{m,Kq “
ExtipR{m, P q “ 0 for i ă d. This implies that Exti´1pR{m,Mq “ 0 for i ă d.

We will show:

The map ExtdpR{m,Kq Ñ ExtdpR{m, P q is zero.

This will imply that the depth ofM is precisely d´1. This is because the matrix K Ñ P is given
by multiplication by a matrix with coefficients in m as K{mK Ñ P {mP is zero. In particular,
the map on the Ext groups is zero, because it is annihilated by m.

2.3.15 Example Consider the case of a regular local ring R of dimension n. Then depthpRq “
n, so we have

pdpMq ` depthpMq “ n,

for every finitely generated R-module M . In particular, depthpMq “ n if and only if M is free.

2.3.16 Example (The Cohen-Macaulay locus is open) Let R be a regular noetherian ring
(i.e. one all of whose localizations are regular). Let M be a finitely generated R-module. We
consider the locus Z Ă SpecR consisting of prime ideals p P SpecR such that Mp is a Cohen-
Macaulay R-module. We want to show that this is an open subset.

Namely, over a local ring pA,mq, define the codepth of a finitely generated A-module N as
codepthN “ dimN ´ depthN ě 0; we have that codepthN “ 0 if and only if N is Cohen-
Macaulay. We are going to show that the function p ÞÑ codepthRp

Mp is upper semicontinuous on
SpecR. To do this, we use the Auslander-Buchsbaum formula depthRp

Mp “ dimRp ´ pdRp
Mp

(see example 2.3.15). We will show below that p ÞÑ pdRp
Mp is upper semi-continuous on SpecR.

Thus, we have
codepthRp

Mp “ ´
`

dimRp ´ dimRp Mp

˘

` pdRp
Mp,

where the second term is upper semi-continuous. The claim is that the first term is upper semi-
continuous. If we consider suppM Ă SpecR, then the bracketed difference measures the local
codimension of suppM Ă SpecR. Namely, dimRp ´ dim suppMp is the local codimension be-
cause Rp is regular, and consequently SpecRp is biequidimensional (To be added: argument).
The local codimension of any set is always lower semi-continuous (To be added: reference in
the section on topological dim). As a result, the codepth is upper semi-continuous.

We just need to prove the assertion that p ÞÑ pdRp
Mp is upper semi-continuous. That is, we

need to show that if Mp admits a projective resolution of length n by finitely generated modules,
then there is a projective resolution of length n of Mq for q in some Zariski neighborhood. But
a projective resolution of Mp “descends” to a projective (even free) resolution of Mg for some
g R p, which gives the result by localization.

If R is the quotient of a regular ring, the same result holds (because the Cohen-Macaulay locus
behaves properly with respect to quotients). In particular, this result holds for R an affine ring.
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2.3.17 Example Let R “ Crx1, . . . , xns{p for p prime. Choose an injection R1 Ñ R where R1 “
Cry1, . . . , yms and R is a finitely generated R1-module. This exists by the Noether normalization
lemma.

We wanted to show:

2.3.18 Theorem R is Cohen-Macaulay3 iff R is a projective R1-module.

We shall use the fact that projectiveness can be tested locally at every maximal ideal.

Proof. Choose a maximal ideal m Ă R1. We will show that Rm is a free R1m-module via the
injection of rings R1m ãÑ Rm (where Rm is defined as R localized at the multiplicative subset of
elements of R1 ´m) at each m iff Cohen-Macaulayness holds.

Now R1m is a regular local ring, so its depth is m. By the Auslander-Buchsbaum formula, Rm is
projective as an R1m-module iff

depthR1m Rm “ m.

Now R is a projective module iff the above condition holds for all maximal ideals m Ă R1. The
claim is that this is equivalent to saying that depthRn “ m “ dimRn for every maximal ideal
n Ă R (depth over R!).

These two statements are almost the same, but one is about the depth of R as an R-module,
and another as an R1-module.

Issue: There may be several maximal ideals of R lying over the maximal ideal m Ă R1.

The problem is that Rm is not generally local, and not generally equal to Rn if n lies over m.
Fortunately, depth makes sense even over semi-local rings (rings with finitely many maximal
ideals).

Let us just assume that this does not occur, though. Let us assume that Rm is a local ring for
every maximal ideal m Ă R. Then we are reduced to showing that if S “ Rm, then the depth of S
as an R1m-module is the same as the depth as an Rm-module. That is, the depth doesn’t depend
too much on the ring, since R1m, Rm are “pretty close.” If you believe this, then you believe the
theorem, by the first paragraph.

Let’s prove this claim in a more general form:

2.3.19 Proposition Let φ : S1 Ñ S be a local4 map of local noetherian rings such that S is a
finitely generated S1-module. Then, for any finitely generated S-module M ,

depthSM “ depthS1M.

With this, the theorem will be proved.

2.3.20 Remark This result generalizes to the semi-local case, which is how one side-steps the
issue above.

3That is, its localizations at any prime—or, though we haven’t proved yet, at any maximal ideal—are.
4I.e. φ sends non-units into non-units.
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Proof. By induction on depthS1M . There are two cases.

Let m1,m be the maximal ideals of S1, S. If depthS1pMq ą 0, then there is an element a in m1

such that
M

φpaq
Ñ M

is injective. Now φpaq P m. So φpaq is a non-zero-divisor, and we have an exact sequence

0 ÑM
φpaq
Ñ M ÑM{φpaqM Ñ 0.

Thus we find
depthSM ą 0.

Moreover, we find that depthSM “ depthSpM{φpaqMq`1 and depthS1M “ depthS1pM{φpaqMqq`
1. The inductive hypothesis now tells us that

depthSM “ depthS1M.

The hard case is where depthS1M “ 0. We need to show that this is equivalent to depthSM “ 0.
So we know at first that m1 P AsspMq. That is, there is an element x PM such that AnnS1pxq “
m1. Now AnnSpxq Ĺ S and contains m1S.

Sx ĂM is a submodule, surjected onto by S by the map aÑ ax. This map actually, as we have
seen, factors through S{m1S. Here S is a finite S1-module, so S{m1S is a finite S1{m1-module. In
particular, it is a finite-dimensional vector space over a field. It is thus a local artinian ring. But
Sx is a module over this local artinian ring. It must have an associated prime, which is a maximal
ideal in S{m1S. The only maximal ideal can be m{m1S. It follows that m P AsspSxq Ă AsspMq.

In particular, depthSM “ 0 too, and we are done.

2.3.21 Remark (comment) We shall eventually prove:

2.3.22 Proposition Let R “ CrX1, . . . , Xns{p for p prime. Choose an injective map Cry1, . . . , yns ãÑ

R making R a finite module. Then R is Cohen-Macaulay iff R is projective as a module over
Cry1, . . . , yns.5

The picture is that the inclusion Cry1, . . . , yms ãÑ Crx1, . . . , xns{p corresponds to a map

X Ñ Cm

for X “ V ppq Ă Cn. This statement of freeness is a statement about how the fibers of this finite
map stay similar in some sense.

5In fact, this is equivalent to freeness, although we will not prove it. Any projective finite module over a
polynomial ring over a field is free, though this is a hard theorem.
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2.4. Serre’s criterion and its consequences

We would like to prove Serre’s criterion for regularity.

2.4.1 Theorem Let pR,mq be a local noetherian ring. Then R is regular iff R{m has finite
projective dimension. In this case, pdpR{mq “ dimR.

To be added: proof

First consequences

2.4.2 Proposition Let pR,mq Ñ pS, nq be a flat, local homomorphism of noetherian local rings.
If S is regular, so is R.

Proof. Let n “ dimS. Let M be a finitely generated R-module, and consider a resolution

Pn Ñ Pn´1 Ñ ¨ ¨ ¨ Ñ P0 ÑM Ñ 0,

where all the tPiu are finite free R-modules. If we can show that the kernel of Pn Ñ Pn´1 is
projective, then it will follow that M has finite projective dimension. Since M was arbitrary, it
will follow that R is regular too, by Serre’s criterion.

Let K be the kernel, so there is an exact sequence

0 Ñ K Ñ Pn Ñ Pn´1 Ñ ¨ ¨ ¨ Ñ P0 ÑM Ñ 0,

which we can tensor with S, by flatness:

0 Ñ K bR S Ñ Pn bR S Ñ Pn´1 bR S Ñ ¨ ¨ ¨ Ñ P0 bR S ÑM bR S Ñ 0.

Because any finitely generated S-module has projective dimension ď n, it follows that K bR S
is projective, and in particular flat.

But now S is faithfully flat over R (see ??), and it follows that K is R-flat. Thus K is projective
over R, proving the claim.

2.4.3 Theorem The localization of a regular local ring at a prime ideal is regular.

Geometrically, this means that to test whether a nice scheme (e.g. a variety) is regular (i.e., all
the local rings are regular), one only has to test the closed points.

Proof. Let pR,mq be a regular local ring. Let p P SpecR be a prime ideal; we wish to show that
Rp is regular. To do this, let M be a finitely generated Rp-module. Then we can find a finitely
generated R-submodule N Ă M such that the natural map Np Ñ M is an isomorphism. If we
take a finite free resolution of N by R-modules and localize at p, we get a finite free resolution
of M by Rp-modules.

It now follows thatM has finite projective dimension as an Rp-module. By Serre’s criterion, this
implies that Rp is regular.
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Regular local rings are factorial

We now aim to prove that a regular local ring is factorial.

First, we need:

2.4.4 Definition Let R be a noetherian ring and M a f.gen. R-module. Then M is stably
free if M ‘Rk is free for some k.

Stably free obviously implies “projective.” Free implies stably free, clearly—take k “ 0. Over a
local ring, a finitely generated projective module is free, so all three notions are equivalent. Over
a general ring, these notions are generally different.

We will need the following lemma:

2.4.5 Lemma Let M be an R-module with a finite free resolution. If M is projective, it is stably
free.

Proof. There is an exact sequence

0 Ñ Fk Ñ Fk´1 Ñ ¨ ¨ ¨ Ñ F1 Ñ F0 ÑM Ñ 0

with the Fi free and finitely generated, by assumption.

We induct on the length k of the resolution. We know that if N is the kernel of F0 Ñ M , then
N is projective (as the sequence 0 Ñ N Ñ F0 ÑM Ñ 0 splits) so there is a resolution

0 Ñ Fk Ñ ¨ ¨ ¨ Ñ F1 Ñ N Ñ 0.

By the inductive hypothesis, N is stably free. So there is a free module Rd such that N ‘Rd is
free.

We know that M ‘ N “ F0 is free. Thus M ‘ N ‘ Rd “ F0 ‘ Rd is free and N ‘ Rd is free.
Thus M is stably free.

2.4.6 Remark Stably freeness does not generally imply freeness, though it does over a local
noetherian ring.

Nonetheless,

2.4.7 Proposition Stably free does imply free for invertible modules.

Proof. Let I be stably free and invertible. We must show that I » R. Without loss of generality,
we can assume that SpecR is connected, i.e. R has no nontrivial idempotents. We will assume
this in order to talk about the rank of a projective module.

We know that I ‘ Rn » Rm for some m. We know that m “ n ` 1 by localization. So
I ‘Rn » Rn`1 for some n. We will now need to construct the exterior powers, for which we
digress:
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2.4.8 Definition Let R be a commutative ring and M an R-module. Then ^M , the exterior
algebra on M , is the free (noncommutative) graded R-algebra generated by M (with product
^) with just enough relations such that ^ is anticommutative (and, more strongly, x^x “ 0 for
x degree one).

Clearly ^M is a quotient of the tensor algebra T pMq, which is by definition R ‘M ‘M b

M ‘ ¨ ¨ ¨ ‘Mbn ‘ . . . . The tensor algebra is a graded R-algebra in an obvious way: px1 b ¨ ¨ ¨ b

xaq.py1 b ¨ ¨ ¨ b ybq “ x1 b ¨ ¨ ¨ b xa b y1 b ¨ ¨ ¨ b yb. This is an associative R-algebra. Then

^M “ T pMq{pxb x, x, y PMq.

The grading on ^M comes from the grading of T pMq.

We are interested in basically one example:

2.4.9 Example Say M “ Rm. Then ^mM “ R. If e1, . . . , em P M are generators, then
e1 ^ ¨ ¨ ¨ ^ em is a generator. More generally, ^kM is free on ei1 ^ ¨ ¨ ¨ ^ eik for i1 ă ¨ ¨ ¨ ă ik.

We now make:

2.4.10 Definition If M is a projective R-module of rank n, then

detpMq “ ^nM.

If M is free, then detpMq is free of rank one. So, as we see by localization, detpMq is always an
invertible module for M locally free (i.e. projective) and ^n`1M “ 0.

2.4.11 Lemma detpM ‘Nq “ detM b detN .

Proof. This isomorphism is given by wedging ^topM b ^topN Ñ ^toppM ‘ Nq. This is easily
checked for oneself.

Anyway, let us finally go back to the proof. If I ‘ Rn “ Rn`1, then taking determinants shows
that

det I bR “ R,

so det I “ R. But this is I as I is of rank one. So I is free.

2.4.12 Theorem A regular local ring is factorial.

Let R be a regular local ring of dimension n. We want to show that R is factorial. Choose a
prime ideal p of height one. We’d like to show that p is principal.
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Proof. Induction on n. If n “ 0, then we are done—we have a field.

If n “ 1, then a height one prime is maximal, hence principal, because regularity is equivalent
to the ring’s being a DVR.

Assume n ą 1. The prime ideal p has height one, so it is contained in a maximal ideal m. Note
that m2 Ă m as well. I claim that there is an element x of m ´ p ´ m2. This follows as an
argument like prime avoidance. To see that x exists, choose x1 P m´ p and x2 P m´m2. We are
done unless x1 P m2 and x2 P p (or we could take x to be x1 or x2). In this case, we just take
x “ x1 ` x2.

So choose x P m´ p´m2. Let us examine the ring Rx “ Rr1{xs, which contains an ideal prx´1s.
This is a proper ideal as x R p. Now Rr1{xs is regular (i.e. its localizations at primes are regular
local). The dimension, however, is of dimension less than n since by inverting x we have removed
m. By induction we can assume that Rx is locally factorial.

Now pRx is prime and of height one, so it is invertible as Rx is locally factorial. In particular it
is projective.

But p has a finite resolution by R-modules (by regularity), so pRx has a finite free resolution. In
particular, pRx is stably free and invertible, hence free. Thus pRx is principal.

We want to show that p is principal, not just after localization. We know that there is a y P p
such that y generates pRx. Choose y such that pyq Ă p is as large as possible. We can do this
since R is noetherian. This implies that x - y because otherwise we could use y{x instead of y.

We shall now show that
p “ pyq.

So suppose z P p. We know that y generates p after x is inverted. In particular, z P pRx.
That is, zxa P pyq for a large. That is, we can write

zxa “ yw, for some w P R.

We chose x such that x R m2. In particular, R{pxq is regular, hence an integral domain; i.e. x is
a prime element. We find that x must divide one of y, w if a ą 0. But we know that x - y, so
x | w. Thus w “ w1x for some x. We find that, cancelling x,

zxa´1 “ yw1

and we can repeat this argument over and over until we find that

z P pyq.
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V.3. Étale, unramified, and smooth
morphisms

In this chapter, we shall introduce three classes of morphisms of rings defined by lifting properties
and study their properties. Although in the case of morphisms of finite presentation, the three
types of morphisms (unramified, smooth, and étale) can be defined directly (without lifting
properties), in practice, in algebraic geometry, the functorial criterion given by lifts matter:
if one wants to show an algebra is representable, then one can just study the corepresentable
functor, which may be more accessible.

3.1. Unramified morphisms

Definition

Formal étaleness, smoothness, and unramifiedness all deal with the existence or uniqueness of
liftings under nilpotent extensions. We start with formal unramifiedness.

3.1.1 Definition Let RÑ S be a ring map. We say S is formally unramified over R if for
every commutative solid diagram

S //

!!

A{I

R //

OO

A

OO
(3.1.1)

where I Ă A is an ideal of square zero, there exists at most one dotted arrow making the diagram
commute.

We say that S is unramified over R if S is formally unramified over R and is a finitely generated
R-algebra.

In other words, an R-algebra S is formally unramified if and only if whenever A is an R-algebra
and I Ă A an ideal of square zero, the map of sets

homRpS,Aq Ñ homRpS,A{Iq

is injective. Restated again, for such A, I, there is at most one lift of a given R-homomorphism
S Ñ A{I to S Ñ A. This is a statement purely about the associated “functor of points.” Namely,
let S be an R-algebra, and consider the functor F : R–algÑ Sets given by F pXq “ homRpS,Xq.
This is the “functor of points.” Then S is formally unramified over R if F pAq Ñ F pA{Iq is
injective for each A, I as above.
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The intuition is that maps from S into T are like “tangent vectors,” and consequently the condi-
tion geometrically means something like that tangent vectors can be lifted uniquely: that is, the
associated map is an immersion. More formally, if RÑ S is a morphism of algebras of finite type
over C, which corresponds to a map SpecS Ñ SpecR of smooth varieties (this is a condition on
R,S!), then R Ñ S is unramified if and only if the associated map of complex manifolds is an
immersion. (We are not proving this, just stating it for intuition.)

Note also that we can replace “I of square zero” with the weaker condition “I nilpotent.” That
is, the map RÑ S (if it is formally unramified) still has the same lifting property. This follows
because one can factor A Ñ A{I into the finite sequence ¨ ¨ ¨ Ñ A{In`1 Ñ A{In Ñ ¨ ¨ ¨ Ñ A{I,
and each step is a square-zero extension.

We now show that the module of Kähler differentials provides a simple criterion for an extension
to be formally unramified.

3.1.2 Proposition An R-algebra S is formally unramified if and only if ΩS{R “ 0.

Suppose R,S are both algebras over some smaller ring k. Then there is an exact sequence

ΩR{k bR S Ñ ΩS{k Ñ ΩS{R Ñ 0,

and consequently, we see that formal unramifiedness corresponds to surjectivity of the map on
“cotangent spaces” ΩR{k bR S Ñ ΩS{k. This is part of the intuition that formally unramified
maps are geometrically like immersions (since surjectivity on the cotangent spaces corresponds
to injectivity on the tangent spaces).

Proof. Suppose first ΩS{R “ 0. This is equivalent to the statement that any R-derivation of S
into an S-module is trivial, because ΩS{R is the recipient of the “universal” R-derivation. If given
an R-algebra T with an ideal I Ă T of square zero and a morphism

S Ñ T {I,

and two liftings f, g : S Ñ T , then we find that f ´ g maps S into I. Since T {I is naturally an
S-algebra, it is easy to see (since I has square zero) that I is naturally an S-module and f ´ g
is an R-derivation S Ñ I. Thus f ´ g ” 0 and f “ g.

Conversely, suppose S has the property that liftings in (3.1.1) are unique. Consider the S-module
T “ S‘ΩS{R with the multiplicative structure pa, a1qpb, b1q “ pab, ab1`a1bq that makes it into an
algebra. (This is a general construction one can do with an S-module M : S ‘M is an algebra
where M becomes an ideal of square zero.)

Consider the ideal ΩS{R Ă T , which has square zero; the quotient is S. We will find two liftings of
the identity S Ñ S. For the first, define S Ñ T sending sÑ ps, 0q. For the second, define S Ñ T
sending sÑ ps, dsq; the derivation property of b shows that this is a morphism of algebras.

By the lifting property, the two morphisms S Ñ T are equal. In particular, the map S Ñ ΩS{R

sending sÑ ds is trivial. This implies that ΩS{R “ 0.
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V.3. Étale, unramified, and smooth morphisms 3.1. Unramified morphisms

Here is the essential point of the above argument. Let I Ă T be an ideal of square zero in the
R-algebra T . Suppose given a homomorphism g : S Ñ T {I. Then the set of lifts S Ñ T of
g (which are R-algebra morphisms) is either empty or a torsor over DerRpS, Iq (by adding a
derivation to a homomorphism). Note that I is naturally a T {I-module (because I2 “ 0), and
hence an S-module by g.

This means that if the object DerRpS, Iq is trivial, then injectivity of the above map must hold.
Conversely, if injectivity of the above map always holds (i.e. S is formally unramified), then we
must have DerRpS, Iq “ 0 for all such I Ă T ; since we can obtain any S-module in this manner,
it follows that there is no such thing as a nontrivial R-derivation out of S.

We next show that formal unramifiedness is a local property.

3.1.3 Lemma Let RÑ S be a ring map. The following are equivalent:

1. RÑ S is formally unramified,

2. RÑ Sq is formally unramified for all primes q of S, and

3. Rp Ñ Sq is formally unramified for all primes q of S with p “ RX q.

Proof. We have seen in proposition 3.1.2 that (1) is equivalent to ΩS{R “ 0. Similarly, since
Kähler differentials localize, we see that (2) and (3) are equivalent to pΩS{Rqq “ 0 for all q. As
a result, the statement of this lemma is simply the fact that an S-module is zero if and only if
all its localizations at prime ideals are zero.

We shall now give the typical list of properties (“le sorite”) of unramified morphisms.

3.1.4 Proposition Any map R Ñ Rf for f P R is unramified. More generally, a map from a
ring to any localization is formally unramified, but not necessarily unramified.

Proof. Indeed, we know that ΩR{R “ 0 and ΩRf {R “ pΩR{Rqf “ 0, and the map is clearly of
finite type.

3.1.5 Proposition A surjection of rings is unramified. More generally, a categorical epimor-
phism of rings is formally unramified.

Proof. Obvious from the lifting property: if R Ñ S is a categorical epimorphism, then given
any R-algebra T , there can be at most one map of R-algebras S Ñ T (regardless of anything
involving square-zero ideals).

In the proof of proposition 3.1.5, we could have alternatively argued as follows. If R Ñ S
is an epimorphism in the category of rings, then S bR S Ñ S is an isomorphism. This is a
general categorical fact, the dual of which for monomorphisms is perhaps simpler: if X Ñ Y is
a monomorphism of objects in any category, then X Ñ X ˆY X is an isomorphism. See ??. By
the alternate construction of ΩS{R (proposition 9.2.17), it follows that this must vanish.

3.1.6 Proposition If R Ñ S and S Ñ T are unramified (resp. formally unramified), so is
RÑ T .
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V.3. Étale, unramified, and smooth morphisms 3.1. Unramified morphisms

Proof. Since morphisms of finite type are preserved under composition, we only need to prove
the result about formally unramified maps. So let R Ñ S, S Ñ T be formally unramified. We
need to check that ΩT {R “ 0. However, we have an exact sequence (see proposition 9.2.9):

ΩS{R bS T Ñ ΩT {R Ñ ΩT {S Ñ 0,

and since ΩS{R “ 0,ΩT {S “ 0, we find that ΩT {R “ 0. This shows that R Ñ T is formally
unramified.

More elegantly, we could have proved this by using the lifting property (and this is what we will
do for formal étaleness and smoothness). Then this is simply a formal argument.

3.1.7 Proposition If RÑ S is unramified (resp. formally unramified), so is R1 Ñ S1 “ SbRR
1

for any R-algebra R1.

Proof. This follows from the fact that ΩS1{R1 “ ΩS{RbSS
1 (see proposition 9.2.14). Alternatively,

it can be checked easily using the lifting criterion. For instance, suppose given an R1-algebra T
and an ideal I Ă T of square zero. We want to show that a morphism of R1-algebras S1 Ñ T {I
lifts in at most one way to a map S1 Ñ T . But if we had two distinct liftings, then we could
restrict to S to get two liftings of S Ñ S1 Ñ T {I. These are easily seen to be distinct, a
contradiction as RÑ S was assumed formally unramified.

In fact, the question of what unramified morphisms look like can be reduced to the case where
the ground ring is a field in view of the previous and the following result. Given p P SpecR, we
let kppq to be the residue field of Rp.

3.1.8 Proposition Let φ : R Ñ S be a morphism of finite type. Then φ is unramified if and
only if for every p P SpecR, we have kppq Ñ S bR kppq unramified.

The classification of unramified extensions of a field is very simple, so this will be useful.

Proof. One direction is clear by proposition 3.1.7. For the other, suppose kppq Ñ S bR kppq
unramified for all p Ă R. We then know that ΩS{R bR kppq “ ΩSbRkppq{kppq “ 0 for all p. By
localization, it follows that

pΩSq{Rp
“ ΩSq{Rp

“ ΩSq{R (3.1.2)

for any q P SpecS lying over p.

Let q P SpecS. We will now show that pΩS{Rqq “ 0. Given this, we will find that ΩS{R “ 0,
which will prove the assertion of the corollary. Indeed, let p P SpecR be the image of q, so that
there is a local homomorphism Rp Ñ Sq. By (3.1.2), we find that

qΩSq{R “ ΩSq{R.

and since ΩSq{R is a finite Sq-module (proposition 9.3.15), Nakayama’s lemma now implies that
ΩSq{R “ 0, proving what we wanted.

The following is simply a combination of the various results proved:

3.1.9 Corollary Let AÑ B be a formally unramified ring map.

1. For S Ă A a multiplicative subset, S´1AÑ S´1B is formally unramified.

2. For S Ă B a multiplicative subset, AÑ S´1B is formally unramified.
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Unramified extensions of a field

Motivated by proposition 3.1.8, we classify unramified morphisms out of a field; we are going
to see that these are just finite products of separable extensions. Let us first consider the case
when the field is algebraically closed.

3.1.10 Proposition Suppose k is algebraically closed. If A is an unramified k-algebra, then A
is a product of copies of k.

Proof. Let us show first that A is necessarily finite-dimensional. If not,

So let us now assume that A is finite-dimensional over k, hence artinian. Then A is a direct
product of artinian local k-algebras. Each of these is unramified over k. So we need to study what
local, artinian, unramified extensions of k look like; we shall show that any such is isomorphic
to k with:

3.1.11 Lemma A finite-dimensional, local k-algebra which is unramified over k (for k alge-
braically closed) is isomorphic to k.

Proof. First, if m Ă A is the maximal ideal, then m is nilpotent, and A{m » k by the Hilbert
Nullstellensatz. Thus the ideal M “ mb A` Abm Ă Abk A is nilpotent and pAbk Aq{M “

kbk k “ k. In particular, M is maximal and Abk A is also local. (We could see this as follows:
A is associated to a one-point variety, so the fibered product SpecAˆk SpecA is also associated
to a one-point variety. It really does matter that we are working over an algebraically closed
field here!)

By assumption, ΩA{k “ 0. So if I “ kerpA bk A Ñ Aq, then I “ I2. But from ??, we find
that if we had I ‰ 0, then SpecAbk A would be disconnected. This is clearly false (a local ring
has no nontrivial idempotents), so I “ 0 and Abk A » A. Since A is finite-dimensional over k,
necessarily A » k.

Now let us drop the assumption of algebraic closedness to get:

3.1.12 Theorem An unramified k-algebra for k any field is isomorphic to a product
ś

ki of
finite separable extensions ki of k.

Proof. Let k be a field, and k its algebraic closure. Let A be an unramified k-algebra. Then
Abk k is an unramified k-algebra by proposition 3.1.7, so is a finite product of copies of k. It is
thus natural that we need to study tensor products of fields to understand this problem.

3.1.13 Lemma Let E{k be a finite extension, and L{k any extension. If E{k is separable, then
Lbk E is isomorphic (as a L-algebra) to a product of copies of separable extensions of L.

Proof. By the primitive element theorem, we have E “ kpαq for some α P E satisfying a separable
irreducible polynomial P P krXs. Thus

E “ krXs{pP q,

so
E bk L “ LrXs{pP q.
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V.3. Étale, unramified, and smooth morphisms 3.1. Unramified morphisms

But P splits into several irreducible factors tPiu in LrXs, no two of which are the same by
separability. Thus by the Chinese remainder theorem,

E bk L “ LpXq{p
ź

Piq “
ź

LrXs{pPiq,

and each LrXs{pPiq is a finite separable extension of L.

As a result of this, we can easily deduce that any k-algebra of the form A “
ś

ki for the ki
separable over k is unramified. Indeed, we have

ΩA{k bk k “ ΩAbkk{k
,

so it suffices to prove that Abk k is unramified over k. However, from lemma 3.1.13, Abk k is
isomorphic as a k-algebra to a product of copies of k. Thus Abk k is obviously unramified over
k.

On the other hand, suppose A{k is unramified. We shall show it is of the form given as in
the theorem. Then A bk k is unramified over k, so it follows by proposition 3.1.10 that A is
finite-dimensional over k. In particular, A is artinian, and thus decomposes as a product of
finite-dimensional unramified k-algebras.

We are thus reduced to showing that a local, finite-dimensional k-algebra that is unramified is
a separable extension of k. Let A be one such. Then A can have no nilpotents because then
A bk k would have nilpotents, and could not be isomorphic to a product of copies of k. Thus
the unique maximal ideal of A is zero, and A is a field. We need only show that A is separable
over k. This is accomplished by:

3.1.14 Lemma Let E{k be a finite inseparable extension. Then Ebk k contains nonzero nilpo-
tents.

Proof. There exists an α P E which is inseparable over k, i.e. whose minimal polynomial has
multiple roots. Let E1 “ kpαq. We will show that E1bk k has nonzero nilpotents; since the map
E1 bk k Ñ E bk k is an injection, we will be done. Let P be the minimal polynomial of α, so
that E1 “ krXs{pP q. Let P “

ś

P eii be the factorization of P in k for the Pi P krXs irreducible
(i.e. linear). By assumption, one of the ei is greater than one. It follows that

E1 bk k “ krXs{pP q “
ź

krXs{pP eii q

has nilpotents corresponding to the ei’s that are greater than one.

3.1.15 Remark (comment) We now come to the result that explains why the present theory
is connected with Zariski’s Main Theorem.

3.1.16 Corollary An unramified morphism AÑ B is quasi-finite.

Proof. Recall that a morphism of rings is quasi-finite if the associated map on spectra is. Equiv-
alently, the morphism must be of finite type and have finite fibers. But by assumption A Ñ B
is of finite type. Moreover, if p P SpecA and kppq is the residue field, then kppq Ñ B bA kppq is
finite by the above results, so the fibers are finite.
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Conormal modules and universal thickenings

It turns out that one can define the first infinitesimal neighbourhood not just for a closed im-
mersion of schemes, but already for any formally unramified morphism. This is based on the
following algebraic fact.

3.1.17 Lemma Let R Ñ S be a formally unramified ring map. There exists a surjection of
R-algebras S1 Ñ S whose kernel is an ideal of square zero with the following universal property:
Given any commutative diagram

S a
// A{I

R
b //

OO

A

OO

where I Ă A is an ideal of square zero, there is a unique R-algebra map a1 : S1 Ñ A such that
S1 Ñ AÑ A{I is equal to S1 Ñ S Ñ A.

Proof. Choose a set of generators zi P S, i P I for S as an R-algebra. Let P “ Rrtxi_i P Is
denote the polynomial ring on generators xi, i P I. Consider the R-algebra map P Ñ S which
maps xi to zi. Let J “ KerpP Ñ Sq. Consider the map

d : J{J2 ÝÑ ΩP {R bP S

see ??. This is surjective since ΩS{R “ 0 by assumption, see ??. Note that ΩP {R is free on dxi,
and hence the module ΩP {RbP S is free over S. Thus we may choose a splitting of the surjection
above and write

J{J2 “ K ‘ ΩP {R bP S

Let J2 Ă J 1 Ă J be the ideal of P such that J 1{J2 is the second summand in the decomposition
above. Set S1 “ P {J 1. We obtain a short exact sequence

0 Ñ J{J 1 Ñ S1 Ñ S Ñ 0

and we see that J{J 1 – K is a square zero ideal in S1. Hence

S
1
// S

R //

OO

S1

OO

is a diagram as above. In fact we claim that this is an initial object in the category of diagrams.
Namely, let pI Ă A, a, bq be an arbitrary diagram. We may choose an R-algebra map β : P Ñ A
such that

S
1
// S a

// A{I

R //

b

33

OO

P

OO

β // A

OO

is commutative. Now it may not be the case that βpJ 1q “ 0, in other words it may not be true that
β factors through S1 “ P {J 1. But what is clear is that βpJ 1q Ă I and since βpJq Ă I and I2 “ 0
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we have βpJ2q “ 0. Thus the “obstruction” to finding a morphism from pJ{J 1 Ă S1, 1, R Ñ S1q
to pI Ă A, a, bq is the corresponding S-linear map β : J 1{J2 Ñ I. The choice in picking β lies in
the choice of βpxiq. A different choice of β, say β1, is gotten by taking β1pxiq “ βpxiq ` δi with
δi P I. In this case, for g P J 1, we obtain

β1pgq “ βpgq `
ÿ

i
δi
Bg

Bxi
.

Since the map d|J 1{J2 : J 1{J2 Ñ ΩP {RbP S given by g ÞÑ Bg
Bxi

dxi is an isomorphism by construc-
tion, we see that there is a unique choice of δi P I such that β1pgq “ 0 for all g P J 1. (Namely, δi
is ´βpgq where g P J 1{J2 is the unique element with Bg

Bxj
“ 1 if i “ j and 0 else.) The uniqueness

of the solution implies the uniqueness required in the lemma.

In the situation of Lemma 3.1.17 the R-algebra map S1 Ñ S is unique up to unique isomor-
phism.

3.1.18 Definition Let RÑ S be a formally unramified ring map.

1. The universal first order thickening of S over R is the surjection of R-algebras S1 Ñ S of
Lemma 3.1.17.

2. The conormal module of R Ñ S is the kernel I of the universal first order thickening
S1 Ñ S, seen as a S-module.

We often denote the conormal module CS{R in this situation.

3.1.19 Lemma Let I Ă R be an ideal of a ring. The universal first order thickening of R{I
over R is the surjection R{I2 Ñ R{I. The conormal module of R{I over R is CpR{Iq{R “ I{I2.

Proof. Omitted.

3.1.20 Lemma Let AÑ B be a formally unramified ring map. Let ϕ : B1 Ñ B be the universal
first order thickening of B over A.

1. Let S Ă A be a multiplicative subset. Then S´1B1 Ñ S´1B is the universal first order
thickening of S´1B over S´1A. In particular S´1CB{A “ CS´1B{S´1A.

2. Let S Ă B be a multiplicative subset. Then S1 “ ϕ´1pSq is a multiplicative subset in B1

and pS1q´1B1 Ñ S´1B is the universal first order thickening of S´1B over A. In particular
S´1CB{A “ CS´1B{A.

Note that the lemma makes sense by Corollary 3.1.9.

Proof. With notation and assumptions as in (1). Let pS´1Bq1 Ñ S´1B be the universal first
order thickening of S´1B over S´1A. Note that S´1B1 Ñ S´1B is a surjection of S´1A-algebras
whose kernel has square zero. Hence by definition we obtain a map pS´1Bq1 Ñ S´1B1 compatible
with the maps towards S´1B. Consider any commutative diagram

B // S´1B // D{I

A //

OO

S´1A //

OO

D

OO
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where I Ă D is an ideal of square zero. Since B1 is the universal first order thickening of B over
A we obtain an A-algebra map B1 Ñ D. But it is clear that the image of S in D is mapped to
invertible elements of D, and hence we obtain a compatible map S´1B1 Ñ D. Applying this to
D “ pS´1Bq1 we see that we get a map S´1B1 Ñ pS´1Bq1. We omit the verification that this
map is inverse to the map described above.

With notation and assumptions as in (2). Let pS´1Bq1 Ñ S´1B be the universal first order
thickening of S´1B over A. Note that pS1q´1B1 Ñ S´1B is a surjection of A-algebras whose
kernel has square zero. Hence by definition we obtain a map pS´1Bq1 Ñ pS1q´1B1 compatible
with the maps towards S´1B. Consider any commutative diagram

B // S´1B // D{I

A //

OO

A //

OO

D

OO

where I Ă D is an ideal of square zero. Since B1 is the universal first order thickening of B over
A we obtain an A-algebra map B1 Ñ D. But it is clear that the image of S1 in D is mapped to
invertible elements of D, and hence we obtain a compatible map pS1q´1B1 Ñ D. Applying this
to D “ pS´1Bq1 we see that we get a map pS1q´1B1 Ñ pS´1Bq1. We omit the verification that
this map is inverse to the map described above.

3.1.21 Lemma Let R Ñ A Ñ B be ring maps. Assume A Ñ B formally unramified. Let
B1 Ñ B be the universal first order thickening of B over A. Then B1 is formally unramified over
A, and the canonical map ΩA{R bA B Ñ ΩB1{R bB1 B is an isomorphism.

Proof. We are going to use the construction of B1 from the proof of Lemma 3.1.17 allthough in
principle it should be possible to deduce these results formally from the definition. Namely, we
choose a presentation B “ P {J , where P “ Arxis is a polynomial ring over A. Next, we choose
elements fi P J such that dfi “ dxi b 1 in ΩP {A bP B. Having made these choices we have
B1 “ P {J 1 with J 1 “ pfiq ` J2, see proof of Lemma 3.1.17.

Consider the canonical exact sequence

J 1{pJ 1q2 Ñ ΩP {A bP B
1 Ñ ΩB1{A Ñ 0

see ??. By construction the classes of the fi P J 1 map to elements of the module ΩP {A bP B
1

which generate it modulo J 1{J2 by construction. Since J 1{J2 is a nilpotent ideal, we see that
these elements generate the module alltogether (by Nakayama’s ??). This proves that ΩB1{A “ 0
and hence that B1 is formally unramified over A, see ??.

Since P is a polynomial ring over A we have ΩP {R “ ΩA{RbA P ‘
À

Pdxi. We are going to use
this decomposition. Consider the following exact sequence

J 1{pJ 1q2 Ñ ΩP {R bP B
1 Ñ ΩB1{R Ñ 0

see ??. We may tensor this with B and obtain the exact sequence

J 1{pJ 1q2 bB1 B Ñ ΩP {R bP B Ñ ΩB1{R bB1 B Ñ 0
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If we remember that J 1 “ pfiq ` J2 then we see that the first arrow annihilates the submodule
J2{pJ 1q2. In terms of the direct sum decomposition ΩP {RbP B “ ΩA{RbAB‘

À

Bdxi given we
see that the submodule pfiq{pJ 1q2bB1B maps isomorphically onto the summand

À

Bdxi. Hence
what is left of this exact sequence is an isomorphism ΩA{R bA B Ñ ΩB1{R bB1 B as desired.

3.2. Smooth morphisms

Definition

The idea of a smooth morphism in algebraic geometry is one that is surjective on the tangent
space, at least if one is working with smooth varieties over an algebraically closed field. So this
means that one should be able to lift tangent vectors, which are given by maps from the ring
into krεs{ε2.

This makes the following definition seem more plausible:

3.2.1 Definition Let S be an R-algebra. Then S is formally smooth over R (or the map
RÑ S is formally smooth) if given any R-algebra A and ideal I Ă A of square zero, the map

homRpS,Aq Ñ homRpS,A{Iq

is a surjection. We shall say that S is smooth (over R) if it is formally smooth and of finite
presentation.

So this means that in any diagram
S //

  

A{I

R //

OO

A,

OO

with I an ideal of square zero in A, there exists a dotted arrow making the diagram commute.
As with formal unramifiedness, this is a purely functorial statement: if F is the corepresentable
functor associated to S, then we want F pAq Ñ F pA{Iq to be a surjection for each I Ă A of square
zero and each R-algebra A. Also, again we can replace “I of square zero” with “I nilpotent.”

3.2.2 Example The basic example of a formally smooth R-algebra is the polynomial ring
Rrx1, . . . , xns. For to give a map Rrx1, . . . , xns Ñ A{I is to give n elements of A{I; each of
these elements can clearly be lifted to A. This is analogous to the statement that a free module
is projective.

More generally, if P is a projective R-module (not necessarily of finite type), then the symmetric
algebra SP is a formally smooth R-algebra. This follows by the same reasoning.

We can state the usual list of properties of formally smooth morphisms:

3.2.3 Proposition Smooth (resp. formally smooth) morphisms are preserved under base exten-
sion and composition. If R is a ring, then any localization is formally smooth over R.
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Proof. As usual, only the statements about formal smoothness are interesting. The statements
about base extension and composition will be mostly left to the reader: they are an exercise in
diagram-chasing. (Note that we cannot argue as we did for formally unramified morphisms, where
we had a simple criterion in terms of the module of Kähler differentials and various properties
of them.) For example, let RÑ S, S Ñ T be formally smooth. Given a diagram (with I Ă A an
ideal of square zero)

T //

��

A{I

S

OO

!!
R //

OO

A,

OO

we start by finding a dotted arrow S Ñ A by using formal smoothness of RÑ S. Then we find
a dotted arrow T Ñ A making the top quadrilateral commute. This proves that the composite
is formally smooth.

Quotients of formally smooth rings

Now, ultimately, we want to show that this somewhat abstract definition of smoothness will give
us something nice and geometric. In particular, in this case we want to show that B is flat, and
the fibers are smooth varieties (in the old sense). To do this, we will need to do a bit of work,
but we can argue in a fairly elementary manner. On the one hand, we will first need to give a
criterion for when a quotient of a formally smooth ring is formally smooth.

3.2.4 Theorem Let A be a ring, B an A-algebra. Suppose B is formally smooth over A, and
let I Ă B be an ideal. Then C “ B{I is a formally smooth A-algebra if and only if the canonical
map

I{I2 Ñ ΩB{A bB C

has a section. In other words, C is formally smooth precisely when the conormal sequence

I{I2 Ñ ΩB{A bB C Ñ ΩC{A Ñ 0

is split exact.

This result is stated in more generality for topological rings, and uses some functors on ring
extensions, in ?, 0-IV, 22.6.1.

Proof. Suppose first C is formally smooth over A. Then we have a map B{I2 Ñ C given by the
quotient. The claim is that there is a section of this map. There is a diagram of A-algebras

B{I B{I2oo

C

“

OO ;;
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and the lifting s : C Ñ B{I2 exists by formal smoothness. This is a section of the natural
projection B{I2 Ñ C “ B{I.

In particular, the combination of the natural inclusion I{I2 Ñ B{I2 and the section s gives an
isomorphism of rings (even A-algebras) B{I2 » C ‘ I{I2. Here I{I2 squares to zero.

We are interested in showing that I{I2 Ñ ΩB{A bB C is a split injection of C-modules. To see
this, we will show that any map out of the former extends to a map out of the latter. Now
suppose given a map of C-modules

φ : I{I2 ÑM

into a C-module M . Then we get an A-derivation

δ : B{I2 ÑM

by using the splitting B{I2 “ C ‘ I{I2. (Namely, we just extend the map by zero on C.) Since
I{I2 is imbedded in B{I2 by the canonical injection, this derivation restricts on I{I2 to φ. In
other words there is a commutative diagram

I{I2

φ

��

// B{I2

δ{{
M

.

It follows thus that we may define, by pulling back, an A-derivation B Ñ M that restricts on
I to the map I Ñ I{I2 φ

Ñ M . By the universal property of the differentials, this is the same
thing as a homomorphism ΩB{A ÑM , or equivalently ΩB{AbB C ÑM since M is a C-module.
Pulling back this derivation to I{I2 corresponds to pulling back via I{I2 Ñ ΩB{A bB C.

It follows that the map

homCpΩB{A bB C,Mq Ñ homCpI{I
2,Mq

is a surjection. This proves one half of the result.

Now for the other. Suppose that there is a section of the conormal map. This translates, as
above, to saying that any map I{I2 Ñ M (of C-modules) for a C-module M can be extended
to an A-derivation B ÑM . We must deduce from this formal smoothness.

LetE be anyA-algebra, and J Ă E an ideal of square zero. We suppose given anA-homomorphism
C Ñ E{J and would like to lift it to C Ñ E; in other words, we must find a lift in the diagram

C

}} ��
E // E{J

.
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Let us pull this map back by the surjection B � C; we get a diagram

B

φ

��

��
C

}} ��
E // E{J

.

In this diagram, we know that a lifting φ : B Ñ E does exist because B is formally smooth over
A. So we can find a dotted arrow from B Ñ E in the diagram. The problem is that it might
not send I “ kerpB Ñ Cq into zero. If we can show that there exists a lifting that does factor
through C (i.e. sends I to zero), then we are done.

In any event, we have a morphism of A-modules I Ñ E given by restricting φ : B Ñ E. This
lands in J , so we get a map I Ñ J . Note that J is an E{J-module, hence a C-module, because
J has square zero. Moreover I2 gets sent to zero because J2 “ 0, and we have a morphism of
C-modules I{I2 Ñ J . Now by hypothesis, there is an A-derivation δ : B Ñ J such that δ|I “ φ.
Since J has square zero, it follows that

φ´ δ : B Ñ E

is an A-homomorphism of algebras, and it kills I. Consequently this factors through C and gives
the desired lifting C Ñ E.

3.2.5 Corollary If AÑ B is formally smooth, then ΩB{A is a projective B-module.

The intuition is that projective modules correspond to vector bundles over the Spec (unlike
general modules, the rank is locally constant, which should happen in a vector bundle). But a
smooth algebra is like a manifold, and for a manifold the cotangent bundle is very much a vector
bundle, whose dimension is locally constant.

Proof. Indeed, we can write B as a quotient of a polynomial ring D over A; this is formally
smooth. Suppose B “ D{I. Then we know that there is a split exact sequence

0 Ñ I{I2 Ñ ΩD{A bD B Ñ ΩB{A Ñ 0.

But the middle term is free as D{A is a polynomial ring; hence the last term is projective.

In particular, we can rewrite the criterion for formal smoothness of C “ B{I, if B is formally
smooth over A:

1. ΩC{A is a projective C-module.

2. I{I2 Ñ ΩB{A bB C is a monomorphism.

Indeed, these two are equivalent to the splitting of the conormal sequence (since the middle term
is always projective by corollary 3.2.5).

In particular, we can check that smoothness is local :
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3.2.6 Corollary Let A be a ring, B a finitely presented A-algebra. Then B is smooth over A if
and only if for each q P SpecB with p P SpecA the inverse image, the map Ap Ñ Bq is formally
smooth.

Proof. Indeed, we see that B “ D{I for a polynomial ring D “ Arx1, . . . , xns in finitely many
variables, and I Ă D a finitely generated ideal. We have just seen that we just need to check
that the conormal map I{I2 Ñ ΩD{AbDB is injective, and that ΩB{A is a projective B-module,
if and only if the analogs hold over the localizations. This follows by the criterion for formal
smoothness just given above.

But both can be checked locally. Namely, the conormal map is an injection if and only if, for
all q P SpecB corresponding to Q P SpecD, the map pI{I2qq Ñ ΩDQ{Ap

bDQ
Bq is an injection.

Moreover, we know that for a finitely presented module over a ring, like ΩB{A, projectivity is
equivalent to projectivity (or freeness) of all the stalks (??). So we can check projectivity on the
localizations too.

In fact, the method of proof of corollary 3.2.6 yields the following observation: formal smoothness
“descends” under faithfully flat base change. That is:

3.2.7 Corollary If B is an A-algebra, and A1 a faithfully flat algebra, then B is formally smooth
over A if and only if B bA A1 is formally smooth over A1.

We shall not give a complete proof, except in the case when B is finitely presented over A (so
that the question is of smoothness).

Proof. One direction is just the “sorite” (see ??). We want to show that formal smoothness
“descends.” The claim is that the two conditions for formal smoothness above (that ΩB{A be
projective and the conormal map be a monomorphism) descend under faithfully flat base-change.
Namely, the fact about the conormal maps is clear (by faithful flatness).

Now let B1 “ B bA A
1. So we need to argue that if ΩB1{A1 “ ΩB{A bB B

1 is projective as a
B1-module, then so is ΩB{A. Here we use the famous result of Raynaud-Gruson (see ?), which
states that projectivity descends under faithfully flat extensions, to complete the proof.

If B is finitely presented over A, then ΩB{A is finitely presented as a B-module. We can run most
of the same proof as before, but we want to avoid using the Raynaud-Gruson theorem: we must
give a separate argument that ΩB{A is projective if ΩB1{A1 is. However, for a finitely presented
module, projectivity is equivalent to flatness, by theorem 4.4.16. Moreover, since ΩB1{A1 is B1-flat,
faithful flatness enables us to conclude that ΩB{A is B-flat, and hence projective.

The Jacobian criterion

Now we want a characterization of when a morphism is smooth. Let us motivate this with an
analogy from standard differential topology. Consider real-valued functions f1, . . . , fp P C

8pRnq.
Now, if f1, f2, . . . , fp are such that their gradients ∇fi form a matrix of rank p, then we can define
a manifold near zero which is the common zero set of all the fi. We are going to give a relative
version of this in the algebraic setting.
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Recall that a map of rings A Ñ B is essentially of finite presentation if B is the localization of
a finitely presented A-algebra.

3.2.8 Proposition Let pA,mq Ñ pB, nq be a local homomorphism of local rings such that B is
essentially of finite presentation. Suppose B “ pArX1, . . . , Xnsqq{I for some finitely generated
ideal I Ă ArX1, . . . , Xnsq, where q is a prime ideal in the polynomial ring.

Then I{I2 is generated as a B-module by polynomials f1, . . . , fk P I Ă ArX1, . . . , Xns whose
Jacobian matrix has maximal rank in C{q “ B{n if and only if B is formally smooth over A. In
this case, I{I2 is even freely generated by the fi.

The Jacobian matrix Bfi
BXj

is a matrix of elements of ArX1, . . . , Xns, and we can take the associated
images in B{n.

3.2.9 Example Suppose A is an algebraically closed field k. Then I corresponds to some ideal
in the polynomial ring krX1, . . . , Xns, which cuts out a variety X. Suppose q is a maximal ideal
in the polynomial ring.

Then B is the local ring of the algebraic variety X at q. Then proposition 3.2.8 states that q is
a “smooth point” of the variety (i.e., the Jacobian matrix has maximal rank) if and only if B is
formally smooth over k. We will expand on this later.

Proof. Indeed, we know that polynomial rings are formally smooth. In particularD “ ArX1, . . . , Xnsq

is formally smooth over A, because localization preserves formal smoothness. Note also that ΩD{A

is a free D-module, because this is true for a polynomial ring and Kähler differentials commute
with localization.

So theorem 3.2.4 implies that
I{I2 Ñ ΩD{A bD B

is a split injection precisely when B is formally smooth over A. Suppose that this holds. Now
I{I2 is then a summand of the free module ΩD{A bD B, so it is projective, hence free as B is
local. Let K “ B{n. It follows that the map

I{I2 bD K Ñ ΩD{A bD K “ Kn

is an injection. This map sends a polynomial to its gradient (reduced modulo q, or n). Hence the
assertion is clear: choose polynomials f1, . . . , fk P I that generate pI{I2qq, and their gradients in
B{n must be linearly independent.

Conversely, suppose that I{I2 has such generators. Then the map

I{I2 bK Ñ Kn, f ÞÑ df

is a split injection. However, if a map of finitely generated modules over a local ring, with the
target free, is such that tensoring with the residue field makes it an injection, then it is a split
injection. (We shall prove this below.) Thus I{I2 Ñ ΩD{A bD B is a split injection. In view of
the criterion for formal smoothness, we find that B is formally smooth.

Here is the promised lemma necessary to complete the proof:
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3.2.10 Lemma If pA,mq is a local ring with residue field k, M a finitely generated A-module,
N a finitely generated projective A-module, then a map φ : M Ñ N is a split injection if and
only if M bA k Ñ N bA k is an injection.

Proof. One direction is clear, so it suffices to show that M Ñ N is a split injection if the map
on fibers is an injection.

Let L be a “free approximation” to M , that is, a free module L together with a map L Ñ M
which is an isomorphism modulo k. By Nakayama’s lemma, LÑM is surjective. Then the map
L Ñ M Ñ N is such that the Lb k Ñ N b k is injective, so L Ñ N is a split injection (by an
elementary criterion). It follows that we can find a splitting N Ñ L, which when composed with
LÑM is a splitting of M Ñ N .

The fiberwise criterion for smoothness

We shall now prove that a smooth morphism is flat. In fact, we will get a general “fiberwise”
criterion for smoothness (i.e., a morphism is smooth if and only if it is flat and the fibers are
smooth), which will enable us to reduce smoothness questions, in some cases, to the situation
where the base is a field.

We shall need some lemmas on regular sequences. The first will give a useful criterion for checking
M -regularity of an element by checking on the fiber. For our purposes, it will also give a criterion
for when quotienting by a regular element preserves flatness over a smaller ring.

3.2.11 Lemma Let pA,mq Ñ pB, nq be a local homomorphism of local noetherian rings. Let M
be a finitely generated B-module, which is flat over A.

Let f P B. Then the following are equivalent:

1. M{fM is flat over A and f : M ÑM is injective.

2. f : M bA k ÑM bA k is injective where k “ A{m.

For instance, let us consider the case M “ B. The lemma states that if multiplication by f is
regular on B bA k, then the hypersurface cut out by f (i.e., corresponding to the ring B{fB) is
flat over A.

Proof. All Tor functors here will be over A. If M{fM is A-flat and f : M Ñ M is injective,
then the sequence

0 ÑM
f
ÑM ÑM{fM Ñ 0

leads to a long exact sequence

Tor1pk,M{fMq ÑM bA k
f
ÑM bA k Ñ pM{fMq bA k Ñ 0.

But since M{fM is flat, the first term is zero, and it follows that M b k
f
ÑM b k is injective.
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The other direction is more subtle. Suppose multiplication by f is a monomorphism on M bA k.
Now write the exact sequence

0 Ñ P ÑM
f
ÑM Ñ QÑ 0

where P,Q are the kernel and cokernel. We want to show that P “ 0 and Q is flat over A.

We can also consider the image I “ fM ĂM , to split this into two exact sequences

0 Ñ P ÑM Ñ I Ñ 0

and
0 Ñ I ÑM Ñ QÑ 0.

Here the map M bA k Ñ I bA k ÑM bA k is given by multiplication by f , so it is injective by
hypothesis. This implies that M bA k Ñ I bA k is injective. So M b k Ñ I b k is actually an
isomorphism because it is obviously surjective, and we have just seen it is injective. Moreover,
I bA k Ñ M bA k is isomorphic to the homothety f : M bA k Ñ M bA k, and consequently is
injective. To summarize:

1. M bA k Ñ I bA k is an isomorphism.

2. I bA k ÑM bA k is an injection.

Let us tensor these two exact sequences with k. We get

0 Ñ Tor1pk, Iq Ñ P bA k ÑM bA k Ñ I bA k Ñ 0

because M is flat. We also get

0 Ñ Tor1pk,Qq Ñ I bA k ÑM bA k Ñ QbA k Ñ 0.

We’ll start by using the second sequence. Now I bA k Ñ M bA k was just said to be injective,
so that Tor1pk,Qq “ 0. By the local criterion for flatness, it follows that Q is a flat A-module as
well. But Q “M{fM , so this gives one part of what we wanted.

Now, we want to show finally that P “ 0. Now, I is flat; indeed, it is the kernel of a surjection
of flat maps M Ñ Q, so the long exact sequence shows that it is flat. So we have a short exact
sequence

0 Ñ P bA k ÑM bA k Ñ I bA k Ñ 0,

which shows now that P bA k “ 0 (as M bA k Ñ I bA k was just shown to be an isomorphism
earlier). By Nakayama P “ 0. This implies that f is M -regular.

3.2.12 Corollary Let pA,mq Ñ pB, nq be a morphism of noetherian local rings. Suppose M is
a finitely generated B-module, which is flat over A.

Let f1, . . . , fk P n. Suppose that f1, . . . , fk is a regular sequence on M bA k. Then it is a regular
sequence on M and, in fact, M{pf1, . . . , fkqM is flat over A.

Proof. This is now clear by induction.
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3.2.13 Theorem Let pA,mq Ñ pB, nq be a morphism of local rings such that B is the localization
of a finitely presented A-algebra at a prime ideal, B “ pArX1, . . . , Xnsqq{I. Then if A Ñ B is
formally smooth, B is a flat A-algebra.

The strategy is that B is going to be written as the quotient of a localization of a polynomial ring
by a sequence tfiu whose gradients are independent (modulo the maximal ideal), i.e. modulo
B{n. If we were working modulo a field, then we could use arguments about regular local rings
to argue that the tfiu formed a regular sequence. We will use corollary 3.2.12 to bootstrap from
this case to the general situation.

Proof. Let us first assume that A is noetherian.

Let C “ pArX1, . . . , Xnsqq. Then C is a local ring, smooth over A, and we have morphisms of
local rings

pA,mq Ñ pC, qq� pB, nq.

Moroever, C is a flat A-module, and we are going to apply the fiberwise criterion for regularity
to C and a suitable sequence.

Now we know that I{I2 is a B-module generated by polynomials f1, . . . , fm P ArX1, . . . , Xns

whose Jacobian matrix has maximal rank in B{n (by the Jacobian criterion, proposition 3.2.8).
The claim is that the fi are linearly independent in q{q2. This will be the first key step in the
proof. In other words, if tuiu is a family of elements of C, not all non-units, we do not have

ÿ

uifi P q
2.

For if we did, then we could take derivatives and find
ÿ

uiBjfi P q

for each j. This contradicts the gradients of the fi being linearly independent in B{n “ C{q.

Now we want to show that the tfiu form a regular sequence in C. To do this, we shall reduce
to the case where A is a field. Indeed, let us make the base-change A Ñ k “ A{m, B Ñ B “

B bA k,C Ñ C “ C bA k where k “ A{m is the residue field. Then B,C are formally smooth
local rings over a field k. We also know that C is a regular local ring, since it is a localization of
a polynomial ring over a field.

Let us denote the maximal ideal of C by q; this is just the image of q.

Now the tfiu have images in C that are linearly independent in q{q2 “ q{q2. It follows that
the tfiu form a regular sequence in C, by general facts about regular local rings (see, e.g.
corollary 9.1.12); indeed, each of the successive quotients C{pf1, . . . , fiq will then be regular. It
follows from the fiberwise criterion (C being flat) that the tfiu form a regular sequence in C
itself, and that the quotient C{pfiq “ B is A-flat.

The proof in fact showed a bit more: we expressed B as the quotient of a localized polynomial
ring by a regular sequence. In other words:
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3.2.14 Corollary (Smooth maps are local complete intersections) Let pA,mq Ñ pB, nq
be an essentially of finite presentation, formally smooth map. Then there exists a localization
of a polynomial ring, C, such that B can be expressed as C{pf1, . . . , fnq for the tfiu forming a
regular sequence in the maximal ideal of C.

We also get the promised result:

3.2.15 Theorem Let AÑ B be a smooth morphism of rings. Then B is flat over A.

Proof. Indeed, we immediately reduce to theorem 3.2.13 by checking locally at each prime (which
gives formally smooth maps).

In fact, we can get a general criterion now:

3.2.16 Theorem Let pA,mq Ñ pB, nq be a (local) morphism of local noetherian rings such that
B is the localization of a finitely presented A-algebra at a prime ideal, B “ pArX1, . . . , Xnsqq{I.
Then B is formally smooth over A if B is A-flat and B{mB is formally smooth over A{m.

Proof. One direction is immediate from what we have already shown. Now we need to show that
if B is A-flat, and B{mB is formally smooth over A{m, then B is itself formally smooth over A.
This will be comparatively easy, with all the machinery developed. This will be comparatively
easy, with all the machinery developed.

As before, write the sequence
pA,mq Ñ pC, qq� pB, nq,

where C is a localization of a polynomial ring at a prime ideal, and in particular is formally
smooth over A. We know that B “ C{I, where I Ă q.

To check that B is formally smooth over A, we need to show (C being formally smooth) that
the conormal sequence

I{I2 Ñ ΩC{A bC B Ñ ΩC{B Ñ 0. (3.2.1)

is split exact.

Let A,C,B be the base changes of A,B,C to k “ A{m; let I be the kernel of C � B. Note that
I “ I{mI by flatness of B. Then we know that the sequence

I{I
2
Ñ ΩC{k{IΩC{k Ñ ΩC{B Ñ 0 (3.2.2)

is split exact, because C is a formally smooth k-algebra (in view of theorem 3.2.4).

But (3.2.2) is the reduction of (3.2.1). Since the middle term of (3.2.1) is finitely generated and
projective over B, we can check splitting modulo the maximal ideal (see lemma 3.2.10).

In particular, we get the global version of the fiberwise criterion:

3.2.17 Theorem Let A Ñ B be a finitely presented morphism of rings. Then B is a smooth
A-algebra if and only if B is a flat A-algebra and, for each p P SpecA, the morphism kppq Ñ
B bA kppq is smooth.
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Here kppq denotes the residue field of Ap, as usual.

Proof. One direction is clear. For the other, we recall that smoothness is local : AÑ B is smooth
if and only if, for each q P SpecB with image p P SpecA, we have Ap Ñ Bq formally smooth (see
corollary 3.2.6). But, by theorem 3.2.16, this is the case if and only if, for each such pair pp, qq,
the morphism kppq Ñ Bq bAp kppq is formally smooth. Now if kppq Ñ B bA kppq is smooth for
each p, then this condition is clearly satisfied.

Formal smoothness and regularity

We now want to explore the connection between formal smoothness and regularity. In general, the
intuition is that a variety over an algebraically closed field is smooth if and only if the local rings
at closed points (and thus at all points by ??) are regular local rings. Over a non-algebraically
closed field, only one direction is still true: we want the local rings to be geometrically regular.
So far we will just prove one direction, though.

3.2.18 Theorem Let pA,mq be a noetherian local ring containing a copy of its residue field
A{m “ k. Then if A is formally smooth over k, A is regular.

Proof. We are going to compare the quotients A{mm to the quotients of R “ krx1, . . . , xns where
n is the embedding dimension of A. Let n Ă krx1, . . . , xns be the ideal px1, . . . , xnq. We are going
to give surjections

A{mm � R{nm

for each m ě 2.

Let t1, . . . , tn P m be a k-basis for m{m2. Consider the map A � R{n2 that goes A � A{m2 »

k ‘m{m2 » R{n2, where ti is sent to xi. This is well-defined, and gives a surjection A� R{n2.
Using the infinitesimal lifting property, we can lift this map to k-algebra maps

AÑ R{nm

for each k, which necessarily factor through A{mm (as they send m into n). They are surjective
by Nakayama’s lemma. It follows that

dimk A{m
m ě dimk R{n

m,

and since Rn is a regular local ring, the last term grows asymptotically like mn. It follows that
dimR ě n, and since dimR is always at most the embedding dimension, we are done.

A counterexample

It is in fact true that a formally smooth morphism between arbitrary noetherian rings is flat,
although we have only proved this in the case of a morphism of finite type. This is false if we do
not assume noetherian hypotheses. A formally smooth morphism need not be flat.
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3.2.19 Example Consider a field k, and consider R “ krT xsxPQą0 . This is the filtered colimit
of the polynomial rings krT 1{ns over all n. There is a natural map R Ñ k sending each power
of T to zero. The claim is that R Ñ k is a formally smooth morphism which is not flat. It is a
surjection, so it is a lot different from the intuitive idea of a smooth map.

Yet it turns out to be formally smooth. To see this, consider an R-algebra S and an ideal I Ă S
such that S2 “ 0. The claim is that an R-homomorphism k Ñ S{I lifts to k Ñ S. Consider the
diagram

S

��
R

77

// k

==

// S{I,

in which we have to show that a dotted arrow exists.

However, there can be at most one R-homomorphism k Ñ S{I, since k is a quotient of R. It
follows that each T x, x P Qą0 is mapped to zero in S{I. So each T x, x P I maps to elements of
I (by the map R Ñ S assumed to exist). It follows that T x “ pT x{2q2 maps to zero in S, as
I2 “ 0. Thus the map RÑ S annihilates each T x, which means that there is a (unique) dotted
arrow.

Note that R Ñ k is not flat. Indeed, multiplication by T is injective on R, but it acts by zero
on k.

This example was described by Anton Geraschenko on MathOverflow; see ?. The same reasoning
shows more generally:

3.2.20 Proposition Let R be a ring, I Ă R an ideal such that I “ I2. Then the projection
RÑ R{I is formally étale.

For a noetherian ring, if I “ I2, then we know that I is generated by an idempotent in R (see
proposition 4.1.26), and the projection RÑ R{I is projection on the corresponding direct factor
(actually, the complementary one). In this case, the projection is flat, and this is to be expected:
as stated earlier, formally étale implies flat for noetherian rings. But in the non-noetherian case,
we can get interesting examples.

3.2.21 Example We shall now give an example showing that formally étale morphisms do
not necessarily preserve reducedness. We shall later see that this is true in the étale case (see
proposition 3.3.19).

Let k be a field of characteristic ‰ 2. Consider the ring R “ krT xsxPQą0 as before. Take
S “ RrXs{pX2 ´ T q, and consider the ideal I generated by all the positive powers T x, x ą 0.
As before, clearly I “ I2, and thus S Ñ S{I is formally étale. The claim is that S is reduced;
clearly S{I “ krXs{pX2q is not. Indeed, an element of S can be uniquely described by α “
P pT q `QpT qX where P,Q are “polynomials” in T—in actuality, they are allowed to have terms
T x, x P Qą0. Then α2 “ P pT q2 `QpT q2T ` 2P pT qQpT qX. It is thus easy to see that if α2 “ 0,
then α “ 0.
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3.3. Étale morphisms

Definition

The definition is just another nilpotent lifting property:

3.3.1 Definition Let S be an R-algebra. Then S is formally étale over R (or the map RÑ S
is formally étale) if given any R-algebra A and ideal I Ă A of square zero, the map

homRpS,Aq Ñ homRpS,A{Iq

is a bijection. A ring homomorphism is étale if and only if it is formally étale and of finite
presentation.

So S is formally étale over R if for every commutative solid diagram

S //

!!

A{I

R //

OO

A

OO

where I Ă A is an ideal of square zero, there exists a unique dotted arrow making the diagram
commute. As before, the functor of points can be used to test formal étaleness. Moreover, clearly
a ring map is formally étale if and only if it is both formally smooth and formally unramified.

We have the usual:

3.3.2 Proposition Étale (resp. formally étale) morphisms are closed under composition and
base change.

Proof. Either a combination of the corresponding results for formal smoothness and formal un-
ramifiedness (i.e. proposition 3.1.6, proposition 3.1.7, and proposition 3.2.3), or easy to verify
directly.

Filtered colimits preserve formal étaleness:

3.3.3 Lemma Let R be a ring. Let I be a directed partially ordered set. Let pSi, ϕii1q be a system
of R-algebras over I. If each R Ñ Si is formally étale, then S “ colimiPI Si is formally étale
over R

The idea is that we can make the lifts on each piece, and glue them automatically.

Proof. Consider a diagram as in Definition 3.3.1. By assumption we get unique R-algebra maps
Si Ñ A lifting the compositions Si Ñ S Ñ A{I. Hence these are compatible with the transition
maps ϕii1 and define a lift S Ñ A. This proves existence. The uniqueness is clear by restricting
to each Si.

3.3.4 Lemma Let R be a ring. Let S Ă R be any multiplicative subset. Then the ring map
RÑ S´1R is formally étale.
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Proof. Let I Ă A be an ideal of square zero. What we are saying here is that given a ring map
ϕ : RÑ A such that ϕpfq mod I is invertible for all f P S we have also that ϕpfq is invertible
in A for all f P S. This is true because A˚ is the inverse image of pA{Iq˚ under the canonical
map AÑ A{I.

We now want to give the standard example of an étale morphism; geometrically, this corresponds
to a hypersurface in affine 1-space given by a nonsingular equation. We will eventually show that
any étale morphism looks like this, locally.

3.3.5 Example Let R be a ring, P P RrXs a polynomial. Suppose Q P RrXs{P is such that in
the localization pRrXs{P qQ, the image of the derivative P 1 P RrXs is a unit. Then the map

RÑ pRrXs{P qQ

is called a standard étale morphism.

The name is justified by:

3.3.6 Proposition A standard étale morphism is étale.

Proof. It is sufficient to check the condition on the Kähler differentials, since a standard étale
morphism is evidently flat and of finite presentation. Indeed, we have that

ΩpRrXs{P qQ{R “ Q´1ΩpRrXs{P q{R “ Q´1 RrXs

pP 1pXq, P pXqqRrXs

by basic properties of Kähler differentials. Since P 1 is a unit after localization at Q, this last
object is clearly zero.

3.3.7 Example A separable algebraic extension of a field k is formally étale. Indeed, we just
need to check this for a finite separable extension L{k, in view of lemma 3.3.3, and then we can
write L “ krXs{pP pXqq for P a separable polynomial. But it is easy to see that this is a special
case of a standard étale morphism. In particular, any unramified extension of a field is étale, in
view of the structure theory for unramified extensions of fields (theorem 3.1.12).

3.3.8 Example The example of example 3.2.19 is a formally étale morphism, because we showed
the map was formally smooth and it was clearly surjective. It follows that a formally étale
morphism is not necessarily flat!

We also want a slightly different characterization of an étale morphism. This criterion will be of
extreme importance for us in the sequel.

3.3.9 Theorem An R-algebra S of finite presentation is étale if and only if it is flat and un-
ramified.

This is in fact how étale morphisms are defined in ? and in ?.
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Proof. An étale morphism is smooth, hence flat (theorem 3.2.15). Conversely, suppose S is flat
and unramified over R. We just need to show that S is smooth over R. But this follows by the
fiberwise criterion for smoothness, theorem 3.2.16, and the fact that an unramified extension of
a field is automatically étale, by example 3.3.7.

Finally, we would like a criterion for when a morphism of smooth algebras is étale. We state it
in the local case first.

3.3.10 Proposition Let B,C be local, formally smooth, essentially of finite presentation A-
algebras and let f : B Ñ C be a local A-morphism. Then f is formally étale if and only if and
only if the map ΩB{A bB C Ñ ΩC{A is an isomorphism.

The intuition is that f induces an isomorphism on the cotangent spaces; this is analogous to the
definition of an étale morphism of smooth manifolds (i.e. one that induces an isomorphism on
each tangent space, so is a local isomorphism at each point).

Proof. We prove this for A noetherian.

We just need to check that f is flat if the map on differentials is an isomorphism. Since B,C are
flat A-algebras, it suffices (by the general criterion, proposition 1.4.12), to show that B bA k Ñ
CbA k is flat for k the residue field of A. We will also be done if we show that BbA k Ñ CbA k
is flat. Note that the same hypotheses (that

So we have reduced to a question about rings essentially of finite type over a field. Namely, we
have local rings B,C which are both formally smooth, essentially of finite-type k-algebras, and
a map B Ñ C that induces an isomorphism on the Kähler differentials as above.

The claim is that B Ñ C is flat (even local-étale). Note that both B,C are regular local rings, and
the condition about Kähler differentials implies that they of the same dimension. Consequently,
B Ñ C is injective: if it were not injective, then the dimension of impB Ñ Cq would be less
than dimB “ dimC. But since C is unramified over impB Ñ Cq, the dimension can only drop:
dimC ď dim impB Ñ Cq.1 This contradicts dimB “ dimC. It follows that B Ñ C is injective,
and hence flat by ?? below (one can check that there is no circularity).

The local structure theory

We know two easy ways of getting an unramified morphism out of a ring R. First, we can take
a standard étale morphism, which is necessarily unramified; next we can take a quotient of that.
The local structure theory states that this is all we can have, locally.

Warning: this section will use Zariski’s Main Theorem, which is not in this book
yet.

For this we introduce a definition.

1This follows by the surjection of modules of Kähler differentials, in view of ??.
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3.3.11 Definition Let R be a commutative ring, S an R-algebra of finite type. Let q P SpecS
and p P SpecR be the image. Then S is called unramified at q (resp. étale at p) if ΩSq{Rp

“ 0
(resp. that and Sq is Rp-flat).

Now when works with finitely generated algebras, the module of Kähler differentials is always
finitely generated over the top ring. In particular, if ΩSq{Rp

“ pΩS{Rqq “ 0, then there is f P S´q
with ΩSf {R “ 0. So being unramified at q is equivalent to the existence of f P S ´ q such that
Sf is unramified over R. Clearly if S is unramified over R, then it is unramified at all primes,
and conversely.

3.3.12 Theorem Let φ : RÑ S be morphism of finite type, and q Ă S prime with p “ φ´1pqq.
Suppose φ is unramified at q. Then there is f P R´ p and g P S´ q (divisible by φpfq) such that
the morphism

Rf Ñ Sg

factors as a composite
Rf Ñ pRf rxs{P qh � Sg

where the first is a standard étale morphism and the second is a surjection. Moreover, we can
arrange things such that the fibers above p are isomorphic.

Proof. We shall assume that R is local with maximal ideal p. Then the question reduces to
finding g P S such that Sg is a quotient of an algebra standard étale over R. This reduction is
justified by the following argument: if R is not necessarily local, then the morphism Rp Ñ Sp
is still unramified. If we can show that there is g P Sp ´ qSp such that pSpqg is a quotient of
a standard étale Rp-algebra, it will follow that there is f R p such that the same works with
Rf Ñ Sgf .

We shall now reduce to the case where S is a finite R-algebra. Let R be local, and let RÑ S be
unramified at q. By assumption, S is finitely generated over R. We have seen by corollary 3.1.16
that S is quasi-finite over R at q. By Zariski’s Main Theorem (??), there is a finite R-algebra
S1 and q1 P SpecS1 such that S near q and S1 near q1 are isomorphic (in the sense that there are
g P S ´ q, h P S1 ´ q1 with Sg » S1h). Since S1 must be unramified at q1, we can assume at the
outset, by replacing S by S1, that RÑ S is finite and unramified at q.

We shall now reduce to the case where S is generated by one element as R-algebra. This will
occupy us for a few paragraphs.

We have assumed that R is a local ring with maximal ideal p Ă R; the maximal ideals of S are
finite, say, q, q1, . . . , qr because S is finite over R; these all contain p by Nakayama. These are
no inclusion relations among q and the qi as S{pS is an artinian ring.

Now S{q is a finite separable field extension of R{p by theorem 3.1.12; indeed, the morphism
R{pÑ S{pS Ñ S{q is a composite of unramified extensions and is thus unramified. In particular,
by the primitive element theorem, there is x P S such that x is a generator of the field extension
R{p Ñ S{q. We can also choose x to lie in the other qi by the Chinese remainder theorem.
Consider the subring C “ Rrxs Ă S. It has a maximal ideal s which is the intersection of q with
C. We are going to show that locally, C and S look the same.
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3.3.13 Lemma (Reduction to the monogenic case) Let pR, pq be a local ring and S a finite
R-algebra. Let q, q1, . . . , qr P SpecS be the prime ideals lying above p. Suppose S is unramified
at q.

Then there is x P S such that the rings Rrxs Ă S and S are isomorphic near q: more precisely,
there is g P Rrxs ´ q with Rrxsg “ Sg.

Proof. Choose x as in the paragraph preceding the statement of the lemma. Define s in the same
way. We have morphisms

RÑ Cs Ñ Ss

where Ss denotes S localized at C ´ s, as usual. The second morphism here is finite. However,
we claim that Ss is in fact a local ring with maximal ideal qSs; in particular, Ss “ Sq. Indeed,
S can have no maximal ideals other than q lying above s; for, if qi lay over s for some i, then
x P qi X C “ s. But x R s because x is not zero in S{q.

It thus follows that Ss is a local ring with maximal ideal qSs. In particular, it is equal to Sq,
which is a localization of Ss at the maximal ideal. In particular, the morphism

Cs Ñ Ss “ Sq

is finite. Moreover, we have sSq “ qSq by unramifiedness of R Ñ S. So since the residue fields
are the same by choice of x, we have sSq ` Cs “ Sq. Thus by Nakyama’s lemma, we find that
Ss “ Sq “ Cs.

There is thus an element g P C ´ r such that Sg “ Cg. In particular, S and C are isomorphic
near q.

We can thus replace S by C and assume that C has one generator.

With this reduction now made, we proceed. We are now considering the case where S is generated
by one element, so a quotient S “ RrXs for some monic polynomial P . Now S “ S{pS is thus
a quotient of krXs, where k “ R{p is the residue field. It thus follows that

S “ krXs{pP q

for P a monic polynomial, as S is a finite k-vector space.

Suppose P has degree n. Let x P S be a generator of S{R. We know that 1, x, . . . , xn´1 has
reductions that form a k-basis for S bR k, so by Nakayama they generate S as an R-module. In
particular, we can find a monic polynomial P of degree n such that P pxq “ 0. It follows that
the reduction of P is necessarily P . So we have a surjection

RrXs{pP q� S

which induces an isomorphism modulo p (i.e. on the fiber).

Finally, we claim that we can modify RrXs{P to make a standard étale algebra. Now, if we let
q1 be the preimage of q in RrXs{P , then we have morphisms of local rings

RÑ pRrXs{P qq1 Ñ Sq.
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The claim is that RrXs{pP q is unramified over R at q1.

To see this, let T “ pRrXs{P qq1 . Then, since the fibers of T and Sq are the same at p, we have
that

ΩT {R bR kppq “ ΩTbRkppq{kppq “ ΩpSq{pSqq{kppq “ 0

as S is R-unramified at q. It follows that ΩT {R “ pΩT {R, so a fortiori ΩT {R “ qΩT {R; since
this is a finitely generated T -module, Nakayama’s lemma implies that is zero. We conclude that
RrXs{P is unramified at q1; in particular, by the Kähler differential criterion, the image of the
derivative P 1 is not in q1. If we localize at the image of P 1, we then get what we wanted in the
theorem.

We now want to deduce a corresponding (stronger) result for étale morphisms. Indeed, we
prove:

3.3.14 Theorem If R Ñ S is étale at q P SpecS (lying over p P SpecR), then there are
f P R´ p, g P S ´ q such that the morphism Rf Ñ Sg is a standard étale morphism.

Proof. By localizing suitably, we can assume that pR, pq is local, and (in view of ??), R Ñ S is
a quotient of a standard étale morphism

pRrXs{P qh � S

with the kernel some ideal I. We may assume that the surjection is an isomorphism modulo p,
moreover. By localizing S enough2 we may suppose that S is a flat R-module as well.

Consider the exact sequence of pRrXs{P qh-modules

0 Ñ I Ñ pRrXs{P qh{I Ñ S Ñ 0.

Let q1 be the image of q in SpecpRrXs{P qh. We are going to show that the first term vanishes
upon localization at q1. Since everything here is finitely generated, it will follow that after further
localization by some element in pRrXs{P qh´ q1, the first term will vanish. In particular, we will
then be done.

Everything here is a module over pRrXs{P qh, and certainly a module over R. Let us tensor
everything over R with R{p; we find an exact sequence

I Ñ S{pS Ñ S{pS Ñ 0;

we have used the fact that the morphism pRrXs{P qh Ñ S was assumed to induce an isomorphism
modulo p.

However, by étaleness we assumed that S was R-flat, so we find that exactness holds at the left
too. It follows that

I “ pI,

so a fortiori
I “ q1I,

which implies by Nakayama that Iq1 “ 0. Localizing at a further element of pRrXs{P qh ´ q1, we
can assume that I “ 0; after this localization, we find that S looks precisely a standard étale
algebra.

2We are not assuming S finite over R here,
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Permanence properties of étale morphisms

We shall now return to (more elementary) commutative algebra, and discuss the properties that
an étale extension A Ñ B has. An étale extension is not supposed to make B differ too much
from A, so we might expect some of the same properties to be satisfied.

We might not necessarily expect global properties to be preserved (geometrically, an open imbed-
ding of schemes is étale, and that does not necessarily preserve global properties), but local ones
should be.

Thus the right definition for us will be the following:

3.3.15 Definition A morphism of local rings pA,mAq Ñ pB,mBq is local-unramified mAB is
the maximal ideal of B and B{mB is a finite separable extension of A{mA.

A morphism of local rings AÑ B is local-étale if it is flat and local-unramified.

3.3.16 Proposition Let pR,mq Ñ pS, nq be a local-étale morphism of noetherian local rings.
Then dimR “ dimS.

Proof. Indeed, we know that mS “ n because RÑ S is local-unramified. Also R{mÑ S{n is a
finite separable extension. We have a natural morphism

mbR S Ñ n

which is injective (as the map m bR S Ñ S is injective by flatness) and consequently is an
isomorphism. More generally, mn bR S » nn for each n. By flatness again, it follows that

mn{mn`1 bR{m pS{nq “ mn{mn`1 bR S » nn{nn`1. (3.3.1)

Now if we take the dimensions of these vector spaces, we get polynomials in n; these polynomials
are the dimensions of R,S, respectively. It follows that dimR “ dimS.

3.3.17 Proposition Let pR,mq Ñ pS, nq be a local-étale morphism of noetherian local rings.
Then depthR “ depthS.

Proof. We know that a non-zero-divisor in R maps to a non-zero-divisor in S. Thus by an easy
induction we reduce to the case where depthR “ 0. This means that m is an associated prime of
R; there is thus some x P R, nonzero (and necessarily a non-unit) such that the annihilator of x
is all of m. Now x is a nonzero element of S, too, as the map RÑ S is an inclusion by flatness.
It is then clear that n “ mS is the annilhilator of x in S, so n is an associated prime of S too.

3.3.18 Corollary Let pR,mq Ñ pS, nq be a local-étale morphism of noetherian local rings. Then
R is regular (resp. Cohen-Macaulay) if and only if S is.

Proof. The results proposition 3.3.17 and proposition 3.3.16 immediately give the result about
Cohen-Macaulayness. For regularity, we use (3.3.1) with n “ 1 to see at once that the embedding
dimensions of R and S are the same.
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Recall, however, that regularity of S implies that of R if we just assume that RÑ S is flat (by
Serre’s characterization of regular local rings as those having finite global dimension).

We shall next show that reducedness is preserved under étale extensions. We shall need another
hypothesis, though, that the map of local rings be essentially of finite type. This will always be
the case in situations of interest, when we are looking at the map on local rings induced by a
morphism of rings of finite type.

3.3.19 Proposition Let pR,mq Ñ pS, nq be a local-étale morphism of noetherian local rings.
Suppose S is essentially of finite type over R. Then S is reduced if and only if R is reduced.

Proof. As RÑ S is injective by (faithful) flatness, it suffices to show that if R is reduced, so is
S. Now there is an imbedding RÑ

ś

p minimalR{p of R into a product of local domains. We get
an imbedding of S into a product of local rings

ś

S{pS. Each S{pS is essentially of finite type
over R{p, and local-étale over it too.

We are reduced to showing that each S{pS is reduced. So we need only show that a local-étale,
essentially of finite type local ring over a local noetherian domain is reduced.

So suppose A is a local noetherian domain, B a local-étale, essentially of finite type local A-
algebra. We want to show that B is reduced, and then we will be done. Now A imbeds into its
field of fractions K; thus B imbeds into B bA K. Then B bA K is formally unramified over K
and is essentially of finite type over K. This means that B bA K is a product of fields by the
usual classification, and is in particular reduced. Thus B was itself reduced.

To motivate the proof that normality is preserved, though, we indicate another proof of this fact,
which does not even use the essentially of finite type hypothesis. Recall that a noetherian ring
A is reduced if and only if for every prime p P SpecA of height zero, Ap is regular (i.e., a field),
and for every prime p of height ą 0, Rp has depth at least one. See ??.

So suppose R Ñ S is a local-étale and suppose R is reduced. We are going to apply the above
criterion, together with the results already proved, to show that S is reduced.

Let q P SpecS be a minimal prime, whose image in SpecR is p. Then we have a morphism

Rp Ñ Sq

which is locally of finite type, flat, and indeed local-étale, as it is formally unramified (as RÑ S
was). We know that dimRp “ dimSq by proposition 3.3.16, and consequently since Rp is regular,
so is Sq. Thus the localization of S at any minimal prime is regular.

Next, if q P SpecS is such that Sq has height has positive dimension, then Rp Ñ Sq (where p is
as above) is local-étale and consequently dimRq “ dimSq ą 0. Thus, depthRp “ depthSq ą 0
because R was reduced. It follows that the above criterion is valid for S.

Recall that a noetherian ring is a normal domain if it is integrally closed in its quotient field,
and simply normal if all its localizations are normal domains; this equates to the ring being a
product of normal domains. We want to show that this is preserved under étaleness. To do this,
we shall use a criterion similar to that used at the end of the last section. We have the following
important criterion for normality.
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3.3.20 Theorem (Serre) Let A be a noetherian ring. Then A is normal if and only if for all
p P SpecR:

1. If dimAp ď 1, then Ap is regular.

2. If dimAp ě 2, then depthAp ě 2.

This is discussed in ??.

From this, we will be able to prove without difficulty the next result.

3.3.21 Proposition Let pR,mq Ñ pS, nq be a local-étale morphism of noetherian local rings.
Suppose S is essentially of finite type over R. Then S is normal if and only if R is normal.

Proof. This is proved in the same manner as the result for reducedness was proved at the end of
the previous subsec. For instance, suppose R normal. Let q P SpecS be arbitrary, contracting
to p P SpecR. If dimSq ď 1, then dimRp ď 1 so that Rp, hence Sq is regular. If dimSq ě 2,
then dimRp ě 2, so depthSq “ depthRp ě 2.

We mention a harder result:

3.3.22 Theorem If f : pR,mq Ñ pS, nq is local-unramified, injective, and essentially of finite
type, with R normal and noetherian, then R Ñ S is local-étale. Thus, an injective unramified
morphism of finite type between noetherian rings, whose source is a normal domain, is étale.

A priori, it is not obvious at all that R Ñ S should be flat. In fact, proving flatness directly
seems to be difficult, and we will have to use the local structure theory for unramified morphisms
together with nontrivial facts about étale morphisms to establish this result.

Proof. We essentially follow ? in the proof. Clearly, only the local statement needs to be proved.

We shall use the (non-elementary, relying on ZMT) structure theory of unramified morphisms,
which implies that there is a factorization of RÑ S via

pR,mq
g
Ñ pT, qq

h
Ñ pS, nq,

where all morphisms are local homomorphisms of local rings, g : R Ñ T is local-étale and
essentially of finite type, and h : T Ñ S is surjective. This was established in ??.

We are going to show that h is an isomorphism, which will complete the proof. Let K be the
quotient field of R. Consider the diagram

R

��

g // T
h //

��

S

��
K

gb1// T bR K
hb1 // S bR K.

Now the strategy is to show that h is injective. We will prove this by chasing around the diagram.

Here R Ñ S is formally unramified and essentially of finite type, so K Ñ S bR K is too, and
S bR K is in particular a finite product of separable extensions of K. The claim is that it is
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nonzero; this follows because f : R Ñ S is injective, and S Ñ S bR K is injective because
localization is exact. Consequently RÑ S bR K is injective, and the target must be nonzero.

As a result, the surjective map hb1 : T bRK Ñ SbRK is nonzero. Now we claim that T bRK
is a field. Indeed, it is an étale extension of K (by base-change), so it is a product of fields.
Moreover, T is a normal domain since R is (by proposition 3.3.21) and R Ñ T is injective by
flatness, so the localization T bR K is a domain as well. Thus it must be a field. In particular,
the map hb 1 : T bR K Ñ S bR K is a surjection from a field to a product of fields. It is thus
an isomorphism.

Finally, we can show that h is injective. Indeed, it suffices to show that the composite T Ñ

T bR K Ñ S bR K is injective. But the first map is injective as it is a map from a domain to
a localization, and the second is an isomorphism (as we have just seen). So h is injective, hence
an isomorphism. Thus T » S, and we are done.

Note that this fails if the source is not normal.

3.3.23 Example Consider a nodal cubic C given by y2 “ x2px´ 1q in A2
k over an algebraically

closed field k. As is well-known, this curve is smooth except at the origin. There is a map C Ñ C
where C is the normalization; this is a finite map, and a local isomorphism outside of the origin.

The claim is that C Ñ C is unramified but not étale. If it were étale, then C would be smooth
since C is. So it is not étale. We just need to see that it is unramified, and for this we need only
see that the map is unramified at the origin.

We may compute: the normalization of C is given by C “ A1
k, with the map

t ÞÑ pt2 ` 1, tpt2 ` 1qq.

Now the two points ˘1 are both mapped to 0. We will show that

OC,0 Ñ OA1
k,1

is local-unramified; the other case is similar. Indeed, any line through the origin which is not
a tangent direction will be something in mC,0 that is mapped to a uniformizer in OA1

k,1
. For

instance, the local function x P OC,0 is mapped to the function t ÞÑ t2 ` 1 on A1
k, which has a

simple zero at 1 (or ´1). It follows that the maximal ideal mC,0 generates the maximal ideal of
OA1

k,1
(and similarly for ´1).

Application to smooth morphisms

We now want to show that the class of étale morphisms essentially determines the class of smooth
morphisms. Namely, we are going to show that smooth morphisms are those that look étale-
locally like étale morphisms followed by projection from affine space. (Here “projection from
affine space” is the geometric picture: in terms of commutative rings, this is the embedding
A ãÑ Arx1, . . . , xns.)

Here is the first goal:
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3.3.24 Theorem Let f : pA,mq Ñ pB, nq be an essentially of finite presentation, local morphism
of local rings. Then f is formally smooth if and only if there exists a factorization

AÑ C Ñ B

where pC, qq is a localization of the polynomial ring ArX1, . . . , Xns at a prime ideal with AÑ C
the natural embedding, and C Ñ B a formally étale morphism.

For convenience, we have stated this result for local rings, but we can get a more general criterion
as well (see below). This states that smooth morphisms, étale locally, look like the imbedding of
a ring into a polynomial ring. In ?, this is in fact how smooth morphisms are defined.

Proof. First assume f smooth. We know then that ΩB{A is a finitely generated projective B-
module, hence free, say of rank n. There are t1, . . . , tn P B such that tdtiu forms a basis for
ΩB{A: namely, just choose a set of such elements that forms a basis for ΩB{AbBB{n (since these
elements generate ΩB{A).

Now these elements ttiu give a map of rings ArX1, . . . , Xns Ñ B. We let q be the pre-image
of n (so n contains the image of m Ă A), and take C “ C “ ArX1, . . . , Xnsq. This gives local
homomorphisms AÑ C,C Ñ B. We only need to check that C Ñ B is étale. But the map

ΩC{A bC B Ñ ΩB{A

is an isomorphism, by construction. Since C,B are both formally smooth over A, we find that
C Ñ B is étale by the characterization of étaleness via cotangent vectors (proposition 3.3.10).

The other direction, that f is formally smooth if it admits such a factorization, is clear because
the localization of a polynomial algebra is formally smooth, and a formally étale map is clearly
formally smooth.

3.3.25 Corollary Let pR,mq Ñ pS, nq be a formally smooth, essentially of finite type morphism
of noetherian rings. Then if R is normal, so is S. Ditto for reduced.

Proof.

Lifting under nilpotent extensions

In this subsec, we consider the following question. Let A be a ring, I Ă A an ideal of square
zero, and let A0 “ A{I. Suppose B0 is a flat A0-algebra (possibly satisfying other conditions).
Then, we ask if there exists a flat A-algebra B such that B0 » B bA A0 “ B{IB. If there is,
we say that B can be lifted along the nilpotent thickening from B0 to B—we think of B as the
mostly the same as B0, but with some additional “fuzz” (given by the additional nilpotents).

We are going to show that this can always be done for étale algebras, and that this always can
be done locally for smooth algebras. As a result, we will get a very simple characterization of
what finiteétale algebras over a complete (and later, henselian) local ring look like: they are the
same as étale extensions of the residue field (which we have classified completely).
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In algebraic geometry, one spectacular application of these ideas is Grothendieck’s proof in ?
that a smooth projective curve over a field of characteristic p can be “lifted” to characteristic
zero. The idea is to lift it successively along nilpotent thickenings of the base field, bit by bit (for
instance, Z{pnZ of Z{pZ), by using the techniques of this subsec; then, he uses hard existence
results in formal geometry to show that this compatible system of nilpotent thickenings comes
from a curve over a DVR (e.g. the p-adic numbers). The application in mind is the (partial)
computation of the étale fundamental group of a smooth projective curve over a field of positive
characteristic. We will only develop some of the more basic ideas in commutative algebra.

Namely, here is the main result. For a ring A, let EtpAq denote the category of étale A-algebras
(and A-morphisms). Given A Ñ A1, there is a natural functor EtpAq Ñ EtpA1q given by base-
change.

3.3.26 Theorem Let A Ñ A0 be a surjective morphism whose kernel is nilpotent. Then
EtpAq Ñ EtpA0q is an equivalence of categories.

SpecA and SpecA0 are identical topologically, so this result is sometimes called the topological
invariance of the étale site. Let us sketch the idea before giving the proof. Full faithfulness is
the easy part, and is essentially a restatement of the nilpotent lifting property. The essential
surjectivity is the non-elementary part, and relies on the local structure theory. Namely, we will
show that a standard étale morphism can be lifted (this is essentially trivial). Since an étale
morphism is locally standard étale, we can locally lift an étale A0-algebra to an étale A-algebra.
We next “glue” the local liftings using the full faithfulness.

Proof. Without loss of generality, we can assume that the ideal defining A0 has square zero. Let
B,B1 be étale A-algebras. We need to show that

homApB,B
1q “ homA0pB0, B

1
0q,

where B0, B
1
0 denote the reductions to A0 (i.e. the base change). But homA0pB0, B

1
0q “

homApB,B
1
0q, and this is clearly the same as homApB,B

1q by the definition of an étale mor-
phism. So full faithfulness is automatic.

The trickier part is to show that any étale A0-algebra can be lifted to an étale A-algebra. First,
note that a standard étale A0-algebra of the form pA0rXs{pP pXqqQ can be lifted to A—just lift
P and Q. The condition that it be standard étale is invertibility of P 1, which is unaffected by
nilpotents.

Now the strategy is to glue these appropriately. The details should be added at some point, but
they are not. To be added: details
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Notation

covering U, V

field F, K, k
— , of complex numbers C
— , of rational numbers Q
— , of real numbers R
fiber bundle pE,B, p, F q, p : E Ñ B, or π : E Ñ B,

where F denotes typical fiber
function f , g, h, . . . , ϕ, ψ, . . .

group G, H, K
— , general linear GLpK, nq, where K “ R or “ C

interval, open a, b , where a ă b
— , closed ra, bs, where a ď b
— , half-open a, bs or ra, b , where a ă b

manifold M , N , P , Q, . . .

open set U , V , W , O, . . .

pair px, yq, where x P X, y P Y , and X,Y are sets

ring R, S

sheaf A, B, C, D, E, F, . . .
— , continuous functions C

— , smooth functions C8

— , real analytic functions Cω

— , holomorphic functions O

topological space X, Y , Z, A, B, . . .
topology T, S

vector bundle π : E Ñ B
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Licensing

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. http://fsf.org/
Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Secondar-
ily, this License preserves for the author and publisher a way to get credit for their work, while
not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
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overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section
may not explain any mathematics.) The relationship could be a matter of historical connection
with the subject or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text. A
copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Ex-
amples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.
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The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material
on the covers in addition. Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of
the Document, free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS
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You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version if the original publisher
of that version gives permission. B. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in the Modified Version, together with at
least five of the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement. C. State on the Title page the name of the
publisher of the Modified Version, as the publisher. D. Preserve all the copyright notices of the
Document. E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices. F. Include, immediately after the copyright notices, a license notice giving the
public permission to use the Modified Version under the terms of this License, in the form shown
in the Addendum below. G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice. H. Include an unaltered copy
of this License. I. Preserve the section Entitled “History”, Preserve its Title, and add to it an
item stating at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then add an
item describing the Modified Version as stated in the previous sentence. J. Preserve the network
location, if any, given in the Document for public access to a Transparent copy of the Document,
and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network location for a work
that was published at least four years before the Document itself, or if the original publisher
of the version it refers to gives permission. K. For any section Entitled “Acknowledgements” or
“Dedications”, Preserve the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given therein. L. Preserve
all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles. M. Delete any section
Entitled “Endorsements”. Such a section may not be included in the Modified Version. N. Do
not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any
Invariant Section. O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties–for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
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words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combi-
nation all of the Invariant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice, and that you preserve all
their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included in an aggre-
gate, this License does not apply to the other works in the aggregate which are not themselves
derivative works of the Document.
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If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Doc-
ument under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Document, and any War-
ranty Disclaimers, provided that you also include the original English version of this License and
the original versions of those notices and disclaimers. In case of a disagreement between the
translation and the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void,
and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copy-
right holder notifies you of the violation by some reasonable means, this is the first time you
have received notice of violation of this License (for any work) from that copyright holder, and
you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and
not permanently reinstated, receipt of a copy of some or all of the same material does not give
you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
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Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide
which future versions of this License can be used, that proxy’s public statement of acceptance of
a version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit
those works. A public wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable
works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business
in San Francisco, California, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on
the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with. . . Texts.”
line with this:
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with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.
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