Math 2002 Number Systems Homework Set 6

Spring 2023

Course Instructor: Dr. Markus Pflaum

Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu. For the following problems recall that the set \mathbb{Q} of rational numbers is defined as the quotient set $\mathbb{Q} = (\mathbb{Z} \times \mathbb{Z}^*)/\sim$, where \sim is the equivalence relation on $\mathbb{Z} \times \mathbb{Z}^*$ defined as follows:

$$(p,q) \sim (\tilde{p},\tilde{q}) \iff p \cdot \tilde{q} = \tilde{p} \cdot q \quad \text{where } p, \tilde{p} \in \mathbb{Z}, \ q, \tilde{q} \in \mathbb{Z}^*$$

Recall further that $\frac{p}{q}$ denotes the equivalence class of the pair (p,q). Addition on \mathbb{Q} is then defined by

$$+: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}, \ \left(\frac{p}{q}, \frac{k}{l}\right) \mapsto \frac{pl + kq}{ql} \ ,$$

and multiplication by

$$: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}, \ \left(\frac{p}{q}, \frac{k}{l}\right) \mapsto \frac{p \cdot k}{q \cdot l} \ .$$

The set \mathbb{Z} of integers is embedded into \mathbb{Q} via the map $\mathbb{Z} \hookrightarrow \mathbb{Q}, p \mapsto \frac{p}{1}$.

Problem 1: Show that both addition and multiplication on \mathbb{Q} are well-defined. (3P) **Problem 2:** Verify the following properties of addition and multiplication in \mathbb{Q} :

- (a) associativity of addition, (2P)
- (b) commutativity of addition, (1P)
- (c) additive neutrality of $0 = \frac{0}{1}$, (1P)
- (d) existence of additive inverses, (1P)
- (e) associativity of multiplication, (2P)
- (f) commutativity of multiplication, (1P)
- (g) multiplicative neutrality of $1 = \frac{1}{1}$, (1P)
- (h) existence of multiplicative inverses for $\frac{p}{q} \neq 0$, (2P)
- (i) distributivity of multiplication over addition. (2P)

Problem 3: Define an order relation on \mathbb{Q} as follows:

$$\frac{k}{l} \leq \frac{p}{q} \iff (pl - kq) \cdot ql \geq 0 \; .$$

Verify that \leq is well defined, an order relation on \mathbb{Q} indeed and that it satisfies the following monotony laws, where r, s are always rational numbers.

Monotony of addition

If $r \leq s$ and $a \in \mathbb{Q}$, then $r + a \leq s + a$.

Monotony of multiplication

If $r \leq s$ and $a \in \mathbb{Q}$ with $a \geq 0$, then $r \cdot a \leq s \cdot a$.

(8P)