Math 2002 Number Systems Homework Set 3

Spring 2023

Course Instructor: Dr. Markus Pflaum

Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu. Problem 1:

a) Let $f: X \to Y$ be a mapping, and $A, B \subset Y$. Show that then

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B).$$
(2P)

b) Determine, whether the following equalities are true for subsets $C, D \subset X$:

$$f(C \cap D) = f(C) \cap f(D)$$

$$f(C \cup D) = f(C) \cup f(D).$$

Let $f: X \to Y$ and $g: Y \to Z$ be functions. Prove the following claims:

- a) If f and g are injective, then $g \circ f$ is injective as well.
- b) If f and g are surjective, then $g \circ f$ is surjective, too.

(4P)

(4P)

Problem 3: Let M be a set and consider its power set $\mathcal{P}M$ with the order relation given by inclusion of sets. Show that $\mathcal{P}M$ has a greatest and a smallest element. Are the greatest and smallest elements uniquely determined? (2P)

Problem 4: Let $p \in \mathbb{N}_{>0}$ denote a positive natural number. Call two integers $m, n \in \mathbb{Z}$ congruent modulo p, if p divides m - n that is if there exists $k \in \mathbb{Z}$ such that m - n = kp. If m is congruent n modulo p one denotes this by $m \equiv n \mod p$. Show that congruence module p is an equivalence relation on the set of integers \mathbb{Z} . Prove also that if

$$m \equiv n \mod p$$
 and $m' \equiv n' \mod p$,

then

$$m + m' \equiv n + n' \mod p$$
 and $m \cdot m' \equiv n \cdot n' \mod p$.
(4P)

Problem 5: Let M_1, M_2, N be sets. Show that

(a)
$$(M_1 \cap M_2) \times N = (M_1 \times N) \cap (M_2 \times N)$$
 and
(b) $(M_1 \setminus M_2) \times N = (M_1 \times N) \setminus (M_2 \times N).$

(4P)