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Spring 2021

Course Instructor: Dr. Markus Pflaum
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Theorem 1 (Inverse Function Theorem). Let I C R be an open interval and f : I — R a
differentiable function such that f'(x¢) # 0 for some xg € I. Then there exist open intervals
Ip C I and Jy C R with xg € Iy such that f(Iy) = Jo, f'(x) # 0 for all x € Iy and such that
the restriction f|1, : Io — Jo is invertible with differentiable inverse function g : Jo — lo. The
derivative of the inverse function is given by
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Problem 1 Show that the exponential function exp : R — R, x — €% is strictly monotone
increasing, and maps R onto Rsg. Let In : Ry — R be the corresponding inverse function.
Compute the derivative of In by using the Inverse Function Theorem (4P)
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Problem 2: Recall that coshz := % and sinhz := eszfz. Prove that the function

tanh : R = R, z — i(‘;}ﬁﬁ is strictly increasing and everywhere differentiable. Compute the

derivative tanh’ and the image I of tanh. Then determine the derivative of the inverse function
Artanh : I — R. (5P)

Problem 3: Compute the following integrals:
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Problem 4: Determine the integral
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/ ar?tbr+c b
depending on a, b, c € R, where a # 0 is assumed. (3P)
Problem 5: Determine the following integrals:
a)
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/ xcosxdx,
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/ rsinzdz.
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