Math 3001 Analysis 1

Homework Set 7

Spring 2021

Course Instructor: Dr. Markus Pflaum
Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu.

Theorem 1 (Inverse Function Theorem). Let $I \subset \mathbb{R}$ be an open interval and $f: I \rightarrow \mathbb{R} a$ differentiable function such that $f^{\prime}\left(x_{0}\right) \neq 0$ for some $x_{0} \in I$. Then there exist open intervals $I_{0} \subset I$ and $J_{0} \subset \mathbb{R}$ with $x_{0} \in I_{0}$ such that $f\left(I_{0}\right)=J_{0}, f^{\prime}(x) \neq 0$ for all $x \in I_{0}$ and such that the restriction $\left.f\right|_{I_{0}}: I_{0} \rightarrow J_{0}$ is invertible with differentiable inverse function $g: J_{0} \rightarrow I_{0}$. The derivative of the inverse function is given by

$$
g^{\prime}: J_{0} \rightarrow \mathbb{R}, \quad y \mapsto g^{\prime}(y)=\frac{1}{f^{\prime}(g(y))}
$$

Problem 1 Show that the exponential function $\exp : \mathbb{R} \rightarrow \mathbb{R}, x \mapsto e^{x}$ is strictly monotone increasing, and maps \mathbb{R} onto $\mathbb{R}_{>0}$. Let $\ln : \mathbb{R}_{>0} \rightarrow \mathbb{R}$ be the corresponding inverse function. Compute the derivative of \ln by using the Inverse Function Theorem
Problem 2: Recall that $\cosh x:=\frac{e^{x}+e^{-x}}{2}$ and $\sinh x:=\frac{e^{x}-e^{-x}}{2}$. Prove that the function $\tanh : \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \frac{\sinh x}{\cosh x}$ is strictly increasing and everywhere differentiable. Compute the derivative tanh ${ }^{\prime}$ and the image I of tanh. Then determine the derivative of the inverse function Artanh : $I \rightarrow \mathbb{R}$.

Problem 3: Compute the following integrals:
a)

$$
\int \frac{1}{\sin (2 t)} d t
$$

b)

$$
\int \frac{1}{t^{4}-16} d t
$$

Problem 4: Determine the integral

$$
\begin{equation*}
\int \frac{1}{a x^{2}+b x+c} d x \tag{3P}
\end{equation*}
$$

depending on $a, b, c \in \mathbb{R}$, where $a \neq 0$ is assumed.
Problem 5: Determine the following integrals:
a)

$$
\int_{0}^{2 \pi} x \cos x d x
$$

b)

$$
\begin{equation*}
\int_{0}^{\pi} x \sin x d x \tag{4P}
\end{equation*}
$$

