Math 3001 Analysis 1
 Homework Set 6

Spring 2021

Course Instructor: Dr. Markus Pflaum
Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu.
Problem 1: Let $f:[a, b] \rightarrow[a, b]$ with $a<b$ be a continuous function. Prove that f has a fixed point, i.e. that there is an $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)=x_{0}$.
Hint: Use the Intermediate Value Theorem.
Problem 2: Prove that the function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto \begin{cases}\exp \left(-\frac{1}{x^{2}}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is \mathcal{C}^{∞}, and determine all derivatives $f^{(k)}(0), k \in \mathbb{N}$.
Hint: Use Problem 3 from Homework 5.
Problem 3: Let $f: I \rightarrow \mathbb{R}$ be a function defined on an open interval I. Show that f being differentiable at $a \in I$ is equivalent to the existence of a function $E: I \rightarrow \mathbb{R}$ continuous at a such that

$$
\begin{equation*}
f(x)=f(a)+f^{\prime}(a)(x-a)+E(x)(x-a) \quad \text { for all } x \in I \tag{4P}
\end{equation*}
$$

and $E(a)=0$.
Problem 4: Determine the derivatives of the following functions on their maximal real domains:
a) $f(x)=\frac{x^{2}-5 x+6}{x^{2}-3 x+2}$,
b) $\quad f(x)=\ln \left(x+\sqrt{x^{2}+1}\right)$,
c) $f(x)=\ln \left(x+\sqrt{x^{2}-1}\right)$,
d) $f(x)=\sqrt{|x|^{3}}$.

Extra Credit Problem: Let $\overline{\mathbb{R}}=\mathbb{R} \cup\{ \pm \infty\}=[-\infty, \infty]$ denote the extended real line. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence in the extended real line and define the limit inferior of the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ by

$$
\liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \inf _{m \geq n} x_{m}
$$

and its limit superior by

$$
\limsup _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \sup _{m \geq n} x_{m}
$$

Show that the limit inferior and the limit superior always exist in $\overline{\mathbb{R}}$ and that

$$
\liminf _{n \rightarrow \infty} x_{n} \leq \limsup _{n \rightarrow \infty} x_{n}
$$

Then prove that $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges in $\overline{\mathbb{R}}$ if and only if

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} x_{n}=\liminf _{n \rightarrow \infty} x_{n} \tag{8P}
\end{equation*}
$$

