Math 3001 Analysis 1 Homework Set 6

Spring 2021

Course Instructor: Dr. Markus Pflaum

Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu.

Problem 1: Let $f : [a,b] \to [a,b]$ with a < b be a continuous function. Prove that f has a fixed point, i.e. that there is an $x_0 \in [a,b]$ such that $f(x_0) = x_0$. Hint: Use the Intermediate Value Theorem. (4P)

Problem 2: Prove that the function

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto \begin{cases} \exp\left(-\frac{1}{x^2}\right) & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

is \mathcal{C}^{∞} , and determine all derivatives $f^{(k)}(0), k \in \mathbb{N}$. Hint: Use Problem 3 from Homework 5.

Problem 3: Let $f : I \to \mathbb{R}$ be a function defined on an open interval I. Show that f being differentiable at $a \in I$ is equivalent to the existence of a function $E : I \to \mathbb{R}$ continuous at a such that

$$f(x) = f(a) + f'(a)(x - a) + E(x)(x - a) \text{ for all } x \in I$$
(4P)

(4P)

and E(a) = 0.

Problem 4: Determine the derivatives of the following functions on their maximal real domains:

a)
$$f(x) = \frac{x^2 - 5x + 6}{x^2 - 3x + 2}$$
, b) $f(x) = \ln(x + \sqrt{x^2 + 1})$,
c) $f(x) = \ln(x + \sqrt{x^2 - 1})$, d) $f(x) = \sqrt{|x|^3}$.
(8P)

Extra Credit Problem: Let $\mathbb{R} = \mathbb{R} \cup \{\pm \infty\} = [-\infty, \infty]$ denote the *extended real line*. Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in the extended real line and define the *limit inferior* of the sequence $(x_n)_{n \in \mathbb{N}}$ by

$$\liminf_{n \to \infty} x_n = \lim_{n \to \infty} \inf_{m \ge n} x_m$$

and its *limit superior* by

$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} \sup_{m \ge n} x_m \; .$$

Show that the limit inferior and the limit superior always exist in $\overline{\mathbb{R}}$ and that

$$\liminf_{n \to \infty} x_n \le \limsup_{n \to \infty} x_n$$

Then prove that $(x_n)_{n\in\mathbb{N}}$ converges in $\overline{\mathbb{R}}$ if and only if

$$\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n \ . \tag{8P}$$