Math 3001 Analysis 1
 Homework Set 4

Spring 2021

Course Instructor: Dr. Markus Pflaum
Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu.
Extra Problem: Let $\sum_{n=0}^{\infty} v_{n}$ and $\sum_{n=0}^{\infty} w_{n}$ be two series of complex numbers. Define their so-called Cauchy product as the series $\sum_{n=0}^{\infty} z_{n}$ defined by

$$
z_{n}:=\sum_{k=0}^{n} v_{k} w_{n-k}
$$

Prove that if both $\sum_{n=0}^{\infty} v_{n}$ and $\sum_{n=0}^{\infty} w_{n}$ are absolutely convergent, then their Cauchy product $\sum_{n=0}^{\infty} z_{n}$ is absolutely convergent as well, and

$$
\begin{equation*}
\left(\sum_{n=0}^{\infty} v_{n}\right) \cdot\left(\sum_{n=0}^{\infty} w_{n}\right)=\sum_{n=0}^{\infty} z_{n} \tag{6EP}
\end{equation*}
$$

Problem 1: Show that for each natural $k \geq 2$ the series $\sum_{n=1}^{\infty} \frac{1}{n^{k}}$ converges.
Hint: You can use the result proven in class that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges.
Problem 2: Consider the following two sequences and determine whether they converge or not. In the convergent case determine the limit.
(a) $\quad x_{n}=\frac{13 n^{3}+5 n^{2}+3 n+8}{13+5 n+3 n^{2}+8 n^{3}}$,
(b) $\quad y_{n}=\frac{2^{n}}{(n+2)!}$.

Hint: The proof of the ratio test from class might help for the solution of Problem (b)!
Problem 3: Use the comparison, root or ratio test to determine whether the following series converge or diverge:
a) $\sum_{n=0}^{\infty} \frac{2^{n} n^{3}}{3^{n}}$
b) $\sum_{n=0}^{\infty} \frac{5^{n}}{3^{n}\left(n^{4}+2\right)}$
c) $\sum_{n=1}^{\infty}\left(\frac{1}{5}+\frac{1}{n}\right)^{n}$
d) $\sum_{n=0}^{\infty} \frac{1}{n^{n}}$

Problem 4: Prove that the field \mathbb{C} together with the absolute value as norm is Cauchy complete. Recall: The norm of $z=(a, b)=a+i b$ is defined by $|z|:=\bar{z} \cdot z=\sqrt{a^{2}+b^{2}}$.

