Math 3001 Analysis 1 Homework Set 3

Spring 2021

Course Instructor: Dr. Markus Pflaum

Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu. **Problem 1:** Show that the sequences $\left(\frac{n}{n+2}\right)_{n\in\mathbb{N}}$ and $\left(\frac{n}{2^n}\right)_{n\in\mathbb{N}}$ converge and determine their limits. (3P)

Problem 2: Prove that for every natural number $n \neq 0$:

a)
$$\left(1+\frac{1}{n}\right)^n \le \sum_{k=0}^n \frac{1}{k!} < 3,$$

b)
$$\left(\frac{n}{3}\right)^n \le \frac{1}{3} n!$$
.

(6P)

Problem 3: Prove that for real $a, b \ge 0$ one has

$$\sqrt{a\,b} \leq \frac{1}{2}(a+b)$$

(2P)

Problem 4: Check which of the following sequences converges, and determine its limit, if it does:

a)
$$x_n = \frac{1+(-1)^n}{n}$$

b) $x_n = \frac{n^3}{n^2+1}$
c) $x_n = \frac{n^2}{n^2+1}$
d) $x_n = \frac{n^2-n}{n^3+1}$
(4P)

Problem 5: Let $a, x_0 > 0$ be real numbers. Define the sequence $(x_n)_{n \in \mathbb{N}}$ recursively by

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) \; .$$

Show that the sequence $(x_n)_{n \in \mathbb{N}^*}$ is bounded and decreasing and that its limit is \sqrt{a} . Hint: First show that $x_n > 0$ for all $n \in \mathbb{N}$. Then verify that $x_{n+1}^2 - a \ge 0$ for all $n \in \mathbb{N}$. After that you need to prove that the sequence $(x_n)_{n \in \mathbb{N}^*}$ is decreasing that is that $x_1 \ge x_2 \ge x_3 \ge \ldots$. Note that x_1 might be less, equal or greater than x_0 , which means that monotony only holds from the index n = 1 on. Then put everything together and prove the claim. (5P)