Math 3001 Analysis 1
 Homework Set 2

Spring 2021

Course Instructor: Dr. Markus Pflaum
Contact Info: Office: Math 255, Telephone: 2-7717, e-mail: markus.pflaum@colorado.edu.
Problem 1: For which natural numbers does the inequality $2^{n}<n$! hold true?
Problem 2: Let a, b be real numbers such that $0<a<b$. Prove by induction that $a^{n}<b^{n}$ for all positive integers n.
Problem 3: Let a, b be real numbers such that $0<a<b$. Prove that $\sqrt{a}<\sqrt{b}$.
Problem 4: Show that for all $x, y \in \mathbb{R}$

$$
\begin{equation*}
\max \{x, y\}=\frac{1}{2}(x+y+|x-y|) \quad \text { and } \quad \min \{x, y\}=\frac{1}{2}(x+y-|x-y|) \tag{4P}
\end{equation*}
$$

Problem 5: Using the binomial formula show the following inequality for all natural $n \geq 2$ and real $x \geq 0$:

$$
\begin{equation*}
(1+x)^{n} \geq \frac{n^{2}}{4} x^{2} \tag{3P}
\end{equation*}
$$

Problem 6: Show that the supremum of the set $D=\left\{\left.\frac{n^{2}}{2^{n}} \right\rvert\, n \in \mathbb{N}\right\}$ is $\frac{9}{8}$.
Hint: First prove and then use the inequality $n^{2} \leq 2^{n}$ for $n \geq 4$.

