

Points and Vectors, Part II

Alex Nita

Recall, that if $\mathbb{R}^n = \overbrace{\mathbb{R} \times \cdots \times \mathbb{R}}^{n \text{ times}} = \{(x_1, \dots, x_n) \mid x_i \text{ is a real number}\}$, then the elements of \mathbb{R}^n are denoted \mathbf{x} or \vec{x} , and these stand for (x_1, \dots, x_n) . We call them **points** or **vectors** depending on whether we consider them as positions or velocities/forces/etc. ('vector quantities', typically residing in phase space rather than configuration space, in physics lingo). There is a certain notation which is found in both physics and math books, that emphasises the *vector* part of the elements of \mathbb{R}^n , and it is the angle bracket notation:

$$\langle x_1, \dots, x_n \rangle \quad (0.1)$$

Let us, henceforth, denote *points* in \mathbb{R}^n by bold or capital letters, and if we include components, let us use round brackets or parantheses:

$$\mathbf{x} = P = (x_1, \dots, x_n) \quad (0.2)$$

and let us, henceforth, denote *vectors* by the arrow notation and, in components, using angle brackets:

$$\vec{x} = \langle x_1, \dots, x_n \rangle \quad (0.3)$$

We need this in order to define the **displacement vector** from a point $P = (x_1, \dots, x_n)$ to another point $Q = (y_1, \dots, y_n)$ in \mathbb{R}^n , namely

$$\overrightarrow{PQ} = \vec{Q} - \vec{P} \quad (0.4)$$

$$= \langle y_1, \dots, y_n \rangle - \langle x_1, \dots, x_n \rangle \quad (0.5)$$

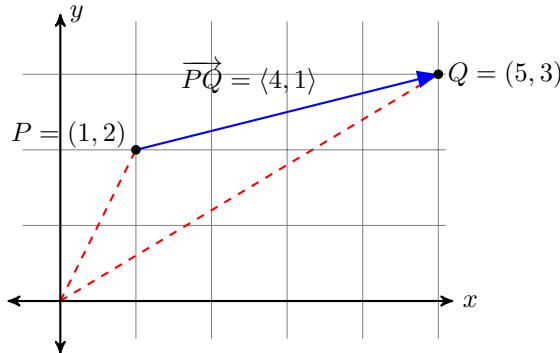
$$= \langle y_1 - x_1, \dots, y_n - x_n \rangle \quad (0.6)$$

We picture the displacement vector \overrightarrow{PQ} as emanating from the point P and ending in an arrow at the point Q .

Example 0.1 Let us look at the case of \mathbb{R}^2 . Suppose $P = (1, 2)$ and $Q = (5, 3)$. Then,

$$\overrightarrow{PQ} = \vec{Q} - \vec{P} = \langle 5, 3 \rangle - \langle 1, 2 \rangle = \langle 5 - 1, 3 - 2 \rangle = \langle 4, 1 \rangle \quad (0.7)$$

and the picture is this:



Remark 0.2 In fact, \overrightarrow{PQ} should be pictured as emanating from the origin, but we want to think of \overrightarrow{PQ} as emanating from P . We should, then, strictly speaking think of \overrightarrow{PQ} as lying in a copy of \mathbb{R}^n sitting above our position space \mathbb{R}^n at the point P , that is we should think of \overrightarrow{PQ} as lying in the set $\{P\} \times \mathbb{R}^n$, and thus

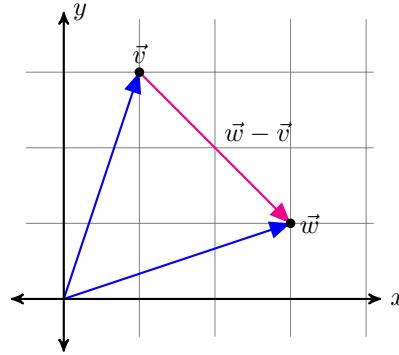
$$\overrightarrow{PQ} = (P, Q - P)$$

For example, if $P = (1, 2)$ and $Q = (5, 3)$, then

$$\overrightarrow{PQ} = \langle 4, 1 \rangle = ((1, 2), (4, 1))$$

We will not nit-pick here, and we will simply conflate points and vectors in the strict sense, but we will picture vectors as emanating from points in the underlying position space. \blacksquare

Now suppose we are considering not two points P and Q , but two vectors \vec{v} and \vec{w} . Then we can consider the **displacement vector** from \vec{v} to \vec{w} . This is, in fact $\vec{w} - \vec{v}$, which is simply due to the fact that $\vec{w} = \vec{v} + (\vec{w} - \vec{v})$:



This of course harmonizes with our previous definition, $\overrightarrow{PQ} = \vec{Q} - \vec{P}$. We subtract our starting position vector from our ending position vector in both cases.

As usual, we define the **length** or **magnitude** of a vector \vec{x} by (a generalization of) the Pythagorean theorem,

$$\|\vec{x}\| = \|\langle x_1, \dots, x_n \rangle\| = \sqrt{x_1^2 + \dots + x_n^2} \quad (0.8)$$

It is clear that for any real number a we have

$$\|a\vec{x}\| = |a|\|\vec{x}\|$$

Example 0.3 Let $P = (1, 2)$ and $Q = (5, 3)$ be points in the plane \mathbb{R}^2 . Find the magnitude of the displacement vector from P to Q .

Solution: Let $\vec{x} = \overrightarrow{PQ} = \vec{Q} - \vec{P} = \langle 4, 1 \rangle$, then

$$\|\vec{x}\| = \|\langle 4, 1 \rangle\| = \sqrt{4^2 + 1^2} = \sqrt{17} \quad \blacksquare$$

Lastly, let us use addition and scalar multiplicaton of vectors to decompose a given vector $\vec{x} = \langle x_1, \dots, x_n \rangle$ (or ‘point’ $\mathbf{x} = (x_1, \dots, x_n)$) into its **components** x_i :

$$\begin{aligned} \vec{x} &= \langle x_1, \dots, x_n \rangle \\ &= \langle x_1, 0, \dots, 0 \rangle + \langle 0, x_2, 0, \dots, 0 \rangle + \dots + \langle 0, \dots, 0, x_n \rangle \\ &= x_1 \langle 1, 0, \dots, 0 \rangle + x_2 \langle 0, 1, 0, \dots, 0 \rangle + \dots + x_n \langle 0, \dots, 0 \rangle \end{aligned}$$

Let us define the **coordinate basis vectors**,

$$\begin{aligned}\mathbf{e}_1 &= \langle 1, 0, \dots, 0 \rangle \\ \mathbf{e}_2 &= \langle 0, 1, 0, \dots, 0 \rangle \\ &\vdots \\ \mathbf{e}_n &= \langle 0, \dots, 0, 1 \rangle\end{aligned}$$

Then, with this notation, we can more concisely write the above equality as

$$\vec{x} = \langle x_1, \dots, x_n \rangle = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n \quad (0.9)$$

Example 0.4 When $n = 2$, we have special notation, which is more commonly found in physics texts:

$$\begin{aligned}\vec{i} &= \mathbf{i} = \mathbf{e}_1 = \langle 1, 0 \rangle \\ \vec{j} &= \mathbf{j} = \mathbf{e}_2 = \langle 0, 1 \rangle\end{aligned}$$

When $n = 3$, we also write:

$$\begin{aligned}\vec{i} &= \mathbf{i} = \mathbf{e}_1 = \langle 1, 0, 0 \rangle \\ \vec{j} &= \mathbf{j} = \mathbf{e}_2 = \langle 0, 1, 0 \rangle \\ \vec{k} &= \mathbf{k} = \mathbf{e}_3 = \langle 0, 0, 1 \rangle\end{aligned}$$

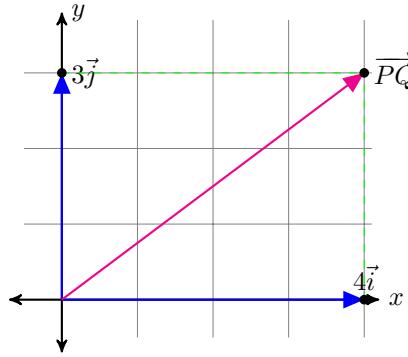
For example,

$$\langle 1, 3, -2 \rangle = 1\vec{i} + 3\vec{j} - 2\vec{k} \quad (0.10)$$

is decomposed into its components. As another example,

$$\langle 4, 3 \rangle = 4\vec{i} + 3\vec{j} \quad (0.11)$$

and this can be pictured as follows:



■

Remark 0.5 Frequently in undergraduate math and physics books vectors \vec{x} in \mathbb{R}^2 and \mathbb{R}^3 are described entirely in terms of their components, so for example if $P = (2, 4, 10)$ and $Q = (3, 7, 6)$ are points in \mathbb{R}^3 , the displacement vector \vec{PQ} is written

$$\vec{PQ} = (3 - 2)\vec{i} + (7 - 4)\vec{j} + (6 - 10)\vec{k} = 1\vec{i} + 3\vec{j} - 4\vec{k}$$

■