

Points and Vectors

Alex Nita

Let $\mathbb{R}^n = \overbrace{\mathbb{R} \times \cdots \times \mathbb{R}}^{n \text{ times}} = \{(x_1, \dots, x_n) \mid x_i \text{ is a real number}\}$. We will sometimes use boldface notation for the n -tuples, \mathbf{x} or ‘vector’ notation \vec{x} for (x_1, \dots, x_n) .

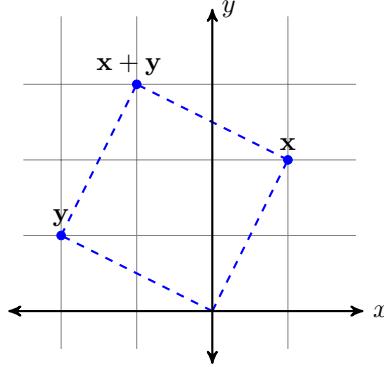
Example 0.1 Our two main examples are the Euclidean plane \mathbb{R}^2 and Euclidean three-dimensional space \mathbb{R}^3 . We usually denote x_1 by x , x_2 by y , and x_3 by z , so that $\mathbf{x} = (x, y)$ or (x, y, z) , as the case may be. \blacksquare

We define **addition** in \mathbb{R}^n componentwise,

$$\mathbf{x} + \mathbf{y} = (x_1, \dots, x_n) + (y_1, \dots, y_n) \quad (0.1)$$

$$= (x_1 + y_1, \dots, x_n + y_n) \quad (0.2)$$

Example 0.2 Let us see what this means in \mathbb{R}^2 . Take, say, $\mathbf{x} = (1, 2)$ and $\mathbf{y} = (-2, 1)$. Then $\mathbf{x} + \mathbf{y} = (1 - 2, 2 + 1) = (-1, 3)$.



Thus we see that to reach $\mathbf{x} + \mathbf{y}$, we may first go to \mathbf{x} , then go in the direction of \mathbf{y} to get to $\mathbf{x} + \mathbf{y}$, or else we may go to \mathbf{y} first and then go in the direction of \mathbf{x} . This shows the algebraically obvious fact that $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$. \blacksquare

In general, we have **commutativity of addition**:

$$\begin{aligned} \mathbf{x} + \mathbf{y} &= (x_1, \dots, x_n) + (y_1, \dots, y_n) \\ &= (x_1 + y_1, \dots, x_n + y_n) \\ &= (y_1 + x_1, \dots, y_n + x_n) \\ &= \mathbf{y} + \mathbf{x} \end{aligned} \quad (0.3)$$

which, as we saw in the previous example, geometrically means that we may ‘get to’ $\mathbf{x} + \mathbf{y}$ in any order we like, first along \mathbf{x} then along \mathbf{y} , or along \mathbf{y} first and then along \mathbf{x} .

Another obvious fact about our definition of addition in \mathbb{R}^n is that it is **associative**:

$$(\mathbf{x} + \mathbf{y}) + \mathbf{z} = \mathbf{x} + (\mathbf{y} + \mathbf{z}) \quad (0.4)$$

which again follows from the same associativity holding in each component, $(x_i + y_i) + z_i = x_i + (y_i + z_i)$.

It is also clear that **zero**, the element $\mathbf{0} = (0, \dots, 0)$, satisfies

$$\mathbf{0} + \mathbf{x} = \mathbf{x} + \mathbf{0} = \mathbf{x} \quad (0.5)$$

for all \mathbf{x} in \mathbb{R}^n . Moreover, the **negative** element of \mathbf{x} in \mathbb{R}^n , defined by

$$-\mathbf{x} = (-x_1, \dots, -x_n) \quad (0.6)$$

satisfies

$$(-\mathbf{x}) + \mathbf{x} = \mathbf{x} + (-\mathbf{x}) = \mathbf{0}$$

which we may more compactly write $-\mathbf{x} + \mathbf{x} = \mathbf{x} - \mathbf{x} = \mathbf{0}$. That is, we may define **subtraction** of elements of \mathbb{R}^n by addition of negatives:

$$\mathbf{x} - \mathbf{y} = \mathbf{x} + (-\mathbf{y}) \quad (0.7)$$

Let us now define **scalar multiplication** of elements of \mathbb{R}^n . That means, we will define multiplication of \mathbf{x} by a real number a . As with addition, we define this componentwise:

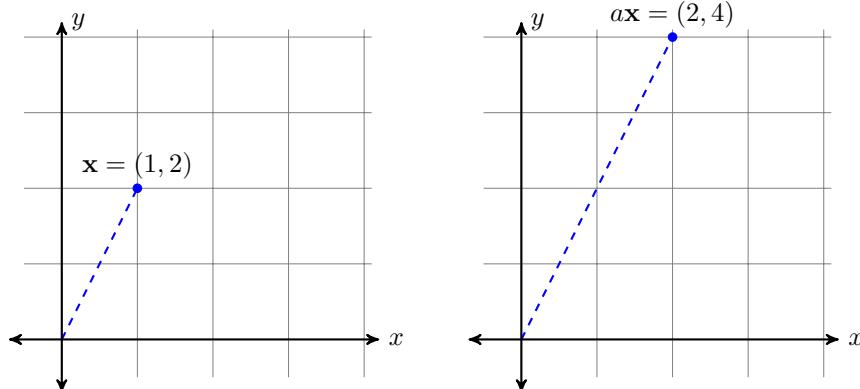
$$a\mathbf{x} = a(x_1, \dots, x_n) = (ax_1, \dots, ax_n) \quad (0.8)$$

It is clear that $1\mathbf{x} = \mathbf{x}$ and $0\mathbf{x} = \mathbf{0}$. Moreover, we have **associativity of scalar multiplication**, $a(b\mathbf{x}) = (ab)\mathbf{x}$, and we have **distributivity** of scalar multiplication over addition:

$$\begin{aligned} a(\mathbf{x} + \mathbf{y}) &= a\mathbf{x} + a\mathbf{y} \\ (a + b)\mathbf{x} &= a\mathbf{x} + b\mathbf{x} \end{aligned}$$

for all real numbers a and b and all elements \mathbf{x} and \mathbf{y} of \mathbb{R}^n .

Example 0.3 Let us see what this means in \mathbb{R}^2 . Take, say, $\mathbf{x} = (1, 2)$ and $a = 2$. Then $a\mathbf{x} = 2(1, 2) = (2 \cdot 1, 2 \cdot 2) = (2, 4)$.



Thus geometrically scalar multiplication has the effect of scaling the distance of the element \mathbf{x} from the origin $\mathbf{0}$. ■

Let us now touch upon the distinction between points and vectors. We will call elements of \mathbb{R}^n **points** when we think of them as positions in n -space, and we will call them **vectors** when we think of them as having direction (in which case we will put an arrow in illustrations). The **length** or **magnitude** of a point/vector \mathbf{x} in \mathbb{R}^n will be defined as the distance of \mathbf{x} from the origin $\mathbf{0}$, and will be denoted by x or $\|\mathbf{x}\|$,

$$x \text{ or } \|\mathbf{x}\| = d(\mathbf{x}, \mathbf{0}) = \sqrt{x_1^2 + \cdots + x_n^2} \quad (0.9)$$

Remark 0.4 *We remark here that the definitions of addition and scalar multiplication in \mathbb{R}^n make \mathbb{R}^n into a **vector space**. If we think of the vector space \mathbb{R}^n as a position space for particles, then we tend to think of its elements as points, which happen to also be vectors, whereas if we think of the vector space \mathbb{R}^n as phase space or something analogous, where velocities of particles and forces act, then we think of \mathbb{R}^n as consisting entirely of vectors. The idea of translation invariance of vectors in \mathbb{R}^n is an amalgam of these two notions. In such a situation we think of \mathbb{R}^n as having both points and vectors in it, with the vectors moving around but staying unchanged in magnitude and direction. This actually means that at each ‘point’ \mathbf{x} we attach a ‘vector’ \mathbf{v} so that the vector ‘emanates’ from \mathbf{x} . But this really means that at \mathbf{x} we have attached a copy of \mathbb{R}^n , whose elements we treat as ‘vectors’, and we superimpose this copy onto our ‘position space’. The fact that there is such a copy at each point \mathbf{x} of our position space means that we can think of the vector \mathbf{v} as ‘moving’ from point to point, but really it’s just another copy of \mathbf{v} . This, however, is a technicality, and I only include it to clarify the math going on here.* ■