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Let Rn =

n times︷ ︸︸ ︷
R× · · · × R = {(x1, . . . , xn) | xi is a real number}. We will sometimes use boldface

notation for the n-tuples, x or ‘vector’ notation ~x for (x1, . . . , xn).

Example 0.1 Our two main examples are the Euclidean plane R2 and Euclidean three-
dimensional space R3. We usually denote x1 by x, x2 by y, and x3 by z, so that x = (x, y)
or (x, y, z), as the case may be. �

We define addition in Rn componentwise,

x + y = (x1, . . . , xn) + (y1, . . . , yn) (0.1)

= (x1 + y1, . . . , xn + yn) (0.2)

Example 0.2 Let us see what this means in R2. Take, say, x = (1, 2) and y = (−2, 1).
Then x + y = (1− 2, 2 + 1) = (−1, 3).
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Thus we see that to reach x + y, we may first go to x, then go in the direction of y to get
to x + y, or else we may to to y first and then go in the direction of x. This shows the
algebraically obvious fact that x + y = y + x. �

In general, we have commutativity of addition:

x + y = (x1, . . . , xn) + (y1, . . . , yn) (0.3)

= (x1 + y1, . . . , xn + yn)

= (y1 + x1, . . . , yn + xn)

= y + x
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which, as we saw in the previous example, geometrically means that we may ‘get to’ x+y in
any order we like, first along x then along y, or along y first and then along x.

Another obvious fact about our definition of addition in Rn is that it is associative:

(x + y) + z = x + (y + z) (0.4)

which again follows from the same associativity holding in each component, (xi + yi) + zi =
xi + (yi + zi).

It is also clear that zero, the element 0 = (0, . . . , 0), satisfies

0 + x = x + 0 = x (0.5)

for all x in Rn. Moreover, the negative element of x in Rn, defined by

− x = (−x1, . . . ,−xn) (0.6)

satisfies
(−x) + x = x + (−x) = 0

which we may more compactly write −x+x = x−x = 0. That is, we may define subtraction
of elements of Rn by addition of negatives:

x− y = x + (−y) (0.7)

Let us now define scalar multiplication of elements of Rn. That means, we will define
multiplication of x by a real number a. As with addition, we define this componentwise:

ax = a(x1, . . . , xn) = (ax1, . . . , axn) (0.8)

It is clear that 1x = x and 0x = 0. Moreover, we have associativity of scalar multiplica-
tion, a(bx) = (ab)x, and we have distributivity of scalar multiplication over addition:

a(x + y) = ax + ay

(a + b)x = ax + bx

for all real numbers a and b and all elements x and y of Rn.

Example 0.3 Let us see what this means in R2. Take, say, x = (1, 2) and a = 2. Then
ax = 2(1, 2) = (2 · 1, 2 · 2) = (2, 4).
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Thus geometrically scalar multiplication has the effect of scaling the distance of the element
x from the origin 0. �
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Let us now touch upon the distinction between points and vectors. We will call elements of Rn

points when we think of them as positions in n-space, and we will call them vectors when
we think of them as having direction (in which case we will put an arrow in illustrations).
The length or magnitude of a point/vector x in Rn will be defined as the distance of x
from the origin 0, and will be denoted by x or ‖x‖,

x or ‖x‖ = d(x,0) =
√
x2
1 + · · ·+ x2

n (0.9)

Remark 0.4 We remark here that the definitions of addition and scalar multiplication in
Rn make Rn into a vector space. If we think of the vector space Rn as a position space
for particles, then we tend to think of its elements as points, which happen to also be vectors,
whereas if we think of the vector space Rn as phase space or something analogous, where
velocities of particles and forces act, then we think of Rn as consisting entirely of vectors.
The idea of translation invariance of vectors in Rn is an amalgam of these two notions. In
such a situation we think of Rn as having both points and vectors in it, with the vectors
moving around but staying unchanged in magnitude and direction. This actually means that
at each ‘point’ x we attach a ‘vector’ v so that the vector ‘emanates’ from x. But this really
means that at x we have attached a copy of Rn, whose elements we treat as ‘vectors’, and we
superimpose this copy onto our ‘position space’. The fact that there is such a copy at each
point x of our position space means that we can think of the vector v as ‘moving’ from point
to point, but really it’s just another copy of v. This, however, is a technicality, and I only
include it to clarify the math going on here. �

3


